水中二氧化碳浓度测定

水中二氧化碳浓度测定
水中二氧化碳浓度测定

水中游离二氧化碳含量的测定方法

一、原理

二氧化碳溶于水,一部分与H2O作用生成碳酸H2CO3(约占1%),大部分仍以溶解状态的CO2存于水中。“游离二氧化碳”是指水中的碳酸及溶解状态的CO2的总和。碳酸在溶液中又可分步电离为HCO3-及H2CO32-:

CO2+H2O→ⅠH2CO3→ⅡH++HCO3-→ⅢH++CO32- (箭头为可逆反应符号,Ⅰ、Ⅱ、Ⅲ为箭头上面的注释,)

当水中有游离二氧化碳存在时,主要存在平衡Ⅰ和Ⅱ,碳酸的第二步电离受到抑制。因而这时对水中可能存在的微量CO32- 忽略不计。

中和法测定水中游离二氧化碳,是用氢氧化钠标准溶液同二氧化碳反应当水中CO2全部生成时NaHCO3,溶液的PH为8.3,这时酚酞呈淡z工色,可以用作滴定终点的指示剂。

二、试剂

1、0.02N NaOH:在30毫升刚煮沸过的纯水中溶入25克固体氢氧化钠,稍冷后装入小塑料瓶密封保存,静置四、五天后,取1毫升澄清液放入1升容量瓶,再用无二氧化碳纯水稀释到刻度。摇匀后装入带胶塞的试剂瓶或聚乙烯塑料瓶保存,准确浓度需标定。

2、0.5%酚酞:溶0.50克酚酞于50毫升95%酒精中,溶完后再加纯水50毫升,滴加0.02N NaOH到微红色。

3、0。02000N邻苯二甲酸氢钾:称取已烘至恒重的邻苯二酸氢钾(105-110℃烘二小时)2.0423克。用无二氧化碳的纯水溶解,转入500毫升容量瓶中,用无二氧化碳纯水稀释到刻度。

4、氢氧化钠溶液的标定:用移液管吸取0.02000N邻苯二甲酸氢钾20.00毫升于锥形瓶中,加0.5%酚酞3滴,用待标定的氢氧化钠溶液滴定到淡红色并在一分钟内不消失为上。记录滴定消耗的氢氧化钠溶液的体积V(毫升)。按下式计算氢氧化钠的浓度:

N=0.02000*20.00/V

三、测定步骤

1、取样:用橡皮管虹吸法将水样导入100毫升具塞比色管中,导管要插入比色管底,缓缓注入,直到水样溢出100-150毫升后,取出导管,用吸管迅速吸出多余水样,使管中水样正好是100毫升。

2、初步测定:往比色管中加入0.5%酚酞6滴,用玻棒搅拌,水样如成红色,表明无游离二氧化碳。水样如无色,则表明有游离二氧化碳,立即用氢氧化钠标准溶液滴定,边滴边搅拌(搅拌要轻,以减少CO2逸出)。到出现淡红色并在2分钟内不消失为止。记录所消耗的氢氧化钠的毫升数(a)。这个数只作正式滴定时参考。

3、正式测定:按步骤1重取100毫升水样,加0.5%酚酞6滴,从滴定管一次迅速加入接近a毫升(不要超过)的氢氧化钠标准溶液,盖上盖,来回颠倒混合(不要剧烈摇动),管中溶液刚混合时呈红色,但应很快褪为无色。待红色褪去后,继续用氢氧化钠滴定,每次加1滴,盖上盖来回颠倒混合,直到溶液变淡红色并在2分钟内不消失为止。记录滴定消耗的体积V。

四、计算公式

CO2(毫克/升)=NV*44.01*1000/V样

其中:V样是滴定时取样体积(毫升);

NV是氢氧化钠标准溶液的当量浓度和滴定所消耗的体积(毫升);

44.01是CO2的分子量。

五、注意事项

1、在滴定过程中如出现浑浊,表明水中含有Fe3+、Al3+或含Ca2+、Mg2+太多。混浊的原因是有下述反应发生:

Fe3+ +3OH-→Fe(OH)3↓

Al3++3OH-→Al(OH)3↓

Ca2+ +HCO3-+OH-→Ca(OH)3↓+H2O

因反应均消耗碱,将使测定结果偏高。这时应另取水样,事先加入1毫升50%酒石酸钾钠溶液,再加酚酞按操作步骤滴定。

2、为了正确掌握滴定终点,可能配制一个终点标准颜色作对照。本身方法同碱度测定。使用时取10.0毫升,用水样稀释到100毫升,即可作为滴定终点的标准颜色。

3、中和法测CO2,实际是用强碱滴定弱酸,如果水样中有其它酸类物质,都将一并被测定,使结果偏高。较清洁的水,干扰物较少,测定结果可以用来计算CO2。否则,测定结果只能看作是总酸度,用毫克当量/升表示。

