专题 电磁感应中的动力学、能量和动量问题

专题 电磁感应中的动力学、能量和动量问题
专题 电磁感应中的动力学、能量和动量问题

专题2 电磁感应中的动力学、能量和动量

问题

电磁感应中的动力学问题

1.用“四步法”分析电磁感应中的动力学问题

解决电磁感应中的动力学问题的一般思路是“先电后力”,具体思路如下:

2.电磁感应中的动力学临界问题

(1)解决这类问题的关键是通过受力情况和运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。

(2)基本思路是:导体受外力运动――→E =Bl v

感应电动势错误!感应电流错误!导体受安培力―→合外力变化――→F 合=ma 加速度变化―→速度变化―→临界状态―→列式求解。 【例1】 如图1所示,足够长的平行金属导轨MN 和PQ 表面粗糙,与水平面间的夹角为θ=37°(sin 37°=0.6),间距为1 m 。垂直于导轨平面向上的匀强磁场的磁感应强度的大小为4 T ,P 、M 间所接电阻的阻值为8 Ω。质量为2 kg 的金属杆ab 垂直导轨放置,不计杆与导轨的电阻,杆与导轨间的动摩擦因数为0.25。金属杆ab 在沿导轨向下且与杆垂直的恒力F 作用下,由静止开始运动,杆的最终速度为8 m/s ,取g =10 m/s 2,求:

图1

(1)当金属杆的速度为4 m/s 时,金属杆的加速度大小; (2)当金属杆沿导轨的位移为6 m 时,通过金属杆的电荷量。 解析 (1)对金属杆ab 应用牛顿第二定律,有 F +mg sin θ-F 安-f =ma ,f =μN ,N =mg cos θ ab 杆所受安培力大小为F 安=BIL

ab 杆切割磁感线产生的感应电动势为E =BL v 由闭合电路欧姆定律可知I =E

R

整理得F +mg sin θ-B 2L 2

R v -μmg cos θ=ma 代入v m =8 m/s 时a =0,解得F =8 N 代入v =4 m/s 及F =8 N ,解得a =4 m/s 2。 (2)设通过回路横截面的电荷量为q ,则q =I -

t 回路中的平均电流强度为I -

=E

R

回路中产生的平均感应电动势为E -

=ΔΦ

t

回路中的磁通量变化量为ΔΦ=BLs ,联立解得q =3 C 。 答案 (1)4 m/s 2 (2)3 C

1.如图2所示,足够长的粗糙绝缘斜面与水平面成θ=37°角放置,在斜面上虚线aa ′和bb ′与斜面底边平行,在aa ′、bb ′围成的区域中有垂直斜面向上的有界匀强磁场,磁感应强度为B =1 T ;现有一质量为m =10 g ,总电阻R =1 Ω、边长d =0.1 m 的正方形金属线圈MNQP ,让PQ 边与斜面底边平行,从斜面上端由静止释放,线圈刚好匀速穿过整个磁场区域。已知线圈与斜面间的动摩擦因数为μ=0.5,(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:

图2

(1)线圈进入磁场区域时的速度大小; (2)线圈释放时,PQ 边到bb ′的距离;

(3)整个线圈穿过磁场的过程中,线圈上产生的焦耳热。 解析 (1)对线圈受力分析,根据平衡条件得 F 安+μmg cos θ=mg sin θ,F 安=BId ,I =E

R ,E =Bd v 联立并代入数据解得v =2 m/s 。

(2)线圈进入磁场前做匀加速运动,根据牛顿第二定律得 a =mg sin θ-μmg cos θ

m

=2 m/s 2

线圈释放时,PQ 边到bb ′的距离L =v 22a =22

2×2 m =1 m

(3)由于线圈刚好匀速穿过磁场, 则磁场宽度等于d =0.1 m , Q =W 安=F 安·2d

代入数据解得Q =4×10-3 J 。 答案 (1)2 m/s (2)1 m (3)4×10-3 J

2.(2020·广东模拟)如图3甲,两根足够长的平行光滑金属导轨固定在水平面内,导轨间距为1.0 m ,左端连接阻值R =4.0 Ω的电阻;匀强磁场磁感应强度B =0.5 T 、方向垂直导轨所在平面向下;质量m =0.2 kg 、长度L =1.0 m 、电阻r =1.0 Ω的金属杆置于导轨上,向右运动并与导轨始终保持垂直且接触良好。t =0时对杆施加一平行于导轨方向的外力F ,杆运动的v -t 图象如图乙所示。其余电阻不计。求:

图3

(1)从t=0开始,金属杆运动距离为5 m时电阻R两端的电压;

