流体力学水力学之孔口和管嘴出流与有压管流

合集下载

流体力学(孔口管嘴出流与有压管流)

流体力学(孔口管嘴出流与有压管流)

二、本章重点掌握 1、孔口、管嘴恒定出流的水力计算。 2、有压管路恒定流动的水力计算。
§7-1
孔口出流
孔口出流分类 薄壁小孔口恒定出流 薄壁大孔口恒定出流 孔口非恒定出流
在容器壁上开孔,流体经孔口流出的现象,称孔口流出。 应用:给排水工程中水池放水,泄水闸孔等。
一、孔口出流分类
1、按孔口大小与其水头高度的比值分
式中µ――全部完善收缩时孔口流量系数; A――孔口面积; A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响 不完善收缩的程度近于一致的情况。 想一想:为什么不完善收缩、不完全收缩的流量系数较完善收 缩、完全收缩的流量系数大?
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损 失项包括孔口的局部损失和收缩断面c-c至2-2断面流束突然扩大 局部损失。
大孔口的流量计算式与小孔口的相同,但大孔口的收缩系数较大, 因而流量系数也较大,见下表(教材表6-1,P189)。
大孔口的流量系数
收缩情况 全部、不完善收缩 底部无收缩,侧向有收缩 底部无收缩,侧向较小收缩 底部无收缩,侧向极小收缩
μ
0.70 0.65~0.70 0.70~0.75 0.80~0.90
2、孔口出流各项系数
边界条件的影响: 对于薄壁小孔口,试验证明,不同形状孔口的流量系数差别不 大。 孔口在壁面上的位置对收缩系数却有直接影响。 全部收缩是 全部收缩是当孔口的全部边界都不与容器的底边、侧边或液面 重合时,孔口的四周流线都发生收缩的现象;如图中I、Ⅱ两孔。 不全部收缩是不符合全部收缩的条件; 不全部收缩 如图中Ⅲ、Ⅳ两孔。 在相同的作用水头下,不全部收缩的 收缩系数 ε 比全部收缩时大,其流量系数

流体力学第7章 孔口 管嘴出流和有压管流

流体力学第7章 孔口 管嘴出流和有压管流

孔 A1 2 gh1 嘴 A2 2 g (h2 h3 )
4 4 0.000992 h1 0.000738 h2 h3 0.62

0.042 2 gh1 0.82

0.032 2 g (h2 h3 )
0.000992 h1 0.000738 h2 h3
主要内容:
薄壁孔口的恒定出流 液体经管嘴的恒定出流
孔口、管嘴的非恒定出流
短管的水力计算 长管的水力计算 管网的水力计算
7.1 薄壁孔口的恒定出流
在装有液体的容器壁上开一孔口,液流经过孔口流出的水力现 象称为孔口出流。 (1)孔口出流分类: d/H<0.1 小孔口出流 侧壁孔 按孔口断面上各点所受 d/H>0.1 大孔口出流 的作用水头是否相同分 底孔,小孔口出流 按孔口壁面厚度和形 状对出流的影响分 按液体出流时与周 围介质关系分 按作用的总水头是 否改变分 薄壁孔口出流 厚壁孔口出流 孔口自由出流 孔口淹没出流 孔口恒定出流
工程实际中,大孔口出流的计算可以近似采用小孔口的计算公 式。 Q A 2 gH 0
式中H0取为大孔口形心的水头,流量系数可以查表得到。
7.2 液体经管嘴的恒定出流
(1)定义、分类及流动特点:
管嘴实际上是以某种方式连接于薄壁孔口上的具有一定长度 的短管。 液体经由容器外壁上安装的长度约(3~4)倍管径的短管出流, 或容器壁的厚度为(3~4)孔径的孔口出流,称为管嘴出流。
(5)大孔口出流 大孔口出流断面上的流速分布不 均匀,流速系数φ较小,且大多 数属于不完善的非全部收缩,流 量系数较大。 大孔口可看成由很多小孔口组成。
利用小孔口出流计算公式,宽为dh的小孔口流量为 dQ μbdh 2gh