水中游离二氧化碳的测定

水中游离二氧化碳的测定 .1 方法一 固定法 1) 适用范围 本法适于测定氢离子交换器的出口水。 2) 测定原理 水样直接流入预先加有一定体积氢氧化钠标准溶液的取样瓶(带有100mL 刻度的200~250mL 的锥形瓶)中,水中游离CO 2被NaOH 转化为碳酸盐而固定,再用硫酸标准溶液中和,反滴定,并计算出水中游离二氧化碳的含量。其反应为: 加碱固定: 23 3232CO NaOH NaHCO NaHCO NaOH Na CO H O +→+→+ 加酸中和: 232424223242432222Na CO H SO Na SO H O Na CO H SO Na SO NaHCO +→++→+ 反滴定: 324232222NaHCO H SO Na CO CO H O +→++ 3)试剂 3.1) 氢氧化钠标准溶液C(NaOH)=0.02mol/L 3.2) 硫酸标准溶液C(1/2H 2SO 4)=0.02mol/L 3.3) 1%酚酞指示剂(乙醇溶液) 3.4) 0.1%甲基橙指示剂 4) 测定方法 4.1) 取样管上连接一根一端带有玻璃管的厚壁胶管。 4.2) 打开取样阀门,放水不少于5mL ,并保证其无气泡。 4.3) 在取样瓶中预先加入2滴1%酚酞指示剂和一定量的氢氧化钠标准溶液。氢氧化钠标准溶液的加入量应根据水样中的游离二氧化碳含量的大小而定。一般应使0.02mol/L 氢氧化钠标准溶液过量2~3mL 。 4.4) 将玻璃管轻轻插入取样瓶底部,待水样流到锥形瓶刻度时,迅速捏紧胶管,使水样不再流入,并立即拔出取样管。 4.5) 立即用0.02mol /L 硫酸标准溶液,中和滴定至溶液红色刚刚消失为止,消耗的硫酸标准溶液体积可不记。 4.6) 往上述水样中加入1~2滴0.1%甲基橙指示剂,继续用0.02mol/L 硫酸标准溶液定至水样由黄色转为橙色即为终点。记录消耗0.02mol/L 硫酸标准溶液的体积。

二氧化碳含量的测定方法

实验:水中亚硝酸盐的测定 学号: 姓名: 班级: 【实验方法】 偶合分光光度法 【实验原理】 在PH 以下,水中亚硝酸盐与对氨基苯磺酰胺重氮化,再与盐酸N-(1-萘)-乙二胺产生偶合反应,生成紫红色的偶氮染料,比色定量。 【实验试剂】 1、对氨基苯磺酰胺溶液(10g/L):称取5g对氨基苯磺酰胺(H2NC6H4SO3NH2),溶于350 mL盐 酸溶液中。用纯水稀释至500 mL。 2、盐酸N-(1-萘)-乙二胺溶液(1.0g/L):又名NEDD溶液,称取0.2g盐酸N-(1-萘基)- 乙二胺(C10H7NH2CHCH2·NH2·2HCl),溶于200 mL纯水中。储存于冰箱中。可稳定数周,如试剂颜色变深,应弃去重配。 3、亚硝酸盐氮标准使用溶液【ρ(NO2-N)=μg/mL】 【实验仪器】 1、分光光度计 2、50 mL具塞比色管: 30支 3、5 mL刻度吸管:10支 4、1mL比色皿:1个 【分析步骤】 1、取50mL水样置于比色管中。 2、取50mL比色管7支,分别加入亚硝酸盐氮标准液0mL、、、、、、,用纯水稀释至50mL。 3、向水样及标准色列管中分别加入1 mL对氨基苯磺酰胺溶液,摇匀后放置2min~8min。加 入 mL盐酸N-(1-萘基)-乙二胺溶液,立即混匀。 4、于540nm波长,用1cm比色皿,以纯水作参比,在10min至2h内,测定吸光度。

5、绘制标准曲线,从曲线上查出水样中亚硝酸盐氮的含量。 【数据分析】 ρ(NO2-N)=m/V 注:ρ(NO2-N)——水样中亚硝酸盐氮的质量浓度,单位为mg/L m——从标准曲线上查得样品管中亚硝酸盐氮的质量,单位为微克(μg)V——水样体积,单位为毫升(mL)

