2、控制阀流量特性解析解析

2、控制阀流量特性解析解析
2、控制阀流量特性解析解析

控制阀流量特性解析

控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。

控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L), 式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比;

l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比

一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同

时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。

理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。

理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为

Q/Qmax=1/R[1+(R-1)l/L]

式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。

常见的控制阀固有可调比有30、50两种。

当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一

表一

由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化也大,调节作用灵敏有效。由于上述原因,在实际工况中多数场合优选等百分比流量特性。

GB/T4213-2008《气动调节阀》标准5.11.2条规定,

等百分比流量特性的斜率偏差:在相对行程h=0.1~0.9之间,任意相邻流量系数测量值的十进对数(lg )差值应符合表二规定。

表二

由表二可以看出当相对行程h<0.2和h>0.8不在遵守斜率偏差必须在±30%范围内,而是扩大到了当相对行程h<0.2时斜率偏差可达

%

80%

30+-,当相对行程h>0.8时,斜率偏

差可达

%30%

80+-,这样在不影响自动控制系统调节功能的前提下,

为控制阀生产制造单位的设计制造提供了方便。

天津精通控制仪表技术有限公司的前身是天津市自动化仪表四厂,在1985年将原JB1790~1795-76《气动薄膜调节阀》标准中的流量特性偏差“单、双座阀实际流量特性与理论流量特性之间偏差应不超过±10%,(按1976年《气动薄膜调节阀》标准执行时会出现当相对行程增加10%时,相对流量不增加也定为合格产品的现象)改为流量特性严格按照斜率偏差±30%的要求执行,历时两年多的阀芯修正也只能保证理想直线特性各点合格率为98%,理想等百分比特性各点合格率在90%左右。GB/T4213-2008《气动调节阀》引用了GB/T 17213《工业过程控制阀》部分内容,GB/T 17213《工业过程控制阀》又全部引用了IEC60534《工业过程控制阀》的内容,也就是说我们控制阀行业执行的GB/T4213-2008《气动调节阀》就是在执行

IEC60534《工业过程控制阀》的部分内容。

控制阀生产企业凡真正具有流量试验室并进行流量试验的单位都知道,理想等百分比流量控制阀达到斜率偏差±30%是非常困难的,特别是当相对行程h<0.2和h>0.8时,几乎是不可能的,所以IEC60534《工业过程控制阀》对相对行程h<0.2和相对行程h>0.8进行了放宽偏差处理,当相对行程h<0.2允许相对流量适当增大;当相对行程h>0.8时允许相对流量适当减小。

为了检测方便,GB/T4213-2008《气动调节阀》标准中将原斜率偏差换算成了对数数值lgKvn –lgKvn-1,具体数字转换见表三:

表三

美国艾默生过程管理公司的Fisher公司就充分利用了IEC60534《工业过程控制阀》标准中关于固有流量特性的基本要求,也可以说IEC60534《工业过程控制阀》标准是以Fisher公司产品为基型编制而成的。下面我们以Fisher公司生产的DN100 ET型笼式阀为例,看一下Fisher公司是如何利用IEC60534《工业过程控制阀》标准的。实际流量系数具体数值见表四

表四

Fisher公司DN100 ET笼式阀等百分比流量系数与标准等百分比流量系数对比,见图一

相对流量

图一

我们根据Fisher 产品选型软件上发布的相对行程与相对流量数值,计算ET 、EZ 两大系列十多种控制阀的曲线,也基本遵守这个原则。所以各控制阀生产企业不要刻意追求理想等百分比流量特性各点均符合斜率偏差±30%,而应在不影响用户使用前提下,充分利用标准规定的相对行程h<0.2,斜率偏差

%

80%

30+-,h>0.8斜率偏差

%30%

80+-的要求,可使设计

和生产制造过程大大简化。

目前,国内各大、中型项目的采购普遍采取招标的方式进行。在招投标过程中技术分又占有绝对比重,各控制阀生产厂经常遇到设计单位、使用单位与生产制造单位核对控制阀开度情况,核对过程都是按照标准理想流量特性核对的。由于各个控制阀生产制造企业所生产的控制阀的实际流量特性曲线非常不一致,与理想流量特性相差甚远。还以Fisher公司生产的DN100 ET型笼式阀为例,在相对流量为100、125、150时,相对行程都有15%左右的误差(见图一)。因此核对控制阀开度即不科学又无任何实质意义。设计、使用单位要想得到实际控制阀开度,就要根据控制阀生产企业实际流量特性曲线进行核对。