孔口管嘴出流、有压管路基本概念_OK

孔口管嘴出流、有压管路基本概念_OK

Q vc A A 2g H0 ( 5 1 6 )

称μ为流量系数其值为μ =0.60~0.62。
Q A 2g H0 (517 )
4
收缩系数
全部收缩 不全部收缩 完善收缩 不完善收缩
完善收缩的薄壁圆形小孔口
ε=0.64
φ=0.97
μ=0.62
5
第二节 孔口淹没出流
当液体通过孔口出流到另一个充满液体的空间时称为淹没出流。
Qvi : Qv2 : Qv3
:
:
S1
S2
S3
式中:Qvi,Si分别为第i个管段中的流量,阻抗;Sp为并联管
段系统的阻抗;n为并联管段总数。
29
总水头线和测压管水头线的绘制
30
能量方程得到证明:
pc
cvc2
2g
pB
BvB2
2g
h1
h1
突扩扩损
沿程损程
m
l d
vB2 2g
取,αc αB 1;
vc
A AC
vB
1 ε
vB ;
pB
p , 则上式变为
pC γ
pB γ
1
ε
2
1 ξm
λ
l d
vB2 2g
当ε 0.64,λ 0.02, l d 3, 0.82时,
pa 2g
A
A
ZA
pA
Av
2 A
2g
Zc
pc
c
v
2
C
2g
he
H0
H
对薄壁孔口来说
he
hm
1
vc2 2g
,
0
d
C 0
移项整理得:c

工程流体力学课件 第06章 孔口、管嘴出流及有压管流讲解

工程流体力学课件 第06章 孔口、管嘴出流及有压管流讲解

流量 系数
H 23
h O
23
c
1
1 l
d
淹没与自 由出流相 比,作用水 头不同,管 系流量系数 相同,局部 损失中不包 含 2-2 断 面 出 口损失。
简单管道水力计算特例——虹吸管及水泵
安装高度
提水高度
压水管
1
Zs
Z
安装高度
吸水管
Z 1
2 Zs
虹吸管是一种压力管,顶部2 弯 曲且其高程高于上游供水水面。其 顶部的真空值一般不大于7~8m水柱 高。虹吸管安装高度Zs越大,顶部真 空值越大。
圆柱形外管嘴的正常工作条件
H0

7m 0.75

9m
管嘴长度为(3-4)d
P121
§6—3 有压管道恒定流动的水力计算
z1
p1
g
1v12
2g

z2

p2
g
2v22
2g
hw12
实际流体恒 定总流能量
方程
hw12

hf 12 hj
沿程损失 局部损失
已能定量分析,原则上 解决了恒定总流能量方程 中的粘性损失项。
P119
一、管嘴出流的计算
计算特点: hf 0 出流特点:
1
H
0
d
在C-C断面形成收缩,然后再扩大,逐步充满
整个断面。
1
l (3 ~ 4)d
c2 0
c2
从 1→2 建立伯努利方程,有
H

0

0

0

0

v 2
2g
n
v2 2g
v

第七章 孔口、管嘴出流和有压管流

第七章 孔口、管嘴出流和有压管流
短管——局部损失、速度水头均不可忽略的管路。 L <1000 d
长管——局部损失、速度水头均可忽略(或按沿 程损失的一定比例计入)。
2019/10/14
中国矿业大学(北京)地下工程系
真空的抽吸作用,流量增加
2019/10/14
中国矿业大学(北京)地下工程系
26
(2)公式:
第二节 管嘴出流
Q A 2 gH 0
孔口: μ=0.62 φ=0.97
管v 嘴 :f μ2=gφH=0.82
2
0
ε=0f.640.82 ε=1
(3) 与孔口的对比:
1> 公式形式相同,但系数不同:
2019/10/14
中国矿业大学(北京)地下工程系
30
第二节 管嘴出流
例:水箱中用一带薄壁孔口的板隔开,孔口及两出流 管嘴直径均为d=100mm,为保证水位不变,流入水箱 左边的流量Q=80L/s,求两管嘴出流的流量q1、q2。
2019/10/14
中国矿业大学(北京)地下工程系
31
第二节 管嘴出流
特例 自由液面:PA=Pa,液面恒定:vA=0
H0 zA zC H
收缩断面流速
vC
1
1
2gH0 2gH0
φ——孔口的流速系数,φ=0.97。
2019/10/14
中国矿业大学(北京)地下工程系
10
第一节 孔口出流
孔口流量
Q vC AC vCA A 2gH0 A 2gH0
zA
pA
g