(2)在0~3.0 s内,外力F大小随时间t变化的关系式。

解析(1)根据v-t图象可知金属杆做匀减速直线运动时间Δt=3 s,t=0 s时杆速度为v0=6 m/s,

由运动学公式得其加速度大小a=v0-0Δt

设杆运动了5 m时速度为v1,

则v20-v21=2as1

此时,金属杆产生的感应电动势E1=BL v1

回路中产生的电流I1=E1

R+r

电阻R两端的电压U=I1R

联立以上几式可得U=1.6 V。

(2)由t=0时BIL<ma,可分析判断出外力F的方向与v0反向。金属杆做匀减速直线运动,由牛顿第二定律有

F+BIL=ma

设在t时刻金属杆的速度为v,杆的电动势为E,回路电流为I,

则v=v0-at,又E=BL v,I=E

R+r

联立以上几式可得F=0.1+0.1t。

答案(1)1.6 V(2)F=0.1+0.1t

电磁感应中的能量问题

1.电磁感应中的能量转化

2.求解焦耳热Q的三种方法

【例2】(2019·4月浙江选考,22)如图4所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45。建立原点位于底端、方向沿导轨向上的坐标轴x。在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场。从t =0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=k v),k=5 s-1。当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处。棒ab始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x图象下的“面积”代表力F做的功,sin 37°=0.6,g取10 m/s2)

图4

(1)磁感应强度B的大小;

(2)外力F随位移x变化的关系式;

(3)在棒ab整个运动过程中,电阻R产生的焦耳热Q。

解析 (1)在x 1=0.2 m 处时,电阻R 消耗的电功率 P =(Bl v )2R

此时v =kx =1 m/s 解得B =

PR (l v )

2=30

5 T (2)在无磁场区间0≤x <0.2 m 内,有 a =5 s -1×v =25 s -2×x

F =25 s -2×xm +μmg cos θ+mg sin θ=(0.96+2.5x ) N 在有磁场区间0.2 m ≤x ≤0.8 m 内,有 F A =(Bl )2v

R

=0.6x N

F =(0.96+2.5x +0.6x ) N =(0.96+3.1x ) N (3)上升过程中克服安培力做的功(梯形面积) W A1=0.6 N

2(x 1+x 2)(x 2-x 1)=0.18 J

撤去外力后,设棒ab 上升的最大距离为s ,再次进入磁场时的速度为v ′,由动能定理有

(mg sin θ+μmg cos θ)s =12m v 2

(mg sin θ-μmg cos θ)s =1

2m v ′2 解得v ′=2 m/s

由于mg sin θ-μmg cos θ-(Bl )2v ′

R =0 故棒ab 再次进入磁场后做匀速运动 下降过程中克服安培力做的功

W A2=(Bl)2v′

R(x2-x1)=0.144 J

Q=W A1+W A2=0.324 J

答案(1)30

5T(2)在无磁场区间F=(0.96+0.25x) N在有磁场区间F=(0.96

+3.1x) N(3)0.324 J

1.(多选)(2020·天津一中模拟)如图5所示,固定在水平面上的光滑平行导轨间距为L,右端接有阻值为R的电阻,空间存在方向竖直向上、磁感应强度为B的匀强磁场。一质量为m、接入电路的电阻为r的导体棒ab与左端固定的弹簧相连并垂直导轨放置。初始时刻,弹簧处于自然长度。现给导体棒水平向右的初速度v0,导体棒开始沿导轨往复运动直至停止,运动过程中导体棒始终与导轨垂直并保持良好接触,此过程中弹簧一直在弹性限度内。若导体棒电阻r与导轨右端电阻R 的阻值关系为R=2r,不计导轨电阻,则下列说法正确的是()

图5

A.导体棒开始运动时,导体棒受到的安培力方向水平向左

B.导体棒开始运动时,初始时刻导体棒两端的电压为1

3BL v0

C.导体棒开始运动后速度第一次为零时,弹簧的弹性势能为1

2m v

2

D.导体棒整个运动过程中电阻R上产生的焦耳热为1

3m v

2

解析导体棒开始运动时,由右手定则判断可知ab中产生的感应电流方向为a→b,由左手定则判断可知ab棒受到的安培力水平向左,选项A正确;导体棒开始运动时,ab棒产生的感应电势为E=BL v0,由于R=2r,所以导体捧两端的

电压为路端电压U=2

3E=2

3BL v0,选项B错误;由于导体棒运动过程中产生电能,

所以导体棒开始运动后速度第一次为零时,根据能量守恒定律可知弹簧的弹性势

能小于1

2m v 2

,选项C错误;导体棒最终会停在初始位置,在导体棒整个运动过程

中,电阻R上产生的焦耳热Q=2

3×1

2m v

2

1

3m v

2

,选项D正确。

答案AD

2.(2019·石家庄模拟)相距为L=2 m的足够长的金属直角导轨如图6甲所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m=0.1 kg的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ=0.5,导轨电阻不计,回路中ab、cd电阻分别为R1=0.6 Ω,R2=0.4 Ω。整个装置处于磁感应强度大小为B=0.50 T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动。测得拉力F与时间t的关系如图乙所示。g取10 m/s2,求:

图6

(1)ab杆的加速度a;

(2)当cd杆达到最大速度时ab杆的速度大小;

(3)若从开始到cd杆达到最大速度的过程中拉力F做了5.2 J的功,求该过程中ab 杆所产生的焦耳热。

解析(1)由图乙可知,t=0时,F=1.5 N

对ab杆:F-μmg=ma

代入数据得a=10 m/s2。

(2)cd杆受力情况如图(从d向c看),当cd杆所受重力与滑动摩擦力大小相等时,速度最大,

即mg =μN 又N =F 安 安培力F 安=BIL 感应电流I =

E

R 1+R 2=

BL v

R 1+R 2

由以上几式解得v =2 m/s 。 (3)ab 杆发生的位移为s =v 2

2a =0.2 m 对ab 杆应用动能定理得 W F -μmgs -W 安=1

2m v 2 解得W 安=4.9 J 根据功能关系得Q =W 安 所以ab 杆上产生的焦耳热为 Q ab =R 1

R 1+R 2

Q =2.94 J 。

答案 (1)10 m/s 2 (2)2 m/s (3)2.94 J

电磁感应与动量结合问题

考向 电磁感应与动量定理结合 1.动量定理在电磁感应中的应用

在电磁感应中用动量定理时,通常将下面两式结合应用: BlI ·Δt =m Δv q =I Δt =n ΔΦ

R

2.动量守恒在电磁感应中的应用

在“双棒切割”系统中,在只有安培力作用下,系统的合外力为零,通常应用动量守恒求解。

【例3】 (2019·稽阳联谊学校模拟)如图7甲所示,光滑的水平绝缘轨道M 、N 上放有质量m 1=0.2 kg 、电阻R 1=0.02 Ω的“[”形金属框dabc ,轨道间有一有界磁场,磁感应强度随时间变化关系如图乙所示。一根长度等于ab 、质量m 2=0.1 kg 、电阻R 2=0.01 Ω的金属棒ef 在轨道上静止于磁场的左边界上。已知轨道间距与ab 长度相等,均为L 1=0.3 m ,ad =bc =L 2=0.1 m ,其余电阻不计。0时刻,给“[”形金属框一初速度v 0=3 m/s ,与金属棒碰撞后合为一体成为一闭合导电金属框(碰撞时间极短)。t 0时刻整个框刚好全部进入磁场,t 0+1 s 时刻,框右边刚要出磁场。求:

图7

(1)碰撞结束时金属框的速度大小; (2)0~t 0时间内整个框产生的焦耳热; (3)t 0~t 0+1 s 时间内,安培力对ab 边的冲量。 解析 (1)碰撞过程中,由动量守恒定律得 m 1v 0=(m 1+m 2)v 解得v =2 m/s 。

(2)对闭合金属框,由动量定理得 -BIL 1Δt =-BL 1Δq =(m 1+m 2)Δv

等号两边求和,得-BL 1q =(m 1+m 2)(v ′-v ) 又因q =

B ΔS R 1+R 2=BL 1L 2

R 1+R 2

解得v ′=1 m/s

所以Q =12(m 1+m 2)v 2-1

2(m 1+m 2)v ′ 2=0.45 J (3)整个框在磁场中运动,有 I =E R 总=ΔΦΔtR 总=ΔBL 1L 2ΔtR 总

=0.4 A 又因B =1-0.4(t -t 0),其中t 0≤t ≤t 0+1 s 所以F 安=BIL 1=0.12B

I 冲=F -

安t =F 安1+F 安22t =0.12×1+0.12×0.6

2

×1 N·s

=0.096 N·s

答案 (1)2 m/s (2)0.45 J (3)0.096 N·s 考向 电磁感应与动量守恒结合

【例4】 (多选)(2019·全国Ⅲ卷,19)如图8所示,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图象中可能正确的是( )

图8

解析 导体棒ab 运动,切割磁感线,产生感应电流(逆时针),导体棒ab 受阻力F

作用,速度减小,导体棒cd受安培力F′作用,速度增大,最终两棒速度相等,如图所示。

由E=Bl(v ab-v cd)知,感应电动势E非均匀变化,则感应电流非均匀变化。当两棒的速度相等时,回路中感应电流消失,两棒在导轨上以共同速度做匀速运动。

,A正确;导体棒cd受变力作用,加由系统的动量守恒得m v0=2m v共,v共=v0

2

速度逐渐减小,其v-t图象应该是曲线,B错误;由前面分析知,两导体棒做变速运动,感应电流变小,最后为零,但非均匀变化,C正确,D错误。

答案AC

1.如图9所示,在磁感应强度大小为B的匀强磁场区域内,与磁场方向垂直的水平面内有两根固定的足够长的平行金属导轨,导轨上面平放着两根导体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速度v0。