硫化物的测定 碘量法

硫化物的测定(碘量法) 试剂 ①淀粉指示液 称取1g可溶性淀粉用少量水调成糊状,再用刚煮沸水冲稀至100mL。 ②硫代硫酸钠标准溶液 C(Na2S2O3·5H2O)=mol/L。称取五水合硫代硫酸钠(Na2S2O3·5H2O)和无水碳酸钠(Na2CO3)溶于水中,转移到1000mL棕色容量瓶中,稀释至标线,摇匀。 ③重铬酸钾标准溶液 c(1/6K2Cr2O7)=L。称取105℃烘干2h的基准或优级纯重铬酸钾溶于水中,稀释至1000mL。 ④溶液标定 于250mL碘量瓶内,加入1g碘化钾及50mL水,加入重铬酸钾标准溶液,加入盐酸溶液5mL,密塞混匀,置暗处静置5min,用待标定的硫代硫酸钠溶液滴定至溶液呈淡黄色时,加入1mL淀粉指示液,继续滴定至蓝色刚好消失,记录标准溶液用量,同时作空白滴定。 硫代硫酸钠浓度c(mol/L)由下式求出: 式中:V1——滴定重铬酸钾标准溶液时硫代硫酸钠标准溶液用量,mL; V2——滴定空白溶液时硫代硫酸钠标准溶液用量,mL; ——重铬酸钾标准溶液的浓度,mol/L。 硫代硫酸钠标准滴定液:c(Na2S2O3)=L。移取100mL刚标定过的硫代硫酸钠标准溶液于1000mL棕色容量瓶中,用水稀释至标线,摇匀,使用时配制。

碘标准溶液:c(1/2 I2)=L。移取碘于500mL烧杯中,加入40g碘化钾,加适量水溶解后,转移至1000mL棕色容量瓶中,稀释至标线,摇匀。 仪器 恒温水浴,0~100℃。150mL或250mL碘量瓶。25mL或50mL 棕色滴定管。 测定步骤 ①取200mL水样各加入碘标准溶液,密塞混匀。在暗处放置10min,用L硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加入1mL 淀粉指示液,继续滴定至蓝色刚好消失为止。 ②以水代替试样,重复步骤①。 ③硫化物含量C (mg/L)按下式计算: 式中:V0——空白试验中,硫代硫酸钠标准溶液用量,mL; Vi——滴定收硫化物含量时,硫代硫酸钠标准溶液用量,mL; V——试样体积,mL; ——硫离子(1/2S2-)摩尔质量(g/mol); c——硫代硫酸钠标准溶液浓度(mol/L)。

Co2浓度监测

Co2浓度监测 产品简介 冷链设备无线远程温度监控系统是青岛正茂科技有限公司针对分布散、要求精度高的冷链设备工作时的内部温度及环境温度进行远程监控,而专门开发的一种监控管理系统。作为专业的工业级冷链设备集中管理系统,它可以更方便地集中统一管理和控制多区域的冷链设备的温度,实现无线采集,实时记录温度变化,自动生成温度曲线图,设备启停曲线,打印、数据输出,温度超限报警 我们的实力 公司拥有一批强大的高科技研发人才,致力于工业无线传感设备的开发和应用,公司向来以“服务为先,品质至上”为经营理念,依靠资深的专业技术力量,为客户提供一条龙的全方位配套服务。自创立至今,正茂科技一直致力于为客户提供顾问式管理解决方案和服务。现已和多家国内知名企业建立了合作伙伴联盟。公司冷链设备无线远程监控系统,已经成功应用于全国各型冷链工程的方方面面。 系统特点 ●无线采集:运用当今最流行的物联网技术,实现了温度传感设备的无线采集,通过远程电脑获取 数据,并通过监控软件进行分析、预警、自动打印。 ●组网传输:信号采用先进组网无线传输技术,克服距离障碍、信号无衰减,无串扰,抗干扰强。 ●远程访问:完全B/S架构,纯.NET开发技术,远程查看、操作控制,只需录入网址即可轻松实现。 ●实时监控:采用自动化无线监控功能,每天24小时实时监控,避免了人工监控可能出现的监控不 及时、不准确,设备长时间非正常运转等问题。 ●报警功能:超过预设值系统自动报警,报警方式主要有声音报警、手机短信报警、邮件报警、模 块不采集报警等。各监控点报警方式配置灵活,同一监测点可以分时段、分人员报警,便于交接 班管理。 ●测温准确、安装简单:测温范围在-200℃~125℃内可任设,测量精度达±0.1℃,测量温度准确 度±0.2℃,测温间隔时间在1秒以上任设。数据无线上传,无需单独穿墙布线,安装方便简单。 ●自动开关控制:远程自动控制制冷系统开关,远程调试制冷状态及参数。实现压缩机、冷风 机启停历史记录的查询及频率分析。 ●自动打印:定时自动打印功能,根据具体情况可以任意设定打印时间,及打印内容。