v
2 A
2g

zC

pC
g
vC2 2g

vC2 2g

孔口,管嘴出流和有压管路

孔口,管嘴出流和有压管路
相同点
流量计算公式的形式以及流量系数的数值均相同
不同点
两者的作用水头在计量时有所不同,自由出流时是指上游水 池液面至下游出口中心的高度,而淹没出流时则指得是上下 游水位差。
出口位置处的总水头线和测压管水头线的画法不同
短管水力计算的内容
四类问题 已知水头H、管径d,计算通过流量Q;
校核输水 能力
已知流量Q、管径d,计算作用水头H,以确定水箱、水塔水位 标高或水泵扬程H值;
经济流速——在选用时应使得给水的总成本(包括铺设水管的 建筑费、泵站建筑费、水塔建筑费及抽水经常运转费之总和) 最小的流速。
一般的中、小直径的管路大致为:
——当直径 d=100-400mm,经济流速 v =0.6~1.0m/s ——当直径 d400mm,经济流速 v =1.0~1.4m/s
3
2g
(H下3 2

H
32 上
)
b为宽 d为高
如果用孔口中心高度H作为孔口作用水头,将孔口断面 各点的压强水头视为相等,按小孔口计算的流量为
Q bd 2gH
大孔口的流量系数
孔口形状和水流收缩情况
全部不完善收缩 底部无收缩,侧向收缩较大 底部无收缩,侧向收缩较小 底部无收缩,侧向收缩极小
流量系数
圆柱形短管内形成收缩,然后又逐渐扩大
H 0 0v02 0 0 v 2 v 2 ,
2g
2g 2g
H0

1
vB2
2g
流速
vB
1
1
2gH0 2gH0
对锐缘进口的管嘴,ζ=0.5, 1 0.82
1 0.5
流量
Q vB A A 2gH0 n A 2gH0

流体力学(孔口管嘴出流与有压管流)

流体力学(孔口管嘴出流与有压管流)

缩断面后,液体质点受重力作用而下落。
计算孔口出流流量(出流规律) 列出断面1-1和收缩断面c-c的伯诺里方程。
2 p0 0v0 pc c vc2 H hw g 2g g 2g
(1)
式中 p0=pc=pa
孔口出流在一个极短的流程上完成的,可认为流体的阻力损失
完全是由局部阻力所产生,即
数也相同。 但自由出流的水头H是水面至孔口形心的深度,而淹没出流的
水头H是上下游水面高差。因此淹没出流孔口断面各点的水头相同, 所以淹没出流没有“大”、“小”孔口之分。
问题1:薄壁小孔淹没出流时,其流量与 (C) 有关。
A、上游行进水头; B、下游水头;
C、孔口上、下游水面差; D、孔口壁厚。 问题2:请写出下图中两个孔口Q1和Q2的流量关系式(A1= A2)。(填>、< 或=)
将式(2)和式(3)代入式(1)得
2 2 pv pa pc c 1 v2 2 2 1 g g 2g
把式 v2 n 2gH0
代入上式得
2 pv c 1 2 2 2 1 H 0 g
l 太短,液流经管嘴收缩后,还来不及扩大到整个管断面,真
空区不能形成;或者虽充满管嘴,但因真空区距管嘴出口断面太近,
极易引起真空的破坏。
l 太长,将增加沿程阻力,使管嘴的流量系数μ相应减小,又达 不到增加出流的目的。 所以,圆柱形管嘴的正常工作条件是: ①作用水头H0≤9m ②管嘴长度l=(3~4)d 判断:增加管嘴的作用水头,能提高真空度,所以对于管嘴的 出流能力,作用水头越大越好。
2.小孔口自由出流与淹没出流的流量计算公式有何不同?

