流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动
流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

第五章孔口管嘴管路流动

1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由0

2gH A

Q μ=

与深度无关,所以每个孔口的出流量相同

2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径10。(1)如果箱壁厚度δ=3,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ

s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ

(2)视作管嘴,82.0==μ?

s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ

3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40的薄壁孔口,如题5-3 图,B 箱底部有

一直径为d 2=30的圆柱形管嘴,管嘴长0.1m ,A 箱水深H 1=3m 恒定不变。

(1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 12时 出流恒定 (2)因为Q 12,=-)(2211

1H H g A μ)

1.0(2222+H g A μ

查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3

m 3

4.证明容器壁上装一段短管(如图所示),经过短管出流时的流量系数

μ与流速系数为∑++=

=11ζλ

μ?d

l

证:∵∑++=g

v d l g v g v H 2222

220λ

ζ

∴02gH v ?= 其中=

?∑++11ζλ

d

l

5.某诱导器的静压箱上装有圆柱形管嘴,管径为4,长度l =100,

λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑,求管嘴的

流速系数和流量系数(见上题图)。 解:由题得707.011=++=

=∑ζλμ?d

l

6.如上题,当管嘴外空气压强为当地大气压强时,要求管嘴出流流速为30。此时静压箱内应保持多少压强?空气密度为ρ=1.23

。 解:ρ

?p v ?=2,得2/08.1m kN p =?

7.某恒温室采用多孔板送风,风道中的静压为200,孔口直径为20,空气温度为20℃,μ=0.8。要求通过风量为1m 3

。问需要布置多少孔口? 解:ρ

??p

A

n 2

,得4.218=n ,所以需要219个

8.水从A 水箱通过直径为10的孔口流入B

水箱,流量系数为0.62。设上游水箱的水面高程1H =3m 保持不变。

(1)B 水箱中无水时,求通过孔口的流量。 (2)B 水箱水面高程2H =2m 时,求通过孔口的流量。

(3)A 箱水面压力为2000,1H =3m 时,而

B 水箱水面压力为0,2H =2m 时,求通过孔口的流量。

解:(1)属孔口自由出流

2gH A Q μ=,10H H =

得:s m Q /037.03=

(2)属孔口淹没出流, 0

2gH A Q μ=,210H H H -=

得:s m Q /0216.03= (3)0

2gH A

Q μ= ,9807

2000210+-=H H H

得:s m Q /0236.03=

9.室内空气温度为30℃,室外空气温度为20℃,在厂房上下部各开有8m 2

的窗口,两窗口的中心高程差为7m ,窗口流量系数

μ=0.64,气流在自然压头作用下流动,求车间自然通风换气量

(质量流量)。

解: ()2/744.237.0m N H g H P =?=-=? ρρ

A μρ内

ρ?p

2=12.96

(方法二):分别令上下部窗口外渐变流断面2和断面1,根据气体能量方程,得

L

a p v p v z z g p ?++

=+

--+2

2

))((2

2

22

1121ρρρρ

因为12a ,02

1≈=v v ,所以

H

g p a L )(ρρ-=?

又由于21p p p L ?+?=?

根据气体孔口淹没出流的流量公式: Q a

a M g p g

A ρμρ112?=

2

M g

p g

A ρρμ12?

又由于连续性方程 Q 21M M Q = 查得33/165.1,/205.1m kg m kg a

==ρρ

M M M Q Q ==21

12.96

10.如图示管路中输送气体,采用U 形差压计测量压强差为h 米液体。试推导通过孔板的流量公式。

解:(

)

gh P ρρ-=?