图9

(1)求cd棒速度减为0.8v0时的加速度大小;

(2)从开始运动到最终稳定,求电路中产生的电能;

(3)求两棒之间改变的最大距离。

解析(1)设当cd棒速度减为0.8v0时ab棒的速度为v′,

由动量守恒定律得m v0=0.8m v0+m v′

解得v′=0.2v0

此时回路的电流是I=Bl(0.8-0.2)v0

2R

cd棒的加速度为a=BIl m

解得a=0.3B2l2v0

mR

(2)设两棒稳定时共同的速度为v,据动量守恒定律得m v0=(m+m)v

解得v=1

2

v0

故Q=1

2m v 2

0-

1

2(m+m)v

2=14m v20。

(3)由法拉第电磁感应定律得,电路中产生的感应电动势E=ΔΦ

Δt

=BlΔs

Δt

这段时间内回路的电流为I-=E

2R

对ab棒,由动量定理得B I-lΔt=m v0-m v

联立解得Δs=mR v0

B2l2

答案(1)0.3B2l2v0

mR(2)

1

4m v

2

(3)

mR v0

B2l2

2.如图10所示,平行粗糙导轨固定在绝缘水平桌面上,间距L=0.2 m,导轨左端接有R=1 Ω的电阻,质量为m=0.1 kg的粗糙导体棒ab静置于导轨上,导体棒及导轨的电阻忽略不计。整个装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直导轨向下。现外力F作用在导体棒ab上使之一开始做匀加速运动,且外力F随时间变化关系如图11所示,重力加速度g=10 m/s2,试求解以下问题:

(1)前10 s导体棒ab的加速度大小;

(2)若整个过程中通过R的电荷量为65 C,则导体棒ab运动的总时间是多少?

解析(1)由于导体棒一开始匀加速,对导体棒ab用牛顿第二定律得

F-F A-f=ma

又F A =BIL =B BL v R L =B 2L 2v

R v =at

综上得F =B 2L 2a

R t +f +ma

据图象可知前10 s ,F -t 图线斜率为0.05, 即B 2L 2a

R =0.05 N/s 代入数据解得a =5 m/s 2。

(2)当t =0时,f +ma =1 N ,则f =0.5 N 10 s 时导体棒的速度v 1=at 1=5×10 m/s =50 m/s 此时安培力F A =0.5 N

由于F =1 N ,且此时f +F A =F =1 N ,故10~15 s 内导体棒做匀速直线运动 0~15 s 内导体棒ab 的位移

s =v 12t 1+v 1t 2=50

2×10 m +50×5 m =500 m 通过R 的电荷量

q 1=ΔΦR =BLs R =0.5×0.2×5001

C =50 C

F 为0后,导体棒做减速运动直到停止过程中通过R 的电荷量 q 2=q -q 1=65 C -50 C =15 C

对导体棒ab 应用动量定理-ft 3-BILt 3=0-m v 1 又It 3=q 2 解得t 3=7 s

则导体棒ab 运动的总时间 t =t 1+t 2+t 3=10 s +5 s +7 s =22 s 答案 (1)5 m/s 2 (2)22 s

课时作业

(时间:40分钟)

基础巩固练

1.(多选)如图1所示,光滑平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直于轨道平面向上。质量为m的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某一高度h后又返回到底端。若运动过程中,金属杆始终保持与轨道垂直且接触良好,轨道与金属杆的电阻均忽略不计,重力加速度为g,则()

图1

A.金属杆返回到底端时的速度大小为v0

B.金属杆上滑到最高点的过程中克服安培力与克服重力做功之和等于1

2m v

2

C.上滑到最高点的过程中电阻R上产生的热量等于1

2m v

2

-mgh

D.金属杆两次通过轨道上的同一位置时电阻R的热功率相同

解析金属杆从轨道底端滑上轨道某一高度至又返回到出发点时,由于电阻R上产生热量,故金属杆的机械能减小,即返回到底端时速度小于v0,选项A错误;金属杆上滑到最高点的过程中,动能转化为重力势能和电阻R上产生的热量(即克服安培力所做的功),选项B、C正确;金属杆两次通过轨道上同一位置时的速度大小不同,电路中的电流不同,故电阻的热功率不同,选项D错误。

答案BC

2.(多选)一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图2所示,磁感应强度B=0.5 T,导体棒ab、cd长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现用力向上拉动导体棒ab,使之匀速上升(导体棒ab、cd与导轨接触良好),此时cd静止不动,则ab上升时,下列说法正确的是()