实验二氧化碳分子量的测定

实验二氧化碳分子量的 测定 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

实验二氧化碳相对分子量的测定 实验目的 1、学习气体相对密度法测定分子量的原理、加深理解理想气体状态方程式和阿佛加德罗定律。 2、掌握二氧化碳分子量的测定和计算方法 3、进一步练习使用启普气体发生器和电子天平称量的操作。 实验原理 1、阿佛加得罗定律:同温、同压、同体积的气体含有相同的分子数,即摩尔数相同。根据阿佛加德罗定 律,只要在同温、同压下,比较同体积的两种气体(设其中之一的分子量为巳知)的质量,即可测定气态 物质的分子量。 本实验是把同体积的二氧化碳气体与空气(其平均分子量为相比,此时有: m空气/ M空气 = m CO2 / M CO2, 即 M CO2= m CO2·M空气/ m空气其中, M空气= 2、理想气体状态方程 PV=n R T 3、制备二氧化碳 反应方程式: CaCO3+2HCl=CaCl2+CO2+H2O 因为大理石中含有硫,所以在气体发生过程中有硫化氢、酸雾、水汽产生。此时可通过硫酸铜溶液,碳酸氢钠溶液以及无水氯化钙除去硫化氢,酸雾和水汽。 实验内容 1、二氧化碳的制取、收集和净化 2、第一次称量 取一个洁净而干燥的锥形瓶,选一个合适的瓶塞塞入瓶口,并在塞子上做一记号,以固定塞子塞入瓶口的位置,在电子天平上称量质量m A:m A=m空气+m锥形瓶+m瓶塞 3、收集二氧化碳 在启普发生器中产生二氧化碳气体,经过净化、干燥后导入锥形瓶中。由于二氧化碳气体略重于空气,所以必须把导管伸入瓶底。收集满气体后,轻轻取出导气管,用塞子塞住瓶口(应与原来塞入瓶 口的位置相同)。 4、第二次称量: 在电子天平上称量二氧化碳、锥形瓶、瓶塞总质量m1: m1=m co2+m锥形瓶+m瓶塞 5、平行称量重复3、4步操作,得m2 m2=m co2+m锥形瓶+m瓶塞 6、将4、5的称量值即m1、m2求平均值m B。 m B= m co2平均+m锥形瓶+m瓶塞 7、在锥形瓶内装满水,塞好瓶塞,注意橡皮塞进入的高度与记号相齐。 8、第四次称量 在台秤上称取水+锥形瓶+瓶塞的质量为 m c: m c=m水+m锥形瓶+m瓶塞 数据处理 根据阿佛加得罗定律: m空气/ M空气 = m CO2 / M CO2, 即 M CO2=m CO2·M空气/ m空气 其中, M空气= 即 M CO2= .m CO2/ m空气 (1) 那么, m空气=?

硫化物检测方法.

硫化物 地下水(特别是温泉水)及生活污水,通常含有硫化物,其中一部分是在厌氧条件下,由于细菌的作用,使硫酸盐还原或由含硫有机物的分解而产生的。某些工矿企业,如焦化、造气、选矿、造纸、印染和制革等工业废水亦含有硫化物。 水中硫化物包括溶解性的H2S、HSˉ、S2ˉ,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及末电离的有机、无机类硫化物。硫化氢易从水中逸散于空气,产生臭味,且毒性很大,它可与人体内细胞色素、氧化酶及该类物质中的二硫键(—S—S—)作用,影响细胞氧化过程,造成细胞组织缺氧,危及人的生命。硫化氢除自身能腐蚀金属外,还可被污水中的生物氧化成硫酸进而腐蚀下水道等。因此,硫化物是水体污染的一项重要指标(清洁水中,硫化氢的嗅阀值为0.035μg/L)。 本书所列方法测定的硫化物是指水和废水中溶解性的无机硫化物和酸溶性金属硫化物。 1.方法的选择 测定上述硫化物的方法,通常有亚甲蓝比色法和碘量滴定法以及电极电位法。当水样中硫化物含量小于1mg/L时,采用对氨基二甲基苯胺光度法,样品中硫化物含量大于1mg/L时,采用碘量法。电极电位法具有较宽的测量范围,它可测定10-6--101mo1/L之间的硫化物。2.水样保存 由于硫离子很容易氧化,硫化氢易从水样中逸出。因此在采集时应