第五章 孔口、管嘴出流和有压管路

第五章 孔口、管嘴出流和有压管路

(2)管嘴长度l=(3~4)d。
5.2.4 其他形式管嘴

工程上为了增加孔口的泄水能力或为了增加(减少)出 口的速度,常采用不同的管嘴形式


(1)圆锥形扩张管嘴 (θ=5~7° ) (2)圆锥形收敛管嘴 (较大的出口流速 ) (3)流线形管嘴 (阻力系数最小 )
孔口、管嘴的水力特性
5.3 有压管路恒定流计算
1
从 1→2 建立伯努利方程,有
v2 H 0 00 n 2g 2g 2g
l (3 ~ 4)d
0v0 2
v 2
H
c
0 d
2
0
1 v n
2 gH0 n 2 gH0
c
2
n 0.5
式中:
1 n n
1
n 为管咀流速系数, n 0.82
pc

0.75H 0

对圆柱形外管嘴:
α=1, ε=0.64, φ=0.82
5.2.3 圆柱形外管嘴的正常工作条件

收缩断面的真空是有限制的,如长江中下游地区, 当真空度达7米水柱以上时,由于液体在低于饱和蒸汽 压时会发生汽化 。 圆柱形外管嘴的正常工作条件是: (1)作用水头H0≤9米;

5.2 管嘴出流
一、圆柱形外伸管嘴的恒定出流

计算特点: 出流特点:
hf 0
在C-C断面形成收缩,然后再扩大,逐步充满 整个断面。 1
l (3 ~ 4)d
H
c
0 d
2
0
c
2
1

在孔口接一段长l=(3~4)d的 短管,液流经过短管并充满出口 断面流出的水力现象成为管嘴出 流。 根据实际需要管嘴可设计成: 1)圆柱形:内管嘴和外管嘴 2)非圆柱形:扩张管嘴和收缩 管嘴。

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流

量系数μ和阻力系数ζ。
1
解①
d
AC A
dC d
2
H
C
82 102
0.64
z 1
C
②求μ
因为 p1 pC pa (大气压),及 v02 / 2g 0
所以 H0 H 则得 Q
A 2gH0
1 d
H
10 103 (0.01)2
/ 32.8 2 9.8 2
4
z
C C
0.62
1
③ / 0.62 / 0.64 0.97
Q A
2 gH o
0.62
4
104
2 9.8 5
4.82 103 m3 / s
②δ=40mm时
v n 2gHo 0.82 29.85 8.15 m/s
Q n A
2 gH o
0.82
4
104
2 9.8 5
0.638103 m3 / s
Cl 2

se
A AC
2 1
1
12
pa pC
g
CvC2 v2
2g
se
v2 2g
得到
pv
g
pa pC
g
C 2
1
12
v2 2g
但 v n 2gH0
α0v02
1
2g
故得
v2 2g
2 n
H
0
pa
Ho
H
O
pv
g
C2
1
2
1
n2HBiblioteka 0vo1C2
O
v
d
Cl 2
将各项系数
pv
其他形式的管嘴,如扩散管嘴、收缩管嘴和流线形管嘴 等,不再一一讨论。

第7章 孔口、管嘴出流和有压管路

第7章 孔口、管嘴出流和有压管路

第7章孔口、管嘴出流和有压管路一、教学目的与任务1本章的目的(1).使学生了解有压管流的特点;(2).理解自由出流、淹没出流的概念;(3).使学生掌握孔口和管嘴出流的水力计算。