控制阀的合理选用是一门综合性科学;需要控制阀设计单位、使用单位和生产企业边学习、边实践以达到满意的使用效果。

流量系数计算公式汇总表

气液两相流流量系数的计算

流量系数Kv是指温度为5~40℃温度范围内的水在105Pa(1 bar)压降下,在规定行程下每小时内流过阀的立方米数。现在也有很多厂家习惯使用Cv值表示,流量系数Cv是指用40~100°F的水,保持阀门两端压差为1psi情况下,阀全开状态下每分钟通过阀的美加仑数。Cv与Kv的换算公式为: Cv=1.156 Kv。

在对控制阀进行选型时,最关键的是根据所给工况条件正确计算流量系数,根据计算的流量系数合理选用阀门口径.介质为单纯液体、气体、蒸汽时都有正确的计算公式,在这里就不再叙述了,计算时只要区分是否为阻塞流的情况,按照公式很容易计算。当介质为气液两相流时,各个控制阀制造厂家也有不同的计算方法,过去一般都采用分别计算液体和气体(蒸汽)的Kv值,然后相加作为阀门总的流量系数值,这种分别计算液体及气体的流量系数,然后相加的方法是基于两种流体单独流动的观点,没有考虑到他们的相互影响。实际上,当气相大大多于液相时,液相成为雾状,具有近似于气相的性质;当液相大大多于气相时,气相成为气泡夹杂在液相中间,这时具有液相性质,此时用上述方法计算误差就很大,前者偏大而后者偏小。因此对两相流介质进行流量系数计算时必须要考虑到两相流动互相影响,找出更准确有效的计算方法,本文现介绍两种不同的两相流流量系数的计算方法即有效密度法和修正系数法。

一、有效密度法

目前国内大部分厂家都采用这种方法。

计算前提是:气、液两相介质必须均匀混合,而且其中每一单相流体均未达到阻塞流条件,判决条件如下:

液体△P<2(-),气体X< F

k X

T ,

—阀前压力kPaA △P —阀前后压差 kPa

X —压差比△P/

—无附接管件控制阀的液体压力恢复系数,无量纲(见表1)

—阻塞流条件下无附接管件控制阀的压差比系数,无量纲(见表1)—比热比系数,=k/1.4 (k是气体的绝热指数)

kPaA

kPaA

表1 压力恢复系数和临界压差比

注:上表所列数值为典型值,实际数值以制造商提供为准。

符合以上条件后,两相流流体流量系数计算公式如下:(1)液体与非液化性气体

式中为两相流密度:

式中—,= 1-

—气体质量流量kg/h

—液体质量流量kg/h —气体操作密度kg/m3

—入口绝对温度,K Z —压缩系数

—标准状态下气体密度kg/N.m3

—液体密度g/cm3

注:当气体所给流量单位是Nm3/h时,可用下式进行换算

kg/h = Nm3/h

—气体比重

(2)液体与蒸汽

当蒸汽占绝大部分的两相混合流体用液体与非液化性气体所给公式进行计算。对液体占绝大部分的两相混合流体,计算公式为:

式中为两相流密度:

例1,在两相流介质中,流体是空气和水的混合流体,=1100kPaA, △P=300kPa,

=353K,水质量流量=20000kg/h,空气质量流量=240 kg/h,空气密度为1.293kg/Nm3,水的密度为0.972g/cm3。查关资料的压缩系数Z为1.01

选用气动薄膜单座阀=0.9,=0.72,PC=22120kPa,=47.36 kPa

(1)首先判别液体或气体是否有阻塞流,

对液体,

△=2(-)=0.92(1100-0.947 854.67 kPa

式中,△—无阻塞流时最大允许压差,kPa

=0.96- = 0.947

由于△P=300kPa<△,所以不产生阻塞流。

对气体,

X=△P/P1=300/1100=0.27<F

k X

T

=1(其中空气K=1.4,=k/1.4=1)

所以空气也不产生阻塞流。

(2)计算流量系数

膨胀系数:0.875 有效密度:

= 406.8

把膨胀系数y和有效密度带入计算

=

如果采用分别计算液体和气体的流量系数,然后相加可得:

经计算,液体气体 1.39(计算过程略)

用此方法和有效密度的计算方法相比,计算结果相差27.8%。

例2,在两相流介质中,流体是蒸气和水的混合流体,P1=800kPaA,

△P=80kPa,T1=438K,水质量流量4000kg/h,蒸气质量流量2000 kg/h,蒸气密度为4.085kg/m3,水的密度为0.907g/cm3。

选用气动薄膜单座阀=0.9,=0.72,PC=22120kPa,=700.77 kPa

(1)首先判别液体或蒸汽是否有阻塞流,

对液体,

△PT=FL2(P1-)=0.92(800-0.91131.5kPa

式中,△PT —无阻塞流时最大允许压差,kPa

=0.96- = 0.91

由于△P=80kPa<△PT,所以不产生阻塞流。

对蒸汽,

X=△P/P1=80/800=0.1<F

k X

T =1

所以蒸汽也不产生阻塞流。(2)计算流量系数

有效密度:

= 12.14

把有效密度带入计算

= 71.36

如果采用分别计算液体和蒸气的流量系数,然后相加可得:

液体 4.7 蒸汽37.33 (计算过程略)

用此方法和有效密度的计算方法相比,计算结果相差69.8%

二、修正系数法

现Fisher公司采用这种计算方法

具体方法是按照单一状态分别计算气体(蒸汽)和液体的C

V

值,然后通过气体容积

率V

r

与Fm曲线(见图1),找出修正系数Fm数值,再按照公式1进行计算。

1)两相混合流体的流量系数计算公式为:

C vr =( C

vl

+ C

vg

)(公式1)

2)液体和气体混合的平均容积计算公式为:

V

r

=

3)液体和蒸汽混合的平均容积计算公式为:

V

r

=

式中 C

vr —两相混合流体的C

V

C

vl —液体部分的C

V

C vg —气体部分的C

V

Fm—C

V

值修正系数

—阀前压力psia

T1—入口温度°R(°R—兰金温标度= °F+460)

V

r

—气体容积率

(ft3/S)

(ft3/S)

X—蒸汽质量与两相流整体质量的比值

4)如果压差比(△P/P1 )超过了图2所要求的范围,那么就很可能是其中的液体产生了阻塞流,因此必须对液体阻塞流进行判断,并相应计算Cv值。判别公式为△PT=2(-)

Fm

气体容积率V

r

关系曲线图

图1 Fm与V

r

△P/P1

C1

图2 C1与(△P/P1)曲线图

注:图2中C1=39.76

例3,在两相流介质中,流体是空气和水的混合流体, =1100kPaA=159.5psia,

△P=300kPa=43.5psi, =353K=636°R,水质量流量=20000kg/h=88.18gpm,空气质量

流量=240 kg/h=6922.07 scfh.

选用气动薄膜单座阀=0.9,=0.72,

=22120kPaA , =47.36kPaA

(1)首先判断是否存在阻塞流,

△P/P1=43.5/159.5=0.27

C1=39.76 =39.76 =33.737

由图2曲线可以看C1=33.737时,△P/为0.52,

由于△P/P1=0.27<0.52,因此无阻塞流产生。

(2)计算液体和气体混合的平均容积:

V

r

=

= =0.524

由图1曲线可以得出当V

r

=0.524时Fm=0.48

(3)分别计算单独流动情况下的CV值

经计算,液体C

vl =13.7 气体 C

vg

=1.61(计算过程略)

总C

vr C

vr

=( C

vl

+ C

vg

)

= (13.7+1.61)(=19.6)

