关于浅谈高等数学在生活中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈高等数学在生活中的应用

摘要:随着社会经济的迅猛发展,数学在经济生活作用日益突出。数学的理论和方法越

来越广泛地应用到物理、化学、生物、医学、经济管理、军事战争等

不同学科领域以及日常生活中。21世纪对数学需求表现得越来越突出,无论是数学建模、企业管理,还是经济分析,数学都是至关重要的。数学是一种思想方法,学习数学的过程就是思维训练的过程数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。这样就更容易的去解决问题、处理问题。不敢预测也不可能断言,在未来的各个领域研究中数学会占据统治地位,但是数学越来越渗透到各个领域研究中并且发挥着越来越重要的作用已成为事实。人类社会的进步,与数学这门科学的广泛应用是分不开的。

关键词:高等数学各个领域数学建模经济应用

数学既是一门理论学科,又是一门应用广泛的工具性学科,在理学、工学、管理学、经济学等各个领域都发挥着重要的作用,如何将抽象的数学理论应用到具体的经济科学实践中去,作为学管理学、经济学的我们更应该对数学有更深的认识,下面浅谈我的理解。

一、数学在管理中的应用

科学管理之父泰勒通过对管理活动的认识和研究,提出了科学管理,这就是数学在管理中应用的开始。不论是计件工资还是计时工资,都是用数学知识推导计算的。就我看来,我们学习数学也是为了更好的管理。

首先,数学在管理者的思维方面发挥了重要作用。我们经常强调人要有逻辑,数学逻辑是帮助人进行思维的工具。学好数学,就具备较好的思维能力,使管理者头绪清晰。其次,数学在管理决策中的应用。科学决策离不开对相关方案的判断和评估,这需要恰当地处理大量的数据,才能得到正确的决策。再次,数学在预测中的应用。企业根据已有的数据分析,总结相关发展趋势,对公司未来某段时间内的经营状况做出一些预警和规划。

(一)数学与管理的历史联系??

尽管现代管理是工业革命以后的产物,对管理进行正式的研究则是一门较新的学科,但管理活动自古以来就存在,在人类早期文明中,管理活动也是必须的。人类的早期管理活动与数学开端是一个互相促进的过程,在这一过程中产生了算术、代数和几何。算?术中的加、减、乘、除,都与人类管理活动直接有关;代数则是为解决较复杂管理问题产生的,也为解决?相对复杂问题提供了工具;几何与土地测量和天文观测有关,土地测量和天文观测也与人类早期文明中管?理活动紧密相关。总之,早期数学的大部分是由于贸易和农业的需要而发展起来的,同时也推动了早期的管理活动。

(二)数学与管理者

不难发现,对同一个问题,不同的人,用不同的数学方法,在不同的时间和地点,做出的结论永远是一致的。所以数学教育能培养人做事严肃认真,做事、做人目标明确,前后一致,表里如一的态度。在数学的发展过程中,数学每前进一步,都离不开严密的逻辑推理。推理是从已知到未知的合乎逻辑的思维过程。优秀的数学教育使人具有做事思路开阔、举一反三的类比与创新能力;具有化繁为简、分解困难的归纳能力;具有做事思维严谨、思考周密、结构清晰、层次分明、有条理、无漏洞的组织管理能力

(三)数学与管理中的算术、决策

管理活动既有大量的非定量的活动,如协商、谈判、招聘;也有大量的定量化活动,我们几乎是被数学包围着,生产了多少个零件、合格率是多少、公司盈利是多少、员工的收入,等等。数学在管理中应用部分最大块应该是算术。数学对决策有着很重要作用,是加大投入,还是准备退出市场都得靠数学解决。

(四)数学与管理的发展

应用数学的发展,特别是以计算机为基础的应用数学发展,极大地拓宽了数学的进一步应用。这样,就可以通过应用数学对既有管理活动进行分析,可以使既有的管理活动更为科学规范。要做好管理者,必须利用好数学这个基础工具。

二、数学在经济中的应用

高等数学与经济学的联系最紧密,与人民大众联系有利息计算及贷款还款问题,利润问题.在经济问题中涉及的量常常是离散的量,讨论利息时是按年、月、日、计息,这些都是离散的量。而高等数学中讨论的量大多是连续变量,要借助高等数学的方法讨论解决经济问题必须将经济中。西方经济学从亚当·斯密《国富论》起的二百多年来,已形成了一个庞大而较严密的理论体系,但从我学习的《西方经济学》来看,数学与利润最大化,产品最优有着很大联系。比如怎样才能使“产品最多”、“成本最低”、“用料最省”、“利润最大”等等,这样的问题在高等数学中都可归结求为最大值和最小值问题。这一思想运用到经济上可以进行经济业务最大化、最小化分析,通过分析来达到有效、合理安排生产,最大限度地取得利润,最小限度地消耗能源与原料。下面,举两个这方面的应用实例.。

【最大利润问题】已知某生产商在一个月生产A 商品Q 件时的总成本费为C( Q) = 200 + 5Q( 万元) ,得到的收益为R( Q)= 10Q - 0.01Q2,问一个月生产多少时,所获得利润最大?

解: 由题意知L( Q) = R( Q) - C( Q) = 5Q - 0. 01Q2 -200.

令L'( Q) = 5 - 0. 02Q = 0,则有Q = 250,又L″( Q) =- 0. 02 < 0,L( 250) = 450( 万元) ,所以L( 250) = 450( 万元)为L的一个极大值,从而一个月生产250 件产品时,获得利润最大,最大值为450 万元.

【市场均衡问题】设某商品的供给函数Qs=60+P+4 dP/dt ,需求函数Qd=100-P+3dP/dt ,其中P(t)表示t时该商品的价格, dP/dt表示价格关于时间的变化率,已知P(0)=8,试把市场均衡价格表示成关于时间的

函数,并说明其实际意义。

解:市场均衡价格处有Qs=Qd ,即60+P+4dP/dt =100-P+3dP/dt ,

dP/dt =40-2P,这是一个可分离变量的微分方程,解得P=20-Ce-2t,由P(0)=8,得C=12,因此均衡价格关于时间的函数P = 20-12e-2t。由于lim t→+∞ P =

lim t→+∞(20-12e-2t) = 20所以,市场对于这种商品的价格稳定,且可以

认为随着时间的推移,此商品的价格逐渐趋向于20。

三、高等数学到数学建模

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。进入20世纪以来,随着数学以空前的广度和深度向一切领域渗透,以及电子计算机的出现与飞速发展,数学建模越来越受到人们的重视,可以从以下几方面来看数学建模在现实世界中的重要意义。

(一)在一般工程技术领域,数学建模仍然大有用武之地。??在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的

相关文档
最新文档