二、重点、难点1重点孔口、管嘴的计算问题2难点缝隙流动三、教学方法本章内容是学生通过流体力学基本方程的学习,将其应用到典型的实际流动当中。

进一步增强学生分析、解决实际问题的能力,本章讲授时,要注重理论联本章内容与闸门、阀门、水龙头、喷嘴、汽化器、车辆减震器等等有关,这些构件在机械行业内十分常见,我们日常生活中也很常见。

研究孔口出流和缝隙流动特性对上述构件的性能有密切关系。

§7-1孔口出流一、薄壁孔口:L/d 2即壁面厚度与孔口直径之比小于等于2的孔口。

1.薄壁小孔口:H 10d即作用水头大于十倍的孔口直径。

2.薄壁大孔口:作用水头相对较小,孔口断面上流动不均匀的流动,称薄壁大孔口。

二、管嘴(厚壁孔口)1.圆柱管嘴圆柱管嘴十分常见,被广泛使用用途:增大流量原理:在管嘴内部形成一收缩断面(内收缩),具有一定真空,可提高流速。

管嘴长度:L=(3-4)d2.其他形式管嘴(1)收缩管嘴(2)扩张管嘴(3)流线型管嘴三、自由出流和淹没出流1.自由出流:流体直接排入大气2.淹没出流:流体出流处的压力不为大气压力四、完善收缩和不完善收缩完善收缩:薄壁孔口自由出流的流束周围均匀收缩。

不完善收缩:部分收缩或不收缩五、定常出流和非定常出流定常出流:出流系统的作用水头可以近似不变的出流,否则为非定常出流。

薄壁小孔口定常自由出流这里作用水头为H,设出流为完善收缩,根据研究知收缩断面在0.5d 处, 收缩系数为:以孔口和收缩断面中心线为基准,列1-1到 C-C 断面的方程:取 薄壁小孔口可忽略沿程损失,局部损失为: 与上式联立得令则出流流量为令 为流速系数 则流量为:若P0=0,即容器与大气相通,则:• 薄壁小孔出流参数由 所决定,由实验给出, 由上述定义决定。

孔口、管嘴出流和有压管流

孔口、管嘴出流和有压管流

H0
2v2 2
2g
hw
1 v l d
由此得到管道的流量为
2 gH o
A Q l d
2 gH o
由该式 看出,管道的流量取决于H0、A和Hw。A由管径
的大小决定,Hw按第四章水头损失计算方法求得。


1 1.0 代入式 v l d
hw h f h j
1
pa
该式说明短管水流在 自由出流的情况下, 其作用水头H0 一部分 消耗于水流的沿程水 1 头损失和局部水头损 失,另一部分转化为 管道2-2断面的流速水头。
v1
H HP v 2 H
v2
闸门
2
对于等直径管 , 管中流速为常数v, 所以v2=v,代入上式 ,取α2=α,得
1)短管自由出流
液体经短管流动流入大气后,流束四周受到大气压的 作用,称这种流动为短管自由出流,图示为一短管自由出流。
液流从水箱 进入管径为d, 装有一个阀门并 带有两个弯头的 管路,管路总长 度为 l。
1 pa
v1
1
H HP v 2 H
v2
闸门
2
取出口中心高程的水平面为基准面 0-0,断面1-1 取在 管道入口上游水流满足渐变流条件处,2-2断面则取在管流 出口处,对断面1-1至断面2-2 的水流建立能量方程:
可见, 同一短管在自由出流和淹没出流的情况下,
其流量计算公式的形式及μc的数值均相同,但作用水头
H0 的计量基准不同,淹没出流时作用水头是以下游水面 为基准 ,自由出流时是以通过管道出口断面中心点的水
平面为基准。
3)、短管的水力计算问题
短管的水力计算包括以下几类问题: ①已知作用水头、断面尺寸和局部阻碍的组成,计算 管道输水能力,求流量; ② 已知管线的布置和必需输送的流量(设计 流量), 求所需水头(例如:设计水箱、 水塔的水位标高H、水泵 的扬程H等); ③ 已知管线布置,设计流量及作用水头,求管径d; ④ 分析计算沿管道各过水断面的压强。

