一类带有临界势型阻尼的非线性波动方程的能量衰减
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A bsr t The Ca c r e o h nln rw a quai n t ac : u hy p oblm f r t e no i ea ve e to wi t h a rtca potnta t of am p ng oe ce r1 + c i l i e i l ype d i c f int i
h v o a ts p o t Us g t e sm i rm eh d t e Ca c y a e a c mp c u p r. i h i l to , h u h n a p o l m rt e n n i e rwa e e u t n wi r i a o e ta r b e f h o l a v q ai t a c i c l t n i l o n o h t p
tp f a igce cet 1+ } ) adan nie ry y eo mpn of in ( d i xl+t n o l ai n t
l /l g
i s d d i irsli sa b i dw e e s t i ,s l o tn r otn hnt u e m a uo e ae h
un uii c i eteal e i 景 t+ ( = s g l lr h q s t i i nt i m t et n u sbs d t p e o h y ( Ft ) )
U f
F o terrs l ,we f d ta a t )=O(i 1 s r m i eut h s n h t ( , i f f x a —}+∞ )i c t a fo te ve on fte e eg l I s r i l r m h iwp ito h n ry i c
i ii ld a ha m pa ts p n ta at ve a co c u por. t
“ 一 “ () + I = c + △ “l一 0 “
( x ∈ 0 ∞) ” t ) (, x , R
f 41
Ke r s o l e r wa e e u t n; e e g e a ; c t a y wo d :n n i a v q a i n o n ry d c y i c ri l
J ne 1 rvy 1 cay n C S n n0nI n ae t or a 1 J aS 0I ●near W aVe eq J l ● Uat0nS l ●
wih a c ii a o e ta y e 0 m p ng t r tc l p t n i l t p f da i
d c y On t e o h r h n , f r t e s mii e r p o l m 。 r — ea . h te a d o h e l a r b e n e
0a dsifl eet g_ t, () h t w e h nt l a n klul sl i 厂 ) g t, () h n teiia d t l y cn ( i a
t e l e r wa e e u to h i a v q ain n
x1 ad ann nat I ) n olery i i l
i s d d h oHale Waihona Puke Baidul S t i .T ett ue a
“ 一Au+a x t “ =0 ( ,) ,
e eg e a s ma e f t e g o a o u i n r b a n d b n r y d c y e t t s o h l b l s l t s a e o ti e y i o
c nl ,T d r v n o d n v d r e h l s)o — et y o o o a a d Y r a o e i d t e f mo t p v a
t a e a si a e ft e t t 1e e g n h t e u n i 1 d c y e tm t s o h o a n r y a d t e o h rq a — m t i s o h o u i n t h u h r b e i e f t e s l t o t e Ca c y p o l m t o
p tni y e o l e r a ig ef ojg t o eao oet l p ;n ni a mpn ;sl c nu a p rtr at n d - e
U0 X ( , )=“ ( , U( , 0 ) t0 )=“ ( ) IX
X∈R
() 5
W a g Yu h n n ze S iPeh h iu
( eat e t f te ai ,S u es U iesy D pr n h m t s o t at nvr t,Naj g2 19 hn) m o Ma c h i ni 1 ,C ia n l8
J u n l fS u h a tUnv ri E g i i o ) Vo . 6 No 4 P . 5 o ra o o te s i e s y( n l h Edt n t s i 12 , . , P 6 1—6 4 5
De .2 1 I S 0 3 7 8 c 0 0 S N l0 — 9 5
h v o a ts p o t Us g t e sm i rm eh d t e Ca c y a e a c mp c u p r. i h i l to , h u h n a p o l m rt e n n i e rwa e e u t n wi r i a o e ta r b e f h o l a v q ai t a c i c l t n i l o n o h t p
tp f a igce cet 1+ } ) adan nie ry y eo mpn of in ( d i xl+t n o l ai n t
l /l g
i s d d i irsli sa b i dw e e s t i ,s l o tn r otn hnt u e m a uo e ae h
un uii c i eteal e i 景 t+ ( = s g l lr h q s t i i nt i m t et n u sbs d t p e o h y ( Ft ) )
U f
F o terrs l ,we f d ta a t )=O(i 1 s r m i eut h s n h t ( , i f f x a —}+∞ )i c t a fo te ve on fte e eg l I s r i l r m h iwp ito h n ry i c
i ii ld a ha m pa ts p n ta at ve a co c u por. t
“ 一 “ () + I = c + △ “l一 0 “
( x ∈ 0 ∞) ” t ) (, x , R
f 41
Ke r s o l e r wa e e u t n; e e g e a ; c t a y wo d :n n i a v q a i n o n ry d c y i c ri l
J ne 1 rvy 1 cay n C S n n0nI n ae t or a 1 J aS 0I ●near W aVe eq J l ● Uat0nS l ●
wih a c ii a o e ta y e 0 m p ng t r tc l p t n i l t p f da i
d c y On t e o h r h n , f r t e s mii e r p o l m 。 r — ea . h te a d o h e l a r b e n e
0a dsifl eet g_ t, () h t w e h nt l a n klul sl i 厂 ) g t, () h n teiia d t l y cn ( i a
t e l e r wa e e u to h i a v q ain n
x1 ad ann nat I ) n olery i i l
i s d d h oHale Waihona Puke Baidul S t i .T ett ue a
“ 一Au+a x t “ =0 ( ,) ,
e eg e a s ma e f t e g o a o u i n r b a n d b n r y d c y e t t s o h l b l s l t s a e o ti e y i o
c nl ,T d r v n o d n v d r e h l s)o — et y o o o a a d Y r a o e i d t e f mo t p v a
t a e a si a e ft e t t 1e e g n h t e u n i 1 d c y e tm t s o h o a n r y a d t e o h rq a — m t i s o h o u i n t h u h r b e i e f t e s l t o t e Ca c y p o l m t o
p tni y e o l e r a ig ef ojg t o eao oet l p ;n ni a mpn ;sl c nu a p rtr at n d - e
U0 X ( , )=“ ( , U( , 0 ) t0 )=“ ( ) IX
X∈R
() 5
W a g Yu h n n ze S iPeh h iu
( eat e t f te ai ,S u es U iesy D pr n h m t s o t at nvr t,Naj g2 19 hn) m o Ma c h i ni 1 ,C ia n l8
J u n l fS u h a tUnv ri E g i i o ) Vo . 6 No 4 P . 5 o ra o o te s i e s y( n l h Edt n t s i 12 , . , P 6 1—6 4 5
De .2 1 I S 0 3 7 8 c 0 0 S N l0 — 9 5