图2

A.ab受到的拉力大小为2 N

B.ab向上运动的速度为2 m/s

C.在2 s内,拉力做功使其他形式的能转化的电能是0.4 J

D.在2 s内,拉力做功为0.6 J

解析对导体棒cd分析:mg=BIl=B2l2v

R总

,得v=2 m/s,故选项B正确;对导体

棒ab分析:F=mg+BIl=0.2 N,选项A错误;在2 s内拉力做功使其他形式的能转化为ab棒的重力势能和电路中的电能,增加的电能等于克服安培力做的功,即W电=F安v t=B2l2v2t

R总

=0.4 J,选项C正确;在2 s内拉力做的功为W拉=F v t =0.8 J,选项D错误。

答案BC

3.(多选)(2018·河北石家庄二模)如图3甲所示,质量m=3.0×10-3 kg的“”形金属细框竖直放置在两水银槽中,“”形框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中。有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直、沿竖直方向的匀强磁场中,其磁感应强度B2随时间t变化的关系如图乙所示。t=0.22 s 时闭合开关K瞬间细框跳起(细框跳起瞬间安培力远大于重力),跳起的最大高度h=0.20 m。不计空气阻力,重力加速度g=10 m/s2,下列说法正确的是()

图3

A.0~0.10 s内线圈中的感应电动势大小为3 V

B.开关K闭合瞬间,CD中的电流方向由C到D

C.磁感应强度B2的方向竖直向下

D.开关K闭合瞬间,通过细杆CD的电荷量为0.03 C

解析0~0.1 s内线圈中的磁场均匀变化,由法拉第电磁感应定律知E=n ΔΦΔt

nS ΔB

Δt

,代入数据得E=30 V,A错误;开关闭合瞬间,细框会跳起,可知细框受

向上的安培力,由左手定则可判断电流方向由C到D,B正确;由于t=0.22 s时通过线圈的磁通量正在减少,再对线圈由楞次定律可知感应电流产生的磁场的方向与B2的方向相同,故再由安培定则可知C错误;K闭合瞬间,因安培力远大于重力,则由动量定理有B1IlΔt=m v,通过细杆的电荷量Q=IΔt,线框向上跳起的过程中v2=2gh,解得Q=0.03 C,D正确。

答案BD

4.如图4甲所示,两根足够长的光滑平行金属导轨ab、cd与水平面成θ=30°角且固定,导轨间距离为L=2.0 m,电阻不计。在导轨上端接一个阻值为R0的定值电阻,在c、N之间接有电阻箱。整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直,磁感应强度大小为B=1 T。现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放,金属棒下滑过程中与导轨接触良好。不计一切摩擦。改变电阻箱的阻值R,测定金属棒的最大速度v m,得到v m-R的关系如图乙所示。若导轨足够长,重力加速度g取10 m/s2。

图4

(1)求金属棒的质量m 和定值电阻R 0的阻值;

(2)当电阻箱R 取3.5 Ω,且金属棒的加速度为3 m/s 2时,金属棒的速度为多大? 解析 (1)金属棒以最大速度v m 下滑时,根据法拉第电磁感应定律得E =BL v m 由闭合电路的欧姆定律得I =

E

R +R 0

当金属棒以最大速度下滑时,有mg sin θ=BIL 联立解得v m =mg sin θB 2L 2R +mg sin θ

B 2L 2R 0

由v m -R 图线可知mg sin θB 2L 2=1,mg sin θ

B 2L 2R 0=0.5 解得m =0.8 kg ,R 0=0.5 Ω。

(2)设金属棒下滑的速度为v ,根据法拉第电磁感应定律得E ′=BL v 由闭合电路的欧姆定律得I ′=

E ′

R +R 0

当金属棒下滑的加速度为3 m/s 2时,根据牛顿第二定律得mg sin θ-BIL =ma 解得v =1.6 m/s 。

答案 (1)0.8 kg 0.5 Ω (2)1.6 m/s

5.如图5甲所示,绝缘水平面上有一间距L =1 m 的金属“U”形导轨,导轨右侧接一个R =3 Ω的电阻。在“U”形导轨中间虚线范围内存在垂直于导轨的匀强磁场,磁场的宽度d =1 m ,磁感应强度B =0.5 T 。现有一质量m =0.1 kg 、电阻r =2 Ω、

长L =1 m 的导体棒MN 以一定的初速度从导轨的左端开始向右运动,穿过磁场的过程中,回路中的感应电流i 随时间t 变化的图象如图乙所示。已知导体棒与导轨之间的动摩擦因数μ=0.3,导轨电阻不计。在导体棒MN 穿过磁场的过程中,求:(g 取10 m/s 2)

图5

(1)MN 刚进入磁场时的速度大小; (2)电阻R 产生的焦耳热; (3)导体棒通过磁场的时间。

解析 (1)根据闭合电路欧姆定律得I 0=E 0R +r

根据法拉第电磁感应定律得E =BL v 0 又由乙图知MN 刚进磁场时的电流I 0=0.5 A 联立解得v 0=I 0(R +r )