流体力学 第七章 孔口、管嘴出流和有压管道 (2)

流体力学 第七章  孔口、管嘴出流和有压管道  (2)

解:倒虹吸管一般作短管计算。本题管道出口淹没在水下;
而且上下游渠道中流速相同,流速水头消去。 因 所以 而
Q c A 2 gz c
d 4Q
d 2
4
2 gz
c 2 gz
c
1 l d
因为沿程阻力系数λ或谢才系数C都是d 的复杂函数,
因此需用试算法。
先假设d=0.8m,计算沿程阻力系数:
v 1 l 1 d
1 1 l d
2 gH 0
通过管道流量 Q
c
1
A 2 gH 0
c A 2 gH0
式中
l 1 d
称为管道系统的流量系数。
当忽略行近流速v时,流量计算公式变为 Q c A 2gH
2、淹没出流
列断面1-1和2-2能量方程
z 3 1 105 85 20m
hw14 为吸水管及压力管水头损失之和。已求得吸水管
水头损失为 0.22m,当压力管按长管计算时,整个管道的 水头损失为
hw14
Q 0.22 2 l K
2
压力管的流量模数
K A2C2 3.14 0.52 1 0.5 2 3 R2 ( ) 4 0.013 4
g
lB v zs (1 e b ) hv d 2g
即 而
lB v2 z s hv (a e b ) d 2g
2
lB v2 hv (1 e b ) d 2g
20 7 (1 0.024 0.5 0.365) 1 1.9852 6.24m 2 3.14 1 2 2 9.8( ) 4
2

流体力学——8 孔口、管嘴出流和有压管流

流体力学——8 孔口、管嘴出流和有压管流

H
孔口出流
dC
C
H 管嘴出流
H
C
d
有压管流
d1
d2
C
qv1
qv2
有压管流:沿管道满管流动的流动现象。
特点:无自由液面,流体压强一般不等于大气压强。
2021/4/25
3
8.1 孔口出流
8.1.1.孔口出流分类
自由出流
按d和H的比值不同分:
H
大孔口(d/H>0.1)、小孔口(d/H>0.1)
dC
C
根据壁厚是否影响射流形状分:薄壁孔口、厚壁孔口
v 0.6 ~ 1.0 m/s e
ve 1.0 ~ 1.4 m/s
枝状管网
各管段没有环形闭合的连接,管网内任一点只能由一
个方向供水,一旦在某一点断流则该点之后的各管段均受
到影响。
缺点:供水的可靠性差
特点
优点:节省管材、降低造价
枝状管网的水力计算,主要是确定水塔水面应有的高度或 水泵的扬程。
把距水源远、地形高、建筑物层数多、水头要求最高、通 过流量最大的供水点称为最不利点或控制点。
所以
H0
hw
c
v2 2g
平均流速
v 1
c
2gH0
若管道的过水断面面积为A,则通过管道的流量
Q vA c A 2gH0
式中, c
1
称为短管淹没出流的流量系数。
c
短管在自由出流和淹没出流情况下,流量计算公式的
形式及流量系数的数值是相同的,但作用水头的计算是
不同的,自由出流时作用水头为出口断面形心点上的总
v c
也2适g用H于0
大孔口,在估算大孔口流量时,应考虑上游流速水头,而且

水力学第六章 孔口、管嘴出流和有压管路

水力学第六章 孔口、管嘴出流和有压管路

2(h + h2 ) ∴ t1 = g
§6-2 液体经管嘴的恒定出流
∴ 水平距离为: x1 = V1t1 = 2 gh1
对于孔 2 来说
2(h + h2 ) g V2 = 2 g (h1 + h)
t2 = 2h2 g