这样分别计算液体和气体的流量系数并相加的总=15.31与修正系数法计算的

48%。

例4,在两相流介质中,流体是蒸气和水的混合流体, =800kPaA=116psia,

△P=80kPa=11.6psi, =438K=789°R,水质量流量=4000kg/h=0.043ft3/s,蒸气质量流

现金流量表分析及结构分析

现金流量表分析 在市场经济条件下,企业现金流量在专门大程度上决定着企业的生存和进展的能力,从而在专门大程度上决定着企业的盈利能力。这是因为假如企业的现金流量不足,现金周转不畅,现金调配不灵,就会阻碍企业的盈利能力,进而甚至会阻碍到企业的生存和进展。常见的盈利能力评价指标,差不多上差不多上利用以权责发生制为基础的会计数据进行计算,从而给予评价,如净资产收益率、总资产酬劳率和成本费用利润率等指标。但值得注意的是,它们并不能反映企业伴随有现金流入的盈利状况,也确实是讲,它们只能评价企业盈利能力的“数”量,却不能评价企业盈利能力的“质”量。然而对现金流量表的分析便能够弥补这一缺陷和不足。 现金流量表是以现金为基础编制的财务状况变动表。它反映企业一定期间内现金的流入和流出,表明企业获得现金和现金等价物的能力。通过对该表的分析可识不企业现金流入量和流出量的结构情况,从而可抓住企业现金流量治理的重点,识

不报表真实程度。 第一节现金流量表的结构与作用 一、现金流量表的涵义 现金流量表是反映企业一定会计期间现金和现金等价物(以下简称现金)流入和流出的报表。现金流量分为经营活动现金流量、投资活动现金流量和筹资活动现金流量。它是以收付实现制为基础,反映企业某一会计期间的现金流入和流出的发生额,因此是一张动态报表。通过它可了解企业“血液(资金)”的流通状况。 经营活动现金流量是指企业投资活动和筹资活动以外的所有的交易和事项产生的现金流量。包括经营活动的现金流入量和经营活动的现金流出量,并按其性质分项列示。投资活动现金流量是指企业长期资产(通常指一年以上)的购建及其处置产生的现金流量,包括购建固定资产、长期投资现金流量和处

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

现金流量表的结构分析

现金流量表分析一、现金流量表一般分析 现金流量表

根据光明乳业股份有限公司2010年的现金流量表进行一般分析: 第一、光明乳业股份有限公司2010年资产负债表中货币资金项目年末比年初增加2.09亿元。剔除包含于年末及年初货币资金项目当中的使用受限制资金的影响,本年现金及现金等价物共增加2.23亿元。其中,经营活动产生净现金流量5.34亿元;投资活动产生净现金流量-3.19亿元;筹资活动产生净现金流量0.856亿元。 第二、该公司本年经营活动净现金流量的产生主要原因是销售商品,提供劳务,收到现金105.16亿元,购买商品、接受劳务支付64.17亿元。 经营活动的净现金流量大于0,反映光明企业的经营活动的现金流量自我适应能力较强,通过经营活动收取的现金,不仅能够满足经营本身的需要,而且剩余部分还可以用于再投资或偿债。 第三、投资活动现金流量主要是由于购建固定资产、无形资产和其他长期资产,大规模构建固定资产等长期资产可以增加企业未来的生产能力。 第四、筹资活动现金流量的变动主要是取决于取得借款收到的现金和偿还债务支付的现金,收到借款7.59亿元,偿还7.88亿元的债务。 二、现金流量表水平分析

光明乳业公司现金流量水平分析

由上表可以看出,光明乳业股份有限公司2010年净现金流量比2009年增加了0.119亿元。经营活动、投资活动和筹资活动产生的净现金流量较上年的变动额分别是0.19亿元、-2亿元和1.43亿元。经营活动净现金流量比上年增长了0.19亿元,增长率为14.87%。经营活动现金流入量与流出量分别比上年增长6.32%和5.9%,增长额分别为6.3亿元和5.61亿元。经营活动现金流入量的增长快于经营活动现金流出量的增长,导致经营活动现金净流量有所增长。经营活动现金净流量的增长主要是因为销售商品、提供劳务收到的现金增长了5.98亿元。公司当年收到的税费返还比上年增加了0.2亿元,增长率为79.8%。经营活动现金流出量的增加是因为购买商品、接受劳务支付的现金增加了2.56亿元,增长率为4.16%;支付其他与经营活动有关的现金增加了3.25亿元,增长率为14.07%。 投资活动净现金流量比上年减少了2亿元,主要是由于本年投资活动现金流入比去年少,而投资活动现金流出量却比去年多,反映了光明乳业在2010年固定资产,无形资产等资金收回情况不理想,却又大量购置了固定资产等长期资产。 筹资活动净现金流量本年比去年增加了1.43亿元,主要是由于吸收投资收到的现金和和取得借款收到的现金比去年增加很多,本年筹资活动现金流入量有很明显的增长,增长率为180.64%,现金流出主要用于偿还债务,较去年多偿还了4.09亿元,本年现金流入的增长于现金流出的增长,因此净现金流量得到了增长。