BL =5 m/s 。

(2)导体棒通过磁场过程,由动能定理得 -μmgd -W 安=12m v 2-1

2m v 20 而v =I (R +r )BL =3 m/s

Q R =

R

R +r

W 安 联立解得Q R =0.3 J 。

(3)导体棒通过磁场过程,由动量定理得 -μmgt -B I -

Lt =m v -m v 0

又q =

ΔΦR +r 即I -t =BLd

R +r

联立解得t =0.5 s 。

答案 (1)5 m/s (2)0.3 J (3)0.5 s

综合提能练

6.如图6所示,MN 、PQ 是固定在水平桌面上,相距l =1.0 m 的光滑平行金属导轨,MP 两点间接有R =0.6 Ω 的定值电阻,导轨电阻不计。质量均为m =0.1 kg ,阻值均为r =0.3 Ω的两导体棒a 、b 垂直于导轨放置,并与导轨良好接触。开始时两棒被约束在导轨上处于静止状态,相距s 0=2 m ,a 棒用细丝线通过光滑滑轮与质量为m 0=0.2 kg 的重物c 相连,重物c 距地面高度也为s 0=2 m 。整个桌面处于竖直向下的匀强磁场中,磁感应强度B =1.0 T 。a 棒解除约束后,在重物c 的拉动下开始运动(运动过程中丝线始终与b 棒没有作用),当a 棒即将到达b 棒位置前一瞬间,b 棒的约束被解除,此时a 棒已经匀速运动,试求:

图6

(1)a 棒匀速运动时棒中的电流大小;

(2)已知a 、b 两棒相碰后即粘合成一根“更粗的棒”,假设导轨足够长,试求该“粗棒”能运动的距离;

(3)a 棒解除约束后整个过程中装置产生的总焦耳热。 解析 (1)由题意a 棒匀速运动时m 0g =BlI a ,可得I a =2 A 。 (2)设碰前a 棒的速度为v ,则

I a =Bl v

R 总,R 总=0.6×0.30.6+0.3 Ω+0.3 Ω=0.5 Ω

v =1 m/s

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应中的能量问题分析高中物理专题.docx

第 10 课时电磁感应中的能量问题分析 一、知识内容: 1、分析:棒的运动过程→ 运动性质→ 遵从规律; 2、掌握能量的转化方向:哪些能量减少,哪些能量增加; 3、电能→内能 Q:I 恒定→Q I 2 Rt ;I变化:用有效值求,或能量守恒; 4、常用知识点:动能定理、能量守恒、W 、P、Q、等。 二、例题分析: 【例 1】如图所示, PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值为R=8 Ω的电阻,导轨间距为 L=1m ,一质量 m=0.1kg,电阻 r=2 Ω的均匀金属杆水平放在 导轨上,它与导轨的滑动摩擦因数 3 / 5 ,导轨平面倾角300,在垂直导轨平面方向有匀强磁场, B=0.5T ,今让金属杆由静止开始下滑,从杆静止开始到杆 AB恰好匀速运动的过程中经过杆的电量q 1C ,求: (1)当 AB 下滑速度为2m/ s时加速度的大小 (2)AB 下滑的最大速度 (3)从静止开始到 AB 匀速运动过程R 上产生的热量? 【例2】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由 一段圆弧部分与一段无限长的水平段部分组成,其水平段加 有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段 上静止放置一金属棒cd,质量为2m,电阻为2r,另一质量为 m,电阻为 r 的金属棒ab,从圆弧段M 处由静止释放下滑至 N 处进入水平段,圆弧段 MN 半径为 R,所对圆心角为 60°,求: (1) ab 棒在 N 处进入磁场区速度多大?此时棒中电流是多少? (2) cd 棒能达到的最大速度是多大? (3) cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例 3】用质量为m、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾 光磁静角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是滑的,在导轨的下端有一宽度为l(即 ab=l)、磁感应强度为 B 的有界匀强磁场,场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从 止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度; (2)开始释放时, MN 与 bb′之间的距离; (3)线框在通过磁场的过程中所生的焦耳热。