',,ρ是U 形压差计液体容重,ρ为气体容重

h g A h g A g p g A gH A Q ρ

ρμρρρμρμμ,

,02222≈-=?==

11.如上题图孔板流量计,输送20℃空气,测量1002O 。μ=0.62,100,求Q 。

解:将数据代入上题公式得s m Q /2.03=

12.什么叫管路阻抗?(又称为综合阻力数)为什么有两种表示?在什么情况下,S 与管中流量无关,仅决定于管道的尺寸及构造? 解:阻抗反映管路上沿程阻力和局部阻力情况。H S 用在液体管路,P S 用在气体管路。

在紊流粗糙区时,S 与管中流量无关(因为λ此时与v 以及流体状态无关),仅决定于管道的尺寸和构造。 13.供热系统的凝结水箱回水系统如图。试写出水泵应具有的作

用水头表达式。

解:2,

1,

2SQ g

p p H +-=

ρ(如果冷却措

施是开式则需加上h)

14.某供热系统,原流量为0.005m 3

,总水头损失5 2O,现在要把流量增加到0.0085m 3

,试问水泵应供给多大压头。 解:211SQ H =即2005.05?=S ∴525/102m s S ?=

m SQ H 45.140085.01022522=??==

15.两水池用虹吸管连通,上下游水位差2m ,管长L 1=3m ,L 2=5m ,L 3=4m ,直径200,上游水面至管顶高度1m 。已知λ=0.026,进口网ζ=10,弯头ζ=1.5(每个弯头),出口ζ=1.0 ,求: (1)虹吸管中的流量;

(2)管中压强最低点的位置及其最大负压值。 解:(1)方法一:

()

d

L L L gH

d b c 32102224+++

++λζζζπ

0.05

m 3

方法二:

g

d d

L S 4

2

)

(8πζλ∑∑+=

又2SQ H =,解得s m Q /05.03= (

2

+

-=)(1Z Z h C

v =2.75m

(1,5.1,100===

ζζζb C )

∴负压值为-2.93m

16.如图水泵抽水系统,管长、管径单位为m ,ζ给于图中,流量40×10-3m 3

,λ=0.03。求: (1)吸水管及压水管的S 数。 (2)求水泵所需水头。

(3)绘制总水头线。

解:(1)1

H

S g

d d L 41221118πζζλ???

? ??++118.69s 2 5

2

H S g

d d L 412432218πζζλ?

???

??+++2106.1s 2 5 (2)+=h H (1

H S +2

H S )m Q 56.232= (其中m h 20317=+=)

(3)略

17.图为一水平安置的通风机,吸入管d 1=200m ,l 1=10m ,λ=0.02。压出管为直径不同的两段管段串联组成,d 2=200, l 2=50m ,λ=0.02;l 3=50m , λ=0.02。空气密度为ρ=1.23

,风量为0.15m 3

不计局部阻力。试计算:

(1)风机应产生的总压强为多少?

(2)如风机与管道铅直安装,但管路情况不变,风机的总压有无变化?

(3)如果流量提高到0.16m 3

,风机总压变化多少?

(4)绘出全压线与静压线图。

解:(1) 4

121

118d d l S P πλ

ρ=

4

2

22

22

8d d l S P πλρ= 4

323

3

3)1(8d d l S P πλ

ρ+=

=P S +1P S +2P S 3P S 2Q S p P =

解得:Pa p 2500=

(2)铅直安装不会改变总压,因为同种气体位压等于零 (3)Pa

Q S p P 28302

==

18. 并联管路中各支管的流量分配,遵循什么原理?如果要得到各支管中流量相等,该如何设计管路? 解:并联管路S

Q 1∝,如果要得到各支管流量相等必须各支管S

相等

∴应设计成S 123

19. 有两长度尺寸相同的支管并联,如果在支管2中加一个调节阀(阻力系数为

ζ),

则1Q 和2Q 哪个大些?阻力1f h 和2

f

h

哪个大些?

解:(1)S 121Q 222Q ,S 与ζ有关 因为21S S <,故>1Q 2Q 。 (2)1f h =2f h

20.有一简单并联管路如下图,总流量Q=80×10-3m 3

,λ=0.02,求各管段之间的流量及两节点之间的水头损失。第一支路

1d =200,L1=600m ,第二支路2d =200,L 2=360m 。

解:Q

12=

2

S :1S (Q α

S

1)

1S =g

d d L 4121

18πλ =3104.8 s

2 5

2S =

524

222

2/9.18628m s g

d d L =πλ

解得:774.0:21=Q Q s m Q /1045332-?= s m Q /1035331-?=

211Q S H =m

Q S 72.322==

21.如上题,若使21Q Q =如何改变第二支路? 解:2d 减小或加调节阀等增加阻力的措施。

22.如图所示管路,设其中的流量0.6m 3

,λ=0.02,不计局部损失,其它已知条件如图,求A 、D 两点间的水头损失。

解: 3375:1743:2185::1:

1:

1::4

543532524

3

2

432==

=

L d L d L d S S S Q Q Q A Q Q Q Q =++432 5

228.346m

s S =

s m Q Q A 3218.03375

174321852185=++=

m Q S H 15.112

2

2==并 )(855

5

511251d L d L g S +=

+πλ

m Q S H 1325151==++

∴m

H 15.241315.11=+=

23.管段1的管径为20,管段2为25,

l 1为20m ,l 2为10m ,1521==ζ∑ζ∑,025.0=λ,

流量分配有何变化?

解:这样1Q 更小,2Q 更大,所以应将管段1的管径改为mm 25,管段2的管径改为mm 20,两管流量可接近。

24.已知某枝状管网的Q 1、Q 2、Q 3,若在支管2的末端再加一段管子,如图中所示。问Q 1和Q 2、Q 3各有何变化?

解:由于总阻抗加大,2SQ H

=

使总流量1Q 减小

由于H 不变,3Q 减小,所以2Q 减小

25.三层供水管路,各管段的S值皆106s 25

,层高均为5m 。设a 点的压力水头为20m ,求Q 1、Q 2、Q 3,并比较三流量,得出结论来。(忽略a 处流速水头) 解:32'Q Q Q +=

3211'Q Q Q Q Q Q ++=+=

(1)2120SQ =

(2)20=52'Q 22SQ 522232)(SQ Q Q ++ (3)20=102'Q 2S 23Q

联立(1)(2)(3)Q 1=4.46×10-3m 3

Q 2=2.41×10-3 m 3 Q 3=0.63×10-3 m 3

26.如上题,若想得到相同的流量,在a 点压力水头仍为20m 时,应如何改造管网?

解:加大底层阻力(如加阀门,减小管径)。减小上层阻力(如加大管径)

27.水由水位相同的两贮水池A、B沿着L1=200,L2=100m ,d 1=200m ,d 2=100m 的两根管子流入L 3=720m ,d 3=200m 的总管,并注入水池水中。求:

(1)当16m ,λ1=λ3=0.02,λ2=0.025时,排入C 中的总流量(不计阀门损失);

(2)若要流量减少一半,阀门的阻力系数为多少?

解:(1)

g

d L

528πλ

2321C A Q S Q S H += 2

322C B Q S Q S H +=

解得:s m Q C /1025.6033-?=

(2)当流量减少一半 2

'

''

C B A C

Q Q Q Q =

+=

g

d d l S 4323

3

3

'3)(8πζλ+=

2''32

'1C A Q S Q S H += 2

''32

'2C

B Q S Q S H += 解得:256=ζ

28.水平布置的管系,A 点的表压强A p =2802

,水流从B、D直接排入大气,管直径为0.4m ,其它各管直径为0.3m ,沿程阻力系数λ=0.02,忽略局部损失,确定Q 1,Q 2,Q 3和表压强 解:由题意得:

2

'2Q S p

AB =γ

2'3Q S p

AD =γ

2

'

'2'2???

? ??+=Q S Q S p

AC γ

AB S =

29.1363.0200

02.0852=???g π AD S =342.324

.020002.085

2=???g π AC S =

1093.016002.0852=???g π 8.815

.312002.082

'

=???=g S π 解得:s m Q /47.03'1=,s m Q /4577.03'2=,s m Q /94.03'3=

∴s m Q Q Q /692.02348.04577.023'

'2

2=+=+=

s m Q Q Q /174.12348.094.02

3''

33=+=+=

s m Q Q Q /866.13321=+=

2

'

'2???