时间:
1 2 h2 = gt 2 2
∴ 水平距离
由①②得
x1 = x2
2h2 x2 = V2t 2 = 2 g (h1 + h) g
H0 =
H+
α 0V02
2g
= H0
α 2V22
2g
+ hw1 2
§6-4 短管的水力计算
hw1 2 L V22 V22 L = ∑ h f + ∑ hm = ∑ λ + ∑ζ = ∑ λ + ∑ζ d 2g 2g d V2 2g
2
L H0 = + ∑ λ + ∑ζ 2g d
V= 1
H+
pa
γ
+
α 0V0 2
2g
=
pa
γ
+0+
αV 2
2g
+ hw
§6-2 液体经管嘴的恒定出流
式中 hw 为管嘴水头损失,
等于进口损失与收缩断面后的扩大损失之和(沿程损失忽略) 。
令 H0 = H +
α 0V0 2
2g
V2 即:hw = ζ n 2g
代入上式
0
pa
H
V2 V2 H0 = +ζ n = (α + ζ n ) 2g 2g 2g
§6-1 液体经薄壁孔口的恒定出流
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 自由出流 当液体经孔口流入大气中的出流为自由出流。
2. 淹没出流 液体经孔口流入下游液体中的出流为淹没出流。
1
H 2
H1 H2
o
o
2020/4/21
1
2
5
(三) 按孔口边壁的厚度
1. 薄壁孔口出流 具有尖锐薄边缘的孔口,出流液体与孔口仅为线接 触的孔口出流称为薄壁孔口出流。
2. 管嘴出流 孔口具有一定厚度,或在孔口上连接的短管长度为 孔径的3-4倍时,出流时液体与孔口呈面接触。
短管:局部水头损失和速度水头在总水头损失 中占有相当的比重,计算时不能忽略的管道. (一般局部损失和速度水头大于沿程损失 的5% ~ 10%)。一般L/d 1000
2020/4/21
8
长管:凡局部阻力和出口速度水头在总的阻力 损失中,其比例不足5%的管道系统,称为水 力长管,也就是说只考虑沿程损失。
2020/4/21
6
(四) 按水位变化
1. 恒定出流 若水箱中的水位保持不变,则为恒定出流。
2. 非恒定出流 若水箱中的水位在流动过程中随时间而变化则为 非恒定出流。
2020/4/21
7
二、有压管流的分类
水沿管道满管流动的水力现象。其特点为:水流充 满管道过水断面,管道内不存在自由水面,管壁上 各点承受的压强一般不等于大气压强。 按沿程损失和局部损失的比重,将有压管流分为短 管和长管。
2020/4/21
16
(三) 短管自由出流与淹没出流计算之异同
• 短管自由出流和淹没出流公式的基本形式相同。
• 两种出流的作用水头不同。
• 管道流量系数不同,但在两种出流的管道长度、
直径、沿程阻力和局部阻力均相同时,则 c c
c 因为尽管在淹没出流时中忽略了流速水头,使式中
2020/4/21
13
(二) 短管淹没出流
1
v O
H
2
O
1 2
伯努利方程:
z1
p1
g
1v12
2g
z2
p2
g
2v22
2g
hw12
=
= =
= =
( z1
Hp1
g
01v12
2g
)
(0z2
p02
g
)
0 2 v22
2g
0
hf 12
hj
2020/4/21
14
H hf hj
上式表明,短管的总水头H一部分转化成水流动
虹吸管的优点在于能跨越高地,减少挖方。 虹吸管长度一般不长,故按短管计算。
2020/4/21
18
2020/4/21
19
2020/4/21
虹吸输水:世界上最大 直径的虹吸管(右侧直径 1520毫米、左侧600毫米), 虹吸高度均为八米,犹如 一条巨龙伴游一条小龙匐 卧在浙江杭州萧山区黄石 垅水库大坝上,尤为壮观, 已获吉尼斯世界纪录。
l
3
§1 孔口出流与管嘴出流的基本概念
1.小孔口出流
若 d H / 10,这种孔口称为小孔口,其孔口断面上
各点水头可近似地认为相等,且均为H。
2.大孔口出流
若 d H / 10 ,这种孔口称为大孔口,大孔口断面上
各点的水头不等,必须分别情况予以分析。
H d
2020/4/21
l
4
(二) 按孔口位置
能,另一部分克服水流阻力转化成水头损失hw1-2。