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

电磁感应现象中的能量问题

电磁感应现象中的能量问题邵晓华 目标: 使学生能处理电磁感应规律与能量综合应用的问题,并学会处理能量问题的方法与技巧。提高学生的分析综合能力和解决实际问题的能力,帮助学生树立正确的科学观。 教学过程 【问题概述】电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力。电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必定有“外力”克服安培力做功,此过程中,其它形式的能转化为电能,当电流通过电阻时,电能又转化为其它形式的能量. 【典例赏析】 例1、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R, 质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒 与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面 垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的 功与安培力做的功的代数和等于() A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R上放出的热量 小结:分析过程中应当牢牢抓住能量守恒这一基本规律,即分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式的能; 针对练习:P189(4)P191(4)两题 分析作业P306(8,9,10) 例2(P189例4) 分析P306(11) 能力提升: 例3.(如图16(甲) 为一研究电磁感应 的装置,其中电流传 感器(相当于一只理 想的电流表)能将各 时刻的电流数据实 时送到计算机,经计 算机处理后在屏幕 上显示出I-t图象。 已知电阻R及杆的 电阻r均为0.5Ω,杆的质量m及悬挂物的质量M均为0.1kg,杆长L=1m。实验时,先断

电磁感应的能量问题

电磁感应的能量问题 电磁感应中的动力学问题 1.安培力的大小 ?? ? ?? 感应电动势:E=Blv 感应电流:I= E R+r 安培力公式:F=BIl ?F= B2l2v R+r 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动――→ E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→ F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2)基本思路是: 电磁感应中的能量问题 1.能量的转化 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即:其他形式的能如:机械能 ――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能 (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

电磁感应中的能量问题

电磁感应中的能量问题 【教学目标】 1、理解电磁感应现象中的能量转化关系。 2、掌握利用功能关系解决电磁感应问题的一般思路和方法。 3、培养学生在电磁感应现象中利用动能定理、能量守恒定律解决实际问题的能力。 【教学重点】 1、通过对电磁感应现象的分析,理解电磁感应现象中各种能量的转化关系。 2、学生归纳利用功能关系解决电磁感应问题的一般思路和方法。 【教学难点】 1、理解电磁感应现象中各种能量的转化关系。 2、利用动能定理、能量守恒定律解决电磁感应现象问题。 【教学方法】 1、学生通过小组合作学习,归纳总结电磁感应现象中的各种能量转化关系。 2、通过自主学习、合作探究、学生展示、教师指导解决学习中存在的疑问。 【活动过程】 活动一:学生自主完成例1,小组合作交流探究成果,教师点拨,学生归纳电磁感应现象中的能量转化关系。 【例1】两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一个匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面、与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高,如图所示,在这一过程中,(D) A.作用于金属棒上的各个力的合力做的功不等于零 B.作用于金属棒上的各个力的合力做的功等于mgh与电阻R 上发出的焦耳热之和 C.恒力F与安培力的合力所做的功等于零 D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热

【互动探究】如果金属导轨不光滑,恒力F 作用下棒加速上滑,能量转化又有什么关系?活动二:完成巩固训练1,总结利用功能关系解决电磁感应问题的一般思路和方法。 【巩固训练1】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F ,此时( B C D)A .电阻R 1消耗的热功率为F v 3 B .电阻R 2消耗的热功率为 F v 6C .整个装置因摩擦而消耗的热功率为μmg v cos θ D .整个装置消耗的机械功率为(F +μmg cos θ)v 活动小结:电磁感应现象中的能量转化关系: 重力做功重力势能的变化 合外力做功动能的变化 除重力以外其他力做功机械能的变化 摩擦力做功摩擦产生的热量 安培力做功电能的变化 安培力做正功,电能转化为其他形式的能(电动机) 安培力做负功,电能转化为其他形式的能(发电机)

电磁感应中的能量问题

电磁感应中的能量问题 【考点解读】 1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。 2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。 3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图象、动能定理和能量守恒定律等。 【考点精讲】 1.题型简述 电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功来实现的.安培力做功的过程,是电能转化为其他形式的能的过程;外力克服安培力做功的过程,则是其他形式的能转化为电能的过程。 2.解题的一般步骤 (1)确定研究对象(导体棒或回路); (2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化; (3)根据能量守恒定律或功能关系列式求解。 3.求解电能应分清两类情况 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算。 (2)若电流变化,则 ①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功(理解发电机和电动机能量转化的区别); ②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等于产生的电能; ③常用电量求法,R Blx n R S B n R n t I q =?=?Φ=?=,有时会用它求金属杆的位移。 还有时会用动量定理求电量,这两种方法经常结合使用。(一般在高三综合应用中使用) 4.物理术语焦耳热和摩擦热 ①电流通过电阻做功,将电能转化为内能,过程中产生的热量称为焦耳热(Rt I Q 2 =); ②系统克服一对动摩擦力做功,将机械能转化为内能,过程中产生的热量称为摩擦热(x F Q ?=μ)。 例1 如图1所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度

(完整word版)电磁感应中的动力学和能量问题(一)