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

总体分析现金流量结构

一、总体分析现金流量结构,认定企业生命周期所在阶段 现金流量结构十分重要,总量相同的现金流量在经营活动、投资活动、筹资活动之间分布不同,则意味着不同的财务状况。一般情况下: 1、当经营活动现金净流量为负数,投资活动现金净流量为负数,筹资活动现金净流量为正数时,表明该企业处于产品初创期。在这个阶段企业需要投入大量资金,形成生产能力,开拓市场,其资金来源只有举债、融资等筹资活动。 2、当经营活动现金净流量为正数,投资活动现金净流量为负数,筹资活动现金净流量为正数时,可以判断企业处于高速发展期。这时产品迅速占领市场,销售呈现快速上升趋势,表现为经营活动中大量货币资金回笼,同时为了扩大市场份额,企业仍需要大量追加投资,而仅靠经营活动现金流量净额可能无法满足所需投资,必须筹集必要的外部资金作为补充。 3、当经营活动现金净流量为正数,投资活动现金净流量为正数,筹资活动现金净流量为负数时,表明企业进入产品成熟期。在这个阶段产品销售市场稳定,已进入投资回收期,但很多外部资金需要偿还,以保持企业良好的资信程度。 4、当经营活动现金净流量为负数,投资活动现金净流量为正数,筹资活动现金净流量为负数时,可以认为企业处于衰退期。这个时期的特征是:市场萎缩,产品销售的市场占有率下降,经营活动现金流入小于流出,同时企业为了应付债务不得不大规模收回投资以弥补现金的不足。 二、分析现金盈利能力,把握获利趋势 1、经营现金流量净利率。以现金流量表补充资料中的“净利润”与“经营活动产生的现金净增加额”相比,反映被投资单位年度内每1元经营活动现金净流量将带来多少净利润,来衡量经营活动的现金净流量的获利能力。 2、经营现金流出净利率。以“净利润”与“经营活动现金流出总额”相比,反映被投资单位的经营活动的现金投入产出率高低。 3、现金流量净利率。以“净利润”与“现金及现金等价物净增加额”相比,反映被投资单位每实现1元现金净流量总额所获得的净利润额。

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

流量控制阀工作原理及其特点

流量控制阀工作原理及其特点 流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 真空阀门 目录 一、真空充气阀类 1、DDC-JQ系列电磁真空带充气阀

2、DDC-JQ-B系列电磁真空带充气阀 3、DYC-Q系列低真空电磁压差充气阀 4、GYC-JQ系列高真空电磁压差式充气阀 5、GQC系列电磁高真空充气阀 6、GDC-Q5型、GDC-5型电磁真空阀 二、真空挡板阀类 1、GDC-J型系列电磁高真空挡板阀 2、GDQ型系列气动高真空挡板阀 3、GD-J型系列高真空挡板阀 4、GDQ-J(b)型系列电、气动高真空挡板阀(带波纹管密封) 5、GDQ-J(b)-A型系列气动高真空挡板阀(带波纹管密封) 6、GD-J(b) 型系列手动高真空挡板阀(带波纹管密封) DDC-JQ系列电磁真空带充气阀 DDC-JQ型系列电磁真空带充气阀是安装在机械式真空泵上的专用阀门。阀门与泵接在同一电源上,泵的开启与停止直接控制了阀的开启与关闭。当泵停止工作或电源突然中断时,阀能自动将真空系统封闭,并将大气通过泵的进气口充入泵腔,避免泵油返流污染真空系统。 适用的工作介质为空气及非腐蚀性气体。 注:快卸及活套法兰连接方式请参阅DDC-JQ-B系列电磁真空带充气阀(内有DN100规格). 主要技术性能 适用范围(Pa) 105~1x10-2 <6.7x10-4 阀门漏率(Pa.L/S)

流量控制阀的特点及其工作原理

流量控制阀的特点及其工作原理 中国泵业网流量控制阀的工作特点及其原理流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。