hf
l
d
V2 2g
hj
V2 2g
则 H V 2 l V 2 V 2 V 2 1 l
2g d 2g
2g 2g d
2020/4/21
12

V
1
1
l d
2gH
令 c 1/
1
l d
—短管自由出流的流量系数

Q
VA
c
A
2gH
这就是短管自由出流的水力计算的基本公式。
第五章 孔口和管嘴出流 与有压管流
2020/4/21
1
§1 孔口出流与管嘴出流的基本概念
2020/4/21
2
§1 孔口出流与管嘴出流的基本概念
一、孔口出流的分类
水流从容器壁上的孔中流出的现象称为孔口出流。 (一) 按孔口大小 按孔口的直径d与孔口形心点以上的水头H之比分:
H d
2020/4/21
能,另一部分克服水流阻力转化成水头损失hw1-2。

hf
l
d
V2 2g
hj
V2 2g
则 H l V 2 V 2 V 2 l
d 2g
2g 2g d
2020/4/21
15

V
1
2gH
l d
令 / c
1/
l —短管淹没出流的流量系数
d

Q
VA
c
/
A
2gH
这就是短管淹没出流的水力计算的基本公式。
H 0 0 0 0 0 hw12
得:H
=0.03,进口 e 0.5,出口 s 1.0,弯头1的 1=0.2,弯头2、3的 2= 3=0.4,头4的 4=0.3,
B点高出上游水面4.5m,试求虹吸管流量Q和 虹吸管顶B点的真空度。
2020/4/21
22
解:选1-1和2-2断面为计算断面,两断面与大气接触 处为计算点,并以2-2为基准面,由伯努利方程得:
20
Zs Z
虹吸管是一种压力管,顶部弯曲且其高程高于 上游供水水面。其顶部的真空值一般不大于7-8m
水柱高。虹吸管安装高度Zs越大,顶部真空值越大。
虹吸管的优点在于能跨越高地,减少挖方。 虹吸管长度一般不长,故按短管计算。
2020/4/21
21
例5 4:虹吸管长l lAB lBC 20m 30m 50m, 直径d 200mm。两水池水位差H 1.2m,已知:
H
v
2020/4/21
10
1
v O 1
H
2 O
2
伯努利方程:
z1
p1
g
1v12
2g
z2
p2
g
2 v22
2g
hw12
=
= =
= =
(
z1
H p1
g
01v12
2g
)
0( z2
0p2
g
)
0
2 v22
2g
v 2 2g
hf 12
hj
2020/4/21
11
H
V2 2g
h f
hj
上式表明,短管的总水头H一部分转化成水流动
不含1,但淹没中两断面间又多了一个由管口进入下
游水池的局部水头损失,而这个水头损失系数ξ=1,

c。 c
2020/4/21
17
二、短管水力计算实例
(一)虹吸水力计算
Zs Z
虹吸管是一种压力管,顶部弯曲且其高程高于 上游供水水面。其顶部的真空值一般不大于7-8m
水柱高。虹吸管安装高度Zs越大,顶部真空值越大。
2020/4/21
9
§2 有压管流的水力计算
一、短管的水力计算
所谓短管是指局部水头损失和流速水头之和占沿程 水头损失的5%以上,在计算时两者不能被忽略的管 道,它又分为自由出流和淹没出流。
(一) 自由出流的基本公式 右图为短管自由出流示意 图,短管的长度为l,直径 为d,根据伯努利方程推导 基本公式:
相关文档
最新文档