? ??=Q

S p C

γ

∴2/2.44m kN p C =

29.环状管网流量计算,进行二次校正计算。

解:第一次校正计算

第二次校正计算

流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 一、实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 二、实验装置

图二孔口、管嘴结构剖面图三、实验原理

在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv = Pv/ρg = 0.75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv = 0.6 ~ 0.7H。。说明直角进口管嘴在进口处产生较大真空。但与经验值0.75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。 观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是利用渐缩的这一水力特性)。能量损失小,因此其μ

孔口与管嘴出流实验

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴2#直角进口管嘴3#锥形管嘴4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头10. 上回水槽11. 标尺12. 测压管 二、实验原理

流量系数 收缩系数 流速系数 阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定后,测记水箱水面高程标尺读数H ,测定流量Q(要求重复测量三次,时间尽量长些,以求准确), 1 测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。

流体力学_龙天渝_明渠流动

第六章明渠流动 一、复习思考题 二、习题 1、选择题 2、计算题 一、复习思考题 1.与有压管流相比较,明渠流动有哪些特点? 2.明渠均匀流的形成条件和特征是什么? 3.明渠均匀流的水深(正常水深)与哪些因素有关? 4.两渠道的流量相同,若下列参数不同(其它参数均相同):(1)粗糙系数n1与n2;(2)底坡i1与i2;试比较两渠道的正常水深和临界水深。 5.怎样从运动学的角度区分缓流与急流?有哪些判别方法? 6.缓流和急流同层流和紊流、渐变流和急变流在概念上有何区别?7.明渠水流从急流过渡到缓流或从缓流过渡到急流,发生什么局部水力现象? 8.缓流、急流和临界流是否一定和缓坡、急坡、临界坡渠道相对应?在什么条件下相对应? 9.各种底坡的渠道,N-N线(正常水深线)和c-c线(临界水深线)的相对位置如何? 10.怎样定性分析水面曲线的变化? 二、习题 1、选择题 6-1明渠均匀流可能发生在(): (a)平坡棱柱形渠道 (b)顺坡棱柱形渠道 (c)逆坡棱柱形渠道 (d)都有可能 6-2水力最优断面是(): (a)造价最低的渠道断面 (b)壁面粗糙系数最小的断面 (c)对一定的流量具有最大断面积的断面 (d)对一定的面积具有最小断湿周的断面 6-3水力最优矩形断面,宽深比是(): (a)0.5 (b)1.0

(c)2 (d)4 6-4明渠流动为急流时(): (a)Fr>1 (b)h>h c (c)v0 6-5明渠流动为缓流时(): (a)Fr<1 (b)hv c (d)<0 6-6明渠水流由急流过渡到缓流时发生(): (a)水跃 (b)水跌 (c)连续过渡 (d)都有可能 6-7在流量一定,渠道断面的形状、尺寸和壁面粗糙一定时,随底坡的增大,正常水深将(): (a)增大 (b)减小 (c)不变 (d)以上都有可能 6-8在流量一定,渠道断面的形状、尺寸一定时,随底坡的增大,临界水深将(): (a)增大 (b)减小 (c)不变 (d)以上都有可能 返回顶部目录 2、计算题 6-9梯形断面土渠,底宽b=3m,边坡系数m=2,水深h=1.2m,底坡i=0.0002,渠道收到中等养护,试求通过的流量。 6-10修建混凝土砌面(较粗糙)的矩形渠道,要求通过流量Q=9.7m3/s,底坡i=0.001,试按水力最优断面条件设计断面尺寸。

孔口与管嘴出流实验

实验八孔口与管嘴出流实验 一、实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、 局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并 以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v=0.75H0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: Q=φεA(2gH0)1/2 =μA(2gH0)1/2 流量系数μ=Q/[A(2gH0)1/2] 收缩系数ε=A c/A=d2c/d2 流速系数φ=V c/(2gH0)1/2=μ/ε=1/(1+ξ)1/2 阻力系数ξ=1/φ2-1 三、实验设备 图8-1 孔口与管嘴实验装置图 1、自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: (A-A图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口);8、防溅旋板; 9、测量孔口射流收缩直径的移动触头;10、回水槽;11、标尺;12、测压管。

流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

第五章孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由0 2gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径10。(1)如果箱壁厚度δ=3,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ 3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40的薄壁孔口,如题5-3 图,B 箱底部有