防止曝气,并加入一定量的乙酸锌溶液和适量氢氧化钠溶液,使呈碱性并生成硫化锌沉淀。通常1L水样中加入2mo1/L[1/2Zn(Ac)2)]的乙酸锌溶液2ml,硫化物含量高时,可酌情多加直至沉淀完全为止。水样充满瓶后立即密塞保存。 水样的预处理 由于还原性物质,例如硫代硫酸盐、亚硫酸盐和各种固体的、溶解的有机物都能与碘起反应,并能阻止亚甲蓝和硫离子的显色反应而干扰测定;悬浮物、水样色度等也对硫化物的测定产生干扰。若水样中存在上述这些干扰物时,必须根据不同情况,按下述方法进行水样的预处理。1.乙酸锌沉淀-过滤法 当水样中只含有少量硫代硫酸盐、亚硫酸盐等干扰物质时,可将现场采集并已固定的水样,用中速定量滤纸或玻璃纤维滤膜进行过滤,然后按含量高低选择适当方法,直接测定沉淀中的硫化物。 2.酸化—吹气法 若水样中存在悬浮物或浑浊度高、色度深时,可将现场采集固定后的水样加入一定量的磷酸,使水样中的硫化锌转变为硫化氢气体,利用载气将硫化氢吹出,用乙酸锌—乙酸钠溶液或2%氢氧化钠溶液吸收,再行测定。 3.过滤—酸化—吹气分离法 若水样污染严重,不仅含有不溶性物质及影响测定的还原性物质,

乙二醇溶液冰点测定实验报告

乙二醇溶液的冰点测定实验

一、实验目的:测定不同浓度的乙二醇溶液的冰点 二、仪器试剂:乙二醇(分析纯),高低温试验箱,电子天平,100ml容量 瓶,量筒 三、实验步骤: 1、配置溶液:用100ml量筒分别量取25ml,30ml,40ml,50ml,55ml的乙 二醇(分析纯),用100ml的容量瓶定容。配置成体积浓度分别为25%,30%,40%,50%,55%的乙二醇溶液。 2、用电子天平称量配置溶液的质量。结果如下表: 浓度(体积) 质量/g 25% 103.4270 30% 103.9378 40% 105.2428 50% 54.2414 55% 106.8160 3、通过查阅资料可知不同浓度的乙二醇溶液冰点如下表: 体积分数,%冰点/℃体积分数,%冰点/℃体积分数,%冰点/℃ 0.00.027.7-14.141.5-26.4 4.4-1.428.7-14.842.5-27.5 8.9-3.229.6-15.443.5-28.8 13.6-5.430.6-16.244.5-29.8 18.1-7.831.6-17.045.5-31.1 19.2-8.432.6-17.946.5-32.6 20.1-8.933.5-18.647.6-33.8 21.0-9.534.5-19.448.6-35.1 22.0-10.235.5-20.349.6-36.4 22.9-10.736.5-21.350.6-37.9 23.9-11.437.5-22.351.6-39.3 24.8-12.038.5-23.252.7-41.1 25.8-12.739.5-24.353.7-42.6 26.7-13.340.5-25.354.7-44.2 4、将几种溶液置于高低温试验箱中,以上表中的冰点为依据,分别在不同温 度下维持一段时间,观察现象。

空气中二氧化碳含量的测定实验

空气中二氧化碳含量的测定实验教案 化学一班申伟静郝冬丽冬冬徐亚辉 一,教学目标 知识目标: 1、了解测定二氧化碳含量的简单方法; 2、掌握二氧化碳的基本性质和生活中的应用; 3、通过老师讲解理解二氧化碳在整个环境中作用。 技能目标: 1、通过观看教师的演示实验提高对实验的观察、比较能力。 2、学习掌握如何使用针筒和使用玻璃仪器要注意事项; 3、感悟用分类、对比的学习方法来学习化学的重要作用。 情感目标: 1、通过实验探究来激发学生学习的积极性和主动性, 2、实验初步养成严谨的科学态度。 3、通过对课程的学习可以让同学认识到环境保护重要性。 二,教材分析 本节主要围绕探究测定空气中二氧化碳含量的实验,学习定量测定混合气体中某种气体含量的方法,认识空气中二氧化碳组成及表示方法,增进对二氧化碳的理解。增加学生爱护环境的意识。 三,学情分析 已知 1、学生通过前面的学习,已了解和初步掌握了关于二氧化碳的基本性质。 2、学生通过对实验前的预习掌握了空气中二氧化碳含量测定的基本原理和操作方法。 3、学生在学习中,知道了二氧化碳在我们生活中的作用和在生活中应用。 4、学生在生活中知道保护环境重要意义。 未知 1、学生在实际操作中会出现不规操作,对实验的结果造成影响。还可能损坏仪器。 2、学生在生活中虽然知道环保知识,但付诸实践上仍然不知如何做。 3、学生缺少实验中观察实验现象变化能力。在实验过程中都需要一直观察严谨的态度。 四,重点难点 重点:空气中二氧化碳含量测定的实验步骤 难点:实验的原理