自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 推力球轴承的用途: 推力球轴承只适用于承受一面轴向负荷、转速较低的机件上,只适用于承受一面轴向负荷、转速较低的机件上,例如起重机吊钩、立时水泵、立时离心机、千斤顶、如起重机吊钩、立时水泵、立时离心机、千斤顶、低速减速器等。轴承的轴圈、座圈和滚动体是分离的,速减速器等。轴承的轴圈、座圈和滚动体是分离的,可以分别装拆。 推力轴承的安装注意事项: 平面推力轴承在装配体中主要承受轴向载荷,其应用广泛。平面推力轴承在装配体中主要承受轴向载荷,其应用广泛。虽然推力轴承安装操作比较简单,虽然推力轴承安装操作比较简单,但实际维修时仍常有错误发生,即轴承的紧环和松环安装位置不正确,发生,即轴承的紧环和松环安装位置不正确,结果使轴承失去作用,轴颈很快地被磨损。紧环内圈与轴颈为过渡配合,去作用,轴颈很快地被磨损。紧环内圈与轴颈为过渡配合当轴转动时带动紧环,并与静止件端面发生摩擦,当轴转动时带动紧环,并与静止件端面发生摩擦,在受到轴向作用力(Fx)时将出现摩擦力矩大于内径配合阻力矩,向作用力(Fx)时,将出现摩擦力矩大于内径配合阻力矩,导(Fx)致紧环与轴配合面强制转动,加剧轴颈磨损。 因此,推力轴承安装时应注意以下几点。 (1)分清轴承的紧环和松环(根据轴承内径大小判断,孔径相分清轴

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

阀门特性

调节阀介绍,等百分比特性,线性特性,抛物线特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。本手册主要介绍电动调节阀和气动调节阀两种。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节并通常分为直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。 根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1)等百分比特性(对数) 等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2)线性特性(线性) 线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

(3)抛物线特性 流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀流量特性选择

调节阀的流量特性如何选择 控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。 在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。 理性流量特性主要由线性、等百分比、抛物线及快开四种。在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。 控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。 目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑: 1、从调节系统的质量分析 下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。 K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。 很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5 K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。因此,适当选择控制阀的特性,以阀的放大系数的变化来补偿调节对象放大系数的变化,而使系统的总放大系数保持不变或近似不变,从而提高调节系统的质量。 因此,控制阀流量特性的选择应符合: K4*K5=常数 对于放大系数随负荷的加大而变小的现象,假如选用放大系数随负荷加大而变大的等百分

调节阀流量特性分析及应用选型

调节阀流量特性分析及应用选型 点击次数:102 发布时间:2011-4-5 简介 调节阀是工业生产过程中一种常用的调节机构,它的作用就是按照调节器发出的控制信号的大小和方向,通过执行机构来改变阀门的开度以实现调节流体流量的功能,从而把生产过程中被调参数控制在工艺所要求的范围内,从而实现生产过程的白动化。调节阀是自动化控制系统中一个十分重要且不可或缺的组成部分,正确的选择和使用调节阀,直接关系到整个自动控制系统的控制质量,直接影响生产产品的质量。然而,自动控制系统不能正常投人运行的,有许多是由于调节阀的选型不当造成的,因此,如何正确选择合适的调节阀,必须引起我们每一位自动化控制技术人员的高度重视。调节阀所反应出来的问题大多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径及流量特性等。在这些参数中,流通能力更重要,它的大小直接反映调节阀的容觉,它是设计选型中的主要参数。因此,调节阀的选择主要从以上几个因素进行考虑。本人根据工作中调节阀的选型经验简单介绍一下调节阀的选型原则及注意事项。 2 调节阀的工作原理 在有流体流动的管道中,调节阀是一节流件,假设流体是不可压缩且充满管道,根据伯努利方程式和流体的连续性定律可知:通过阀门的体积流量 Q v与阀门的有效流通截面积 A 和通过阀门前后的压降ΔP(ΔP=P1-P2)的平方根成正比,与流体的密度ρ和阀门的阻力系数ζ的平方根成反比,即: 其中 n——为常数,C——调节阀的流量系数,又叫流通能力。 根据调节阀的流量方程式可得出如下结论: (l)在流体的密度ρ和阀门上的压降ΔP 一定的情况下,调节阀的流量系数 C 与流量 Q v,C 值的大小反映了阀能通过的流量的大小。 (2)流量系数 C 与流通面积 A 成正比,流通能力随流通截面的增减而增减。 (3)流量系数 C 与阀门的阻力系数ζ的平方根成反比,增大阀门的阻力系数ζ就是阀门的流通能力减小,如果阀门的口径相同,则不同结构的阀门阀门的阻力系数ζ就不相同,流通系数 C 也就不同。 3 调节阀结构形式的选择 调节阀结构形式的选择,应根据实际生产中工艺条件(温度、压力、流量等)、工艺介质的性质(如粘度、腐蚀性、有无毒害等)、调节系统的要求(调节范围、泄漏量、噪音)以及防止调节阀产生汽蚀现象等因素综合加以考虑。平常在我们实际使用中,应用最多的是普通单座调节阀、双座调节阀、套筒调节阀、蝶阀等。一般来讲,在流量小、压差小、要求泄漏量小的场合,选择单座调节阀即