一直径为d 2=30的圆柱形管嘴,管嘴长0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 12时 出流恒定 (2)因为Q 12,=-)(2211 1H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3 4.证明容器壁上装一段短管(如图所示),经过短管出流时的流量系数 μ与流速系数为∑++= =11ζλ μ?d l 证:∵∑++=g v d l g v g v H 2222 220λ ζ ∴02gH v ?= 其中= ?∑++11ζλ d l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4,长度l =100, λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑,求管嘴的 流速系数和流量系数(见上题图)。 解:由题得707.011=++= =∑ζλμ?d l

流体力学孔口管嘴出流实验报告

《流体力学》实验报告 开课实验室: 2013年5月17日

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: T汞厦 1! ! ! ! 1 n b a ■ 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z仁z2=19cm,z3=z4=12cm 。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H Q 3 、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。 五、实验过程原始记录(数据、图表、计算 1. 记录计算有关参数 圆角形管嘴d仁1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm ; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm3 2880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.8C 流量Q/(cm3s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.5 平均流量Q /(cmSs)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625

新版流体力学孔口管嘴出流实验报告-新版.pdf

《流体力学》实验报告 开课实验室:2013年5 月17日学院城环学院年级、专业、班11环工2班姓名成绩 课程名称流体力学实验 实验项目 名称 孔口管嘴出流实验指导教师 教师 评语教师签名: 年月日 一、实验目的 1.理解射流与孔口出流的特点。 2.掌握管嘴出流的水力现象。 3.灵活应用静力学的基本知识,由测压管读数推求作用水头。 4.掌握孔口、管嘴出流的流量计算公式与流量系数的大小。 二、实验原理

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z1=z2=19cm,z3=z4=12cm。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H、Q。 3、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。

五、实验过程原始记录(数据、图表、计算 1.记录计算有关参数 圆角形管嘴d1=1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 2.实验记录与计算 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm32880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.80 流量Q/(cm3/s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.54 平均流量Q‘/(cm3/s)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625 测管读数H2/cm / 1.82 // 真空度H v/cm /17.18 // 收缩直径d c/cm ///0.972 收缩断面A c/cm2///0.742 收缩系数 1.0 1.0 1.0 0.66 流速系数0.93 0.85 0.97 0.95 阻力系数0.16 0.38 0.06 0.11 流股形态光滑水柱、无收 缩不光滑、紊乱水 柱 光滑水柱扭变光滑水柱、 侧收缩

孔口管嘴管路流动..

孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由0 2gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径d=10mm 。(1)如果箱壁厚度δ=3mm ,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40mm ,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ

3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40mm 的薄壁孔口,如题5-3 图,B 箱底部有一直径为d 2=30mm 的圆柱形管嘴,管嘴长l =0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 1=Q 2时 出流恒定 (2)因为Q 1=Q 2,=-)(2211 1H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3/s 4.证明容器壁上装一段短管(如图所示),经过短管出流时的流量系数μ与流速系数为 ∑++= =11ζλ μ?d l 证:∵∑++=g v d l g v g v H 2222 220λ ζ ∴0 2gH v ?= 其中= ?∑++11 ζλd l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4mm ,长度 l =100mm ,λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑, 求管嘴的流速系数和流量系数(见上题图)。

流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

第五章孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由02gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径d=10mm 。(1)如果箱壁厚度δ=3mm ,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40mm ,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ 3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40mm 的薄壁孔口,如题5-3 图,B 箱底部有一直径为d 2=30mm 的圆柱形管嘴,管嘴长l =0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 1=Q 2时 出流恒定 (2)因为Q 1=Q 2,=-)(22111H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3/s 4.证明容器壁上装一段短管(如图所示),经过短管出 流时的流量系数μ与流速系数为

