新课标下数学课堂教学之我见

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标下数学课堂教学之我见

发表时间:2012-05-15T08:51:52.967Z 来源:《学习方法报·教研周刊》2012年第37期供稿作者:李素敏

[导读] 利用学生在生活中熟知的,常见的实际问题来激发学生的探索欲望。

□ 河南宝丰县李庄一中李素敏

新的课程改革,使中学数学新教材走进了中学课堂,在理念、体系、形式和内容等方面,新教材和旧教材相比都有了巨大的转变,体现了时代发展的要求和素质教育的宗旨,给广大教师带来了严峻的挑战和不可多的机遇。而教学是课程实施的主要途径,教学改革是课程改革系统工程中必不可少的一环,因此我们的教师不仅要改变教育观念,而且要改变老师们每天都在进行着的习以为常的教学方式和教学行为。当务之急是问题情境的设计与创新能力的培养。问题是数学的心脏,是创造思维的源泉。在教学中,我们应有意识地创设发现问题的情境,这是发展思维的关键一环,也是培养学生创新能力的好途径。

一、创设情境,培养学生的学习兴趣

兴趣是最好的老师,学生有了学习兴趣,他们的思维就会保持在积极的探索状态之中,有了兴趣他们把学习作为自己内心的需要,而不是把学习当作一种负担。在教学中,我有意识地创设问题情境,激发学生求知的欲望。

1.用新旧知识的冲突,激发学生的探索欲望。例如,在“正弦和余弦”概念教学时,设计如下两个问题:

①Rt△ABC中,已知斜边和一直角边,怎样求另一直角边?

②在Rt△ABC中,已知∠A和斜边AB,怎样求∠A的对边BC?

问题①学生自然会想到勾股定理,而问题②利用勾股定理则无法解决,从而产生认知上的冲突──怎样解决这类问题呢?学生的探求新知识的欲望便会油然而生,产生学习兴趣。

2.利用学生在生活中熟知的,常见的实际问题来激发学生的探索欲望。如在教“统计初步”时,设计以下例子:

王老师为了从甲乙两名运动员中选取一人参加比赛,两人在相同条件下各跳10次,成绩如下表:

甲:5.7 5.8 5.6 5.8 5.6 5.5 5.9 6.0 5.7 5.4

乙:5.9 5.5 5.7 5.8 5.7 5.6 5.8 5.6 5.7 5.7

怎样比较两人的成绩高低,选谁参加比赛?王老师经过科学的数据处理,选出一名运动员参加比赛,取得了较好的成绩。他是怎样计算的呢?学生此时思维活跃起来,对探求新知识兴趣昂然,师生很顺利地完成此节内容,同时也加深了学生对数学知识来源于生活又应用于生活的认识。

3.利用数学小实验,引发学生的好奇心和求知的欲望。例如,在讲三角形内角和定理时,可以这样设置问题:

①把课前剪好的△ABC纸片,剪下∠A、∠B和∠C拼在一起,观察它们组成什么角?

②由此你能猜出什么结论?

③在拼图中,你受到哪些启发?(指如何添加辅助线来证明)这样创设情境,使学生认识到∠A+∠B+∠C=180°,从而对三角形内角和定理有一个感性认识,同时通过拼角找出定理的证明方法,学生在动脑、动手、动眼、动口的实践中,培养了观察能力,提高了学习兴趣。

二、创设情境,鼓励学生主动参与,在亲历数学建构过程中培养学生的创新意识

美国教育家布鲁纳认为:“知识的获取是一个主动的过程,学习者不应该是信息的被动接受者,而应是知识获取的主动参与者。”在课堂教学中创造条件,创设情境,让学生自己去探索、去发现,亲历数学构建过程,掌握认识事物,发现真理的方式方法。从而培养学生的创新意识。

记得讲勾股数时,我出示了这样几组勾股数,请同学们讨论这些勾股数的特征:

3,4,5;5,12,13;7,24,25;9,40,41……

开始学生们只注意到:每组勾股数的前一个数都是奇数,后两个数是一奇一偶,之后陷入僵局。教师启发道:一奇一偶之间有什么联系?学生们发现是连续数。忽然一名学生发现后两数之和恰是一个完全平方数,稍一顿,即抬头,急切地说:“这两个数的和恰是一个完全平方数,这个完全平方数就是前一个数的平方……”这样,在思考,观察中发现规律,灵感一触即发。学生们找到了勾股数的特征:即大于1的奇数的平方分成两个连续的自然数,此奇数与这两个连续自然数成勾股数。

模仿只能跟着走,创新才会出人才。教师在教学中必须发挥主导作用,创设问题情境,引起学生的学习兴趣,引发学生去探索和思维,引导学生去大胆创新,为培养一代社会主义新人做出自己应有的贡献。

相关文档
最新文档