现金流量表分析案例

1现金流量表分析(水平分析)

分析评价:从上表中可以看出,数源科技股份有限公司,2009年现金等价物增加额为144.63百万元,较2008年增加276.23%。其中,经营活动产生的现金流量净额为493.77百万元,较2008年增加了545.04%;投资活动产生的现金流量净额下降为78.98百万元,较2008年下降282.23%;筹资活动产生的现金流量净额下降为270.14百万元,较2008年下降了1789.09%;可见公司经营活动创造现金的能力在增加;公司的经营活动创造现金能弥补投资活动和筹资活动的一定的现金支出。这是什么原因造成的? 经营活动产生的现金流量净额之所以上升,是由于经营活动现金流入较上年增长了70.20%,而经营活动现金流出较上年只是上升了34.44%,增减的原因

还应结合资产负债表和利润表进行分析。在经营活动现金流入中,销售商品提供劳务收到的现金上涨了80.35%,从前面的资产负债表和利润表的分析中,我们可知:公司的主营业务收入为13.52%,应收票据下降了39.58%,应收账款金额为88.54百万元上升了7.83%,存货只上升了5.54%,预收账款金额为1563.63百万元上升了36.86%。在经营活动现金流出中,购买商品、接受劳务支付的现金下降了24.61%,从前面资产负债表的分析中知道,货币资金减少了20.57%,应付票据下跌了27.89%,应付账款上升了5.59%,而预付账款上升了96.81%,其金额为410.08百万元,应付账款为155.93百万元。可见购买商品、接受劳务支付的现金下降是经营活动产生的现金流量净额上升的原因;但是从经营活动的流入与流出的结构中,其中收到其他与经营活动有关的现金1,405.70百万元,支付其他与经营活动有关的现金1,580.67百万元,销售商品、提供劳务收到的现金1,649.26百万元,购买商品、接受劳务支付的现金840.71百万元;收到其他与经营活动有关的现金与销售商品、提供劳务收到的现金的金额也几乎持平;支付其他与经营活动有关的现金与购买商品、接受劳务支付的现金也不相上下;支付其他与经营活动有关的现金和收到其他与经营活动有关的现金这两个项目理论上不应该太大的,而现在很大。在经营活动创造现金充足的情况下,结合经营活动的实际情况及现金流量表,应关注公司的经营收入状况。 投资活动产生的现金流量净额下降了282.23%,其下降幅度是相当大的,其投资活动现金流入下降了68.48%,由于支付其他与投资活动有关的现金增加554.50%,且购建固定资产、无形资产和其他长期投资支付的现金49.86%,而投资活动产生的现金流出增长了40.07%,而投资性房地产、固定资产净额、无形资产分别下降了1%、3.11%、5%,收到其他与投资活动有关的现金增长了122.22%。可见公司购建固定资产、无形资产和其他长期资产支付的现金方面投资不是太足够,但从公司的附注可以知道,公司除了经营电子方面,还涉及到房地产经营;这说明要关注公司的投资方面,应加强调整公司的结构。 筹资活动产生的现金流量净额较上年下降了1789.09%,且金额为负270.14百万元,是由于筹资活动现金流入增长126.91%,小于筹资活动现金流出增长211.50%;筹资活动增长主要来源了取得贷款。取得借款收到的现金增长了125.76%,结合资产负债表分析,可以看出主要是短期借款由115百万元

相关文档
最新文档