∑++==11ζλμ?d l 证:∵∑++=g v d l g v g v H 2222 220λζ ∴02gH v ?= 其中=?∑++11 ζλd l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4mm ,长度l =100mm ,λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑,求管嘴的流速系数和流量系数(见上题图)。 解:由题得707.011 =++==∑ζλμ?d l 6.如上题,当管嘴外空气压强为当地大气压强时,要求管嘴出流流速为30m/s 。此时静压箱内应保持多少压强?空气密度为ρ=1.2kg/m 3。 解:ρ?p v ?=2,得2/08.1m kN p =? 7.某恒温室采用多孔板送风,风道中的静压为200Pa ,孔口直径为20mm ,空气温度为20℃,μ=0.8。要求通过风量为1m 3/s 。问需要布置多少孔口? 解:Q =ρ ??p A n 2,得4.218=n ,所以需要219个 8.水从A 水箱通过直径为10cm 的孔口流入B 水箱,流量系数为0.62。设上游水箱的水面高程1H =3m 保持不变。 (1)B 水箱中无水时,求通过孔口的流量。 (2)B 水箱水面高程2H =2m 时,求通过孔口的流量。 (3)A 箱水面压力为2000Pa ,1H =3m 时,而B 水箱水面 压力为0,2H =2m 时,求通过孔口的流量。 解:(1)属孔口自由出流 02gH A Q μ=,10H H = 得:s m Q /037.03= (2)属孔口淹没出流, 02gH A Q μ=,210H H H -=

孔口与管嘴出流实验

孔口与管嘴出流实验 Revised as of 23 November 2020

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关 水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图

1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴 2#直角进口管嘴 3#锥形管嘴 4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头 10. 上回水槽 11. 标尺 12. 测压管 二、 流量系数 收缩系数 流速系数

阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定 ,测定流量Q(要求重复测量三次,时间尽量长些,以求后,测记水箱水面高程标尺读数H 1 准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。 四、 .结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 参考答案: 据实验报告解答的实际实验结果可知,流股形态及流量系数如下: 园角管嘴出流的流股呈光滑园柱形,u = 0. 935;

【精品】流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 二、2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 三、实验装置

三、图二孔口、管嘴结构剖面图 四、实验原理 在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv=Pv/ρg=0。75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv=0。6~0.7H。。说明直角进口管嘴在进口处产生较大真空.但与经验值0。75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。

观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面 面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。 另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程 或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是 利用渐缩的这一水力特性)。能量损失小,因此其μ值与圆角管嘴相近. 观察孔口出流在d/H〉0.1时与在d/H〈0。1时侧收缩情况: 开大流量,使上游水位升高,使d/H〈0。1,测量相应状况下收缩断面直径dc; 再关小流量,上游水头降低,使d/H〉0。1,测量此时的收缩断面直径d c’的值,可发现当d/H〉0。1时d c’增大,并接近于孔径d,这叫作不完全收缩,此 时由实验测知,μ也增大,可达0。7左右. 四、实验步骤与方法 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开水泵开关,使恒压水箱充水,至溢流后,再打开圆柱形管嘴(先旋转旋板挡住管嘴,然后拔掉橡皮塞,最后旋开旋板),待水面稳定后,测定水箱水面高程标尺读数,用体积 法或数显流量计(两种方法皆可)测定流量,测量完毕,先旋转水箱内的旋板,将管嘴进 口盖好,再塞紧橡皮塞。 3。打开圆锥形管嘴,测记恒压水箱水面高程标尺读数及流量,观察和量测圆柱形管嘴出流 时的真空情况。 4。打开孔口,观察孔口出流现象,测量水面高程标尺读数及孔口出流流量,测记孔口收 缩断面的直径(重复测量3次)。改变孔口出流的作用水头(可减少进口流量),观察孔 口收缩断面的直径随水头变化的情况.

孔口管嘴出流试验

实验八 孔口与管嘴出流实验 一、 实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验设备 图8-1 孔口与管嘴实验装置图 1、 自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: 8、防溅旋板; 9、测量孔口射流收缩直径的移动触头; 10、回水槽;11、标尺;12、测压管。 (A-A 图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口); 三、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d 的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v =0.75H 0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: 0022gH A gH A Q μ?ε==