五,教学过程

六,板书设计 一、教学目标 1、让同学们通过实验学会测量空气中二氧化碳的含量 2、通过教学讲解实验操作知道测量二氧化碳含量的原理二,实验原理 向滴有酚酞的氨水入CO2: CO2 + 2NH3H2O === (NH4)2CO3 CO2 + (NH4)2CO3 + H2O === 2NH4HCO3 pH==8 溶液红色无色 计算公式 N1x ==0.033%N2 三,实验步骤: 1, ,2,装药品:10ml带有酚酞的稀氨水溶液(已配好)3,抽气 4,排气,重复操作,记录次数N,记录在下表 N1是实验室抽气的次数 N2是空旷地点抽气的次数

ASTM D513-02 水中溶解二氧化碳总量和容量的测量方法(中文版)

水中溶解二氧化碳溶解量和总量的测量方法 1适用范围 1.1 本标准用于指导测定如二氧化碳(CO2)、碳酸、碳酸氢根离子、碳酸根离子在水中的总量和溶量: 测量范围章节范围 方法A(气体感应电极) 2-800 毫克/升8-15 方法B(CO2发生库仑滴定) 5-800毫克/升16-24 1.2 本标准也可用于对样品微粒中的碳酸盐进行二氧化碳含量测定 1.3方法A适用于各种天然水和盐水 1.4方法B适用于天然水、盐水以及在16.4节中所描述的各种工业水 1.5使用者有责任确保采用这些水体测试方法对未测试母体水样所得到的结果的有效性。 1.6几种标准测量方法1988年被废止,其历史信息见附录X1。 1.7该标准不支持所有安全考虑的表述,如果有的话,应该与它的使用联系起来。本标准的使用者有责任建立一套适当的安全和健康实施程序并可以在使用前预先做一些相应、局部的调整。 2参考文献 2.1 ASTM标准: D1066 蒸汽取样的实施标准 D1129 与水相关的专用术语 D1192 密闭管蒸汽取样与水取样设备指南 D1193 试剂用水规格说明 D1293 水PH的测定方法 D2777可行的测试标准D19对水的测量的精确度和偏差的判断实施标准 D3370 密闭管水取样的实施标准 D5847 采用标准方法进行水质分析,书面质量控制规格实施标准 E200 化学分析中试剂溶液的配制、贮存的标准化及实施标准 3 专用术语 3.1 注释参照专用术语D1129,对这些测量方法中所用的术语进行定义

4 用途及重要性 4.1 二氧化碳是动植物呼吸最主要的产物,有机物质和部分矿物质分解也产生二氧化碳,大气中二氧化碳的平均含量约为0.04体积%,除去在异常的有机物质和矿物质分解区的地方外,地表水二氧化碳的含量通常都低于10毫克/升,但是地下水,尤其是深层地下水二氧化碳的含量有可能达到几百毫克/升。 4.2当水中溶解有二氧化碳时,它会对水处理系统产生很强的腐蚀作用,尤其在蒸汽冷凝系统这特别是一项麻烦,水处理系统中部分CO2的溢出,将破坏碳酸盐的溶解平衡,从而导致局部表面产生方解石覆盖物。热水器就是一个很好的例子写照,由于存在有微弱的侵蚀和覆盖平衡,水处理系统中一定要重视控制好CO2及其相类似的气体含量。城市供应中蒸汽冷凝的最后阶段进行水软化和胺中和时,采用再碳酸化也就是这一目的。 5 试剂的纯度 5.1在所有测试中使用标准化学试剂。除非有别的说明,所有的试剂都应遵守美国化学委员会 分析试剂委员会的规范,这些规范可以从中得到5别的等级的试剂可使用,但首先必须弄清楚试 剂必须具有足够的纯度才允许使用,从而不会降低测试精度。 5.2除非有别的说明,参考的水应当被认为是平均试剂水,遵守D1193规程,类型Ⅰ。另外在其它的测定方法中需要的去CO2水,可以参考规程E200中的第8.2章。 6注意事项 6.1注意――二氧化碳气体在样品运输和贮存过程中很容易从溶液中逃溢,由于碳酸钙微弱的分解,导致溶液中温度和压力发生改变,所以样品中CO2浓度增加是可能的。 7 取样 7.1 根据规程D1066、D1192和规程D3370上说明进行取样。 7.2 如果过滤样品微粒中含有碳酸盐,那么仅测量CO2溶量。当从试验瓶中取出部分含有微粒的 样品时,试剂瓶应该先摇晃或者让微粒均匀分布来保证所取的样品有代表性。取样后,样品中的微粒形态随温度、pH等变化而改变。这些微粒再样品测试时必须包括在内。样品过滤均质化过程中需小心防止CO2损失.如果不是要求除掉潜在的干扰微粒,样品不要过滤。 7.3用一种坚固的、抗化学作用的玻璃瓶子来取样。 7.4 将取样瓶完全灌满,使其在瓶盖下不留任何空间,将样品在低于取样温度下存放,直至检测。 测试方法A—气体感应电极法