电磁感应中的动力学与能量问题(一) 制卷:田军 审卷:张多升 使用时间:第三周周一 班级: 姓 名: 考点一 电磁感应中的动力学问题分析 1.安培力的大小 由感应电动势E =Blv ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2.安培力的方向判断(如右图) 3.处理此类问题的基本方法: (1)用法拉第电磁感应定律和楞次定律求出感应电动势的大小 和方向; (2)求回路中的电流的大小和方向; (3)分析导体的受力情况(含安培力); (4)列动力学方程或平衡方程求解。 4.电磁感应现象中涉及的具有收尾速度的问题,关键要抓好受力情况和运动情况的动态分析 5.两种状态及处理方法 (1)平衡状态(静止状态或匀速直线运动状态):根据平衡条件(合外力等于零)列式分析; (2)非平衡状态(a 不为零):根据牛顿第二定律进行动态分析或结合功能关系分析。 考点二 电磁感应中的能量问题分析 1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安 培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减 少量等于产生的电能. 巩固练习 1.如上图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一定值电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A.ef 将减速向右运动,但不是匀减速 B.ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 D.ef 将做往返运动 2.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场 力总小于其重力,则它在1、2、3、4位置时的加速度关系为( ) A.a 1>a 2>a 3>a 4 B.a 1=a 2=a 3=a 4 C.a 1=a 3>a 2>a 4 D.a 4=a 2>a 3>a 1 3.如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一质量为m 的金属杆从轨道上 由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 增大,v m 将变大 D.如果m 减小,v m 将变大

电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

————————————————————————————————作者:————————————————————————————————日期:

四、电磁感应中的力学问题和能量问题 电磁感应中的力学问题与能量转化问题 1.考点分析: 电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。 2.知识储备: (1)计算感应电动势大小的两种表达式: t N ??=φε,θεsin Blv = (2)判断产生的感应电流的方向方法:楞次定律, 右手定则 (3)安培力计算公式:F =BIl 3.基本方法: a. 确定电源( ??→?=+= r R E I E 感应电流 ??→?=BIl F 运动导体受到的安培力?→? 合外力??→?=ma F a 变化情况?→?运动状态的分析?→?临界状 态) b. 在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解. 3.典例分析 一、电磁感应现象中的力学问题 【例1】如图所示,有两根足够长、不计电阻,相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端接一阻值为R 的电阻,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端.已知ab 杆向上和向下运动的最大速度相等.求:拉力F 和杆ab 最后回到ce 端的速度v . θ a F b B R c d e f

电磁感应的能量问题完整版

电磁感应的能量问题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电磁感应的能量问题 1.安培力的大小 F= 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动感应电动势感应电流通电导体受安培力→合外力变化加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。 处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2) 基本思路是:

题 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即: (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线运动而产生感应电流,进而受到安培力作用,这时安培力成为导体运动的动力,此即电磁驱动。在这种情况下,安培力做正功,电能转化为导体的机械能。 综上所述,安培力做功是电能和其他形式的能之间相互转化的桥梁,表示如下: 电能其他形式的能。 2.求解焦耳热Q的三种方法 (1)直接法:Q=I2Rt (2)功能关系法:Q=W克服安培力 (3)能量转化法:Q=ΔE其他能的减少量 ——————————————————— 1电磁感应动力学问题中,要抓好受力情况、运动情况的动态分析。导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,最终加速度为零,导体达到匀速运动的稳定状态。 2这类问题要抓住“速度变化引起安培力变化”这个关系,并从分析物体的受力情况与运动情况入手解决问题,这是解题的关键。 ——————————————————————————————————————

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例 1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场, 竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图 中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30° ,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例 2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖 直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例 3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

电磁感应现象中的能量问题

核心文档 必属精品 电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质

设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e 作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛

2018届人教版 电磁感应中的能量问题 单元测试

课时达标检测(六十二) 电磁感应中的能量问题 (题型研究课) 一、选择题 1.如图所示,在光滑的水平面上,一质量为m ,半径为r ,电阻为R 的均匀金属环,以v 0的初速度向一磁感应强度大小为B 、方向竖直向下 的有界匀强磁场滑去(磁场宽度d >2r )。圆环的一半进入磁场历时t 秒,这 时圆环上产生的焦耳热为Q ,则t 秒末圆环中感应电流的瞬时功率为 ( ) A.4B 2r 2v 02R B.4B 2r 2????v 02-2Q m R C.2B 2r 2????v 02-2Q m R D.B 2r 2π2????v 02-2Q m R 解析:选B t 秒末圆环中感应电动势为E =B ·2r ·v ,由能量守恒知,减少的动能全部 转化为焦耳热,Q =12m v 02-12 m v 2,t 秒末圆环中感应电流的功率为 P =EI =E 2R =4B 2r 2????v 02-2Q m R ,B 正确。 2.(多选)(2017·湖北六校模拟)如图所示,水平的平行虚线间距为d =60 cm ,其间有沿水平方向的匀强磁场。一个阻值为R 的正方形金属线圈边长l

相关文档
最新文档