中考数学专题复习存在性问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——存在性问题
一、二次函数中相似三角形的存在性问题
1.如图,把抛物线2
=向左平移1个单位,再向下平移4个单位,得到抛物线2
y x
=-+.
y x h k
()
所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)写出h k
、的值;(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由.
2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,
使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
二、二次函数中面积的存在性问题
3.如图,抛物线()20y ax bx a >=+与双曲线k
y x
=
相交于点A ,B .已知点B 的坐标为(-2,-2), 点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积;
(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,写出点D 的坐标; 若不存在,说明理由.
4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,
A (-2,0),
B (-1, -3). (1)求抛物线的解析式;(3分)
(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)
(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,说明理由。
三、二次函数中直角三角形的存在性问题
5.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4, 抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .
(1)求b ,c 的值;
(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,
当线段EF 的长度最大时,求点E 的坐标;
(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由.
四、二次函数中等腰三角形的存在性问题
6.如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标; 若不存在,请说明理由.
26题备用图
26题图
五、二次函数中等腰梯形、直角梯形的存在性问题
7.如图,二次函数y = -x 2+ax +b 的图像与x 轴交于A (-2
1,0)、B (2,0)两点,且与y 轴交于点C ; (1) 求该拋物线的解析式,并判断△ABC 的形状;
(2) 在x 轴上方的拋物线上有一点D ,且以A 、C 、D 、B 四 点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3) 在此拋物线上是否存在点P ,使得以A 、C 、B 、P 四点
为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由。
六、二次函数中菱形的存在性问题
8.如图,抛物线经过原点O 和x 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与x 轴交于点D . 直线y=﹣2x ﹣1经过抛物线上一点B (﹣2,m )且与y 轴交于点C ,与抛物线的对称轴交于点F . (1)求m 的值及该抛物线对应的解析式;
(2)P (x ,y )是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P 的坐标;
(3)点Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M 的运动时间为t 秒,是否能使以Q 、A 、E 、M 四点为顶点的四边形是菱形?若能,请直接写出点M 的运动时间t 的值;若不能,请说明理由.
七、二次函数中与圆有关存在性问题
9.已知:抛物线y x m x m =+--+21264()与x 轴交于两点A (x 1,0),B (x 2,0)()x x x x 12
1
2
0<<,, 它的对称轴交x 轴于点N (x 3,0),若A ,B 两点距离不大于6, (1)求m 的取值范围;(2)当AB=5时,求抛物线的解析式;
(3)试判断,是否存在m 的值,使过点A 和点N 能作圆与y 轴切于点(0,1),
或过点B 和点N 能作圆与y 轴切于点(0,1),若存在找出满足条件的m 的值,若不存在试说明理由
定值问题:
1.如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.
(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;
(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化? 如果不变,求出这个定值;如果变化,求出最大(或最小)值.