离子色谱测定乙二醇氯离子含量

离子色谱测定一、二、三乙二醇中无机氯的含量 2012-11-13 建立了一种测定一、二、三乙二醇中无机氯含量的离子色谱方法。将样品用二次去离子水以1:1的比例进行稀释,以3.6mmol/L的碳酸钠作为淋洗液,经阴离子交换色谱柱进行分离,采用电导检测器测定氯离子。结果表明:氯离子含量在0.02~0.4mg/kg范围内,方法的线性关系良好(相关系数为0.9999),加标回收率在97.0%~102.8%之间,方法的日内相对标准偏差小于2%,日间相对标准偏差小于3%。方法简便、稳定性好,可实现对一、二、三乙二醇中无机氯含量的快速和准确测定。 关键词:离子色谱法;一、二、三乙二醇;氯离子 乙二醇(ethyleneglycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG,乙二醇存在三个种类:乙二醇(MEG)、二乙二醇(DEG)和三乙二醇(TEG)。乙二醇用于配制发动机的抗冻剂,还用于工业冷量的输送,一般称呼为载冷剂。抗冻剂和载冷剂中过量的氯离子存在会对设备产生腐蚀而使之发生渗漏,影响发动机及工业设备的寿命,因此有必要对乙二醇中的氯离子含量进行测定,实现对乙二醇进行质量控制。 1实验部分 1.1仪器与试剂 离子色谱仪;超纯水机; 移液管1mL和2mL,一次性1mL注射器,50mL容量瓶,100mL容量瓶。 Na2CO3基准试剂,,NaOH优级纯,NaCl基准试剂。 1.2色谱条件 阴离子分析柱(4×250mm)及其WY-AG-1保护柱(4×50mm),电导检测器,阴离子抑制器,抑制电流40mA,淋洗液:3.6mmol/LNa2CO3溶液,流速0.8mL/min,样品环100μL,柱温45℃,检测

二氧化碳测定方法

蓝藻白天光合作用产氧量,二氧化碳消耗量和夜晚呼吸作用 二氧化碳产量探究 蓝藻取样 时间:2011年 地点:昆明滇池 取样量: 对取回样液进行简单的预处理,以去除样液中除蓝藻外的固体杂质!一.蓝藻光合作用产氧量的测定实验 1.实验目的 (1)了解测定蓝藻光合作用的产氧量的方法 (2)通过实验测定蓝藻光合作用的产氧量 2.实验方法及原理 把长约2cm的一束细铜丝装进一根长约5~6cm的普通玻璃管中部,两端用两节橡皮管分别跟两只型号相同的注射器(做空白实验,即对照实验时,其中一只注射器A留出50mL 空气,另一只注射器B不留空气;测定蓝藻光合作用的产氧量时,其中一只注射器A 吸入培养蓝藻器皿中上方的空气50mL,另一只注射器B不留空气)连接起来,使之成为一个密闭系统(如图)。推动注射器活塞,空气可以通过装铜丝的玻璃管在两只注射器间来回传送,不会泄漏。 给装有细铜丝的玻璃管加热,待铜丝的温度升高以后,缓缓地交替推动两只注射器的活塞,使空气在铜丝上来回流动。经过5~6次以后,空气里的氧气可以全部与铜结合。 停止加热,冷至室温,读出残留的注射器里气体的体积数。减少的体积(空白实验组的为△1,实验组的为△2)即为50mL“空气”中所含氧气的体积。由此可以推算蓝藻光合作用的产氧量。 注意:(1)实验装置气密性要好 (2)做该实验时,要注意注射器不宜太小,太小体积变化不大,现象不明显,不易读数。