流量系数 02gH A Q =μ 收缩系数 22d d A A c c ==ε 流速系数 ξεμ?+===1120 gH V c 阻力系数 112-=? ξ 四、实验步骤 1、记录实验常数,各孔口管嘴用橡皮塞塞紧。 2、打开调速器开关,使恒压水箱充水,至溢流后,再打开1#圆角管嘴,待水面稳定后,测定水箱水面高程标尺读数H1,用体积法(或重量法)测定流量Q(要求重复测量三次,时间尽量长些,要在15秒以上,以求准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口 盖好,再塞紧橡皮塞。 3、依照上法,打开2#管嘴,测记水箱水面高程标尺读数H1及流量Q ,观察和量测直角管嘴出流时的真空情况。 4、依次打开3#圆锥形管嘴,测量H1及Q 。 5、打开4#孔口。观察孔口出流现象,测量H1及Q ,并按下述注意事项b 的方法测记孔口收缩断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6、关闭开关3,清理实验桌面及场地。 五、注意事项 1、实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开。 2、量测收缩断面直径:可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将 其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰。 3、以上实验时,注意观察各出流的流股形态,并作好记录。 六、实验成果及要求 1.有关常数: 直角管嘴d1= cm, 喇叭进口管嘴d2= cm,出口高程读数Z1=Z2= cm ; 锥形管嘴d3= cm , 孔口d4= cm,出口高程读数Z3=Z4= cm 。 2.整理记录及计算表格(附表)。 七、思考题 1、结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 2、观察d/H >0.1时,孔口出流的侧收缩率较d/H <0.1时有何不同? 3、为什么要求圆柱形外管嘴长度L=(3~4)d ,当圆柱形外管嘴长度大于或小于(3~4)d 时将会出现什么情况?

孔口与管嘴出流实验

孔口与管嘴出流实验 摘要: 本实验通过通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响,并且掌握孔口与管嘴出流的流速系数?、流量系数μ、侧收缩系数ε、局部阻力系数ζ的量测技能。 前言: 管嘴和孔口的出流流体的形态,一直引起有关研究者的兴趣,文献[1~5]综述了这方面的工作。早在17世纪就有人开始研究,包括Bernouli,Reynolds,Barres等等许多人均在此领域有所建树,涉及流体形态特征、孔口与出流形态的影响,出流形态的显示方法等。到本世纪90年代,李文平等人[6]考察了垂直矩形薄壁孔射流轮廓的变化,指出射流的断面形状在流体的不同位置呈现不同的形态。射流轮廓由孔口处的规则矩形,随出流距离的增加发生有规律的收缩,到一定程度转换为一个近似的十字架形态,其长短轴分别为垂直取向和水平取向。在研究范围内,除了非完全收缩区外其它水面线均与孔口宽高比、模型尺寸无关。Hager[1]用摄像法记录扁矩形孔射流的出流形态,发现矩形长边垂直设置的孔口出流,流体上缘首先收缩,向侧面扩展,最后包覆流体的下部,呈现美丽的伞形;而水平设置的孔口出流的边缘,随出流距离的增加,持续发生横向收缩,其边缘增厚。槐文信等人[7]研究了双孔平面射流的吸附现象。根据两股流体间存在的相互吸附效应(Coanda效应),两股流体之间被卷吸的流体得不到补充或补充不足,则相互吸引汇成一股射流。研究指出,在两孔平面射流之间的补充流体小于其卷吸量,其内缘因此效应发生相互吸附,从而汇成一股射流。 实验装置 本实验装置如图9.1所示。 图9—1孔口管嘴实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器;4恒压水箱;5. 溢流板;6.稳水孔板;7.孔口管嘴;8.防溅旋板;9.测量孔口射流收缩直 径的移动触头;10.上回水槽;11.标尺;12.测压管;

9-孔口与管嘴出流实验

9-孔口与管嘴出流实验

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图

1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴2#直角进口管嘴3#锥形管嘴4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头10. 上回水槽11. 标尺12. 测压管二、实验原理 流量系数

收缩系数 流速系数 阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定后,测 ,测定流量Q(要求记水箱水面高程标尺读数H 1 重复测量三次,时间尽量长些,以求准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 3.依照上法,打开2#管嘴,测记水箱水面 及流量Q,观察和量测直角管嘴高程标尺读数H 1 出流时的真空情况。 4.依次打开3#园锥形管嘴,测定H1及Q。 5.打开4#孔口,观察孔口出流现象,测定及Q,并按下述7(2)的方法测记孔口收缩断面的H 1

直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。 四、实验分析与讨论 问题一.结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流

相关文档
最新文档