(3)该实验假设蓝藻进行光合作用后所取的空气中原有氧气体量不变 3.实验药品及器材 处理好的蓝藻样液蓝藻生长器皿细铜丝玻璃管注射器酒精灯橡皮管 4.实验步骤 (1)取完全相同A 、B 、C蓝藻试样分别置于蓝藻生长器皿中,然后封口,使其在室内条件下进行光合作用和呼吸作用(A用于测定蓝藻光合作用中的二氧化碳消耗量;B用于测定蓝藻光合作用中的产氧量,所以A、B应置于白天有光照环境中;C用于测定蓝藻夜晚呼吸作用的二氧化碳释放量,所以C应放置于夜晚无光照环境中。B、C用于“实验二”)注意:蓝藻生长装置应密闭且留有一定的气体空间 (2)空白实验的完成 ①把长约2cm的一束细铜丝装进一根长约5~6cm的普通玻璃管中部,两端用两节橡皮管分别跟两只型号相同的注射器(其中一只注射器留出50mL空气,另一只注射器不留空气)连接起来,使之成为一个密闭系统(如图)。推动注射器活塞,空气可以通过装铜丝的玻璃管在两只注射器间来回传送,不会泄漏; ②给装有细铜丝的玻璃管加热; ③待铜丝的温度升高以后,缓缓地交替推动两只注射器的活塞,使空气在铜丝上来回流动。经过5~6次以后,空气里的氧气可以全部与铜结合; ④停止加热,冷至室温,读出残留的注射器里气体的体积数V1; (3)“蓝藻空气实验”的完成,其步骤与(2)相同,只需将(2)中的注入“空气”改为A 中的“蓝藻空气即可”。读出残留的注射器里气体的体积数为V2; (4)数据处理 取样50mL气体中蓝藻光合作用放出的氧气量为:V=(50- V2)-(50- V1) = V1- V2 (该实验假设蓝藻进行光合作用后所取的空气中原有氧气体量不变) 假设室内空气均处于标准状态下,即1mol任何气体体积为22.4L,则实验取样50mL气体中蓝藻光合作用放出的氧气质量m=(V∕22.4)×32g

水质硫化物的测定碘量法

水质硫化物的测定碘量法 Water quality-Determination of sulfides lodometric method HJ/T 60-2000 批准日期2000-12-07 实施日期2000-12-07 1 主题内容与适用范围 主题内容 本标准规定了测定水和废水中硫化物的碘量法。本标准规定的硫化物是指水和废水中溶解性的无机硫化物和酸溶性金属硫化物的总称。 适用范围 本标准适用于测定水和废水中的硫化物。 试样体积200mL,用L硫代硫酸钠溶液滴定时,本方法适用于含硫化物在L以上的水和废水测定。 共存物的干扰与消除:试样中含有硫代硫酸盐、亚硫酸盐等能与碘反应的还原性物质产生正干扰,悬浮物、色度、法度及部分重金属离子也干扰测定,硫化物含量为L时,样品中干扰物的 最高允许含量分别为S 2O 3 2-30mg/L、NO 2 -2mg/L、SCN-80mg/L、Cu2+2mg/L、Pb2+1mg/L和Hg2+1mg/L; 经酸化-吹气-吸收预处理后,悬浮物、色度、浊度不干扰测定,但SO 3 2-分离不完全,会产生干 扰。采用硫化锌沉淀过滤分离SO 32-,可有效消除30mg/L SO 3 2-的干扰。 2、原理 在酸性条件下,硫化物与过量的碘作用,剩余的碘用硫代硫酸钠滴定。由硫代硫酸钠溶液所消耗的量,间接求出硫化物的含量。 3、试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。盐酸(HCI):p=mL。 磷酸(H 3PO 4 ):p=mL。 乙酸(CH 3 COOH):p=mL。 载气:高纯氮,纯度不低于%。 盐酸溶液:1:1,用盐酸()配制。 磷酸溶液:1:1,用磷酸)配制。 乙酸溶液:1:1,用乙酸)配制。 氢氧化钠溶液:c(NaOH)=1mol/L。将40g氢氧化钠(NaOH)溶于500mL水中,冷至室温,稀释至1000mL。 乙酸锌溶液:c[Zn(CH 3COO) 2 ]=1mol/L。称取220g乙酸锌[Zn(CH 3 COO) 2 ,溶于水并稀释至 1000mL。

二氧化碳相对分子质量的测定

实验4 二氧化碳相对分子质量的测定 1.实验目的 (1)了解气体密度法测定气体相对分子质量的原理的方法; (2)了解气体的净化和干燥的原理和方法; (3)熟练掌握启普发生器的使用; (4)进一步掌握天平的使用。 2.实验原理 根据阿伏伽德罗定律,同温同压下,同体积的任何气体含有相同数目的分子。因此,在同温同压下,同体积的两种气体的质量之比等于它们的相对分子质量之比,即 M1/M2=W1/W2=d 其中:M1和W1代表第一种气体的相对分子质量和质量;M2和W2代表第二种气体的相对分子质量和质量;d(=W1/W2) 叫做第一种气体对第二种的相对密度。 本实验是把同体积的二氧化碳气体与空气(其平均相对分子质量为29.0)相比。这样二氧化碳的相对分子质量可按下式计算: M co2=Wco2×M空气/W空气=d空气×29.0 式中一定体积(V)的二氧化碳气体质量Wco2可直接从天平上称出。根据实验时的大气压(p)和温度(t),利用理想气体状态方程式,可计算出同体积的空气的质量: W空气=pV×29.0/RT 这样就求得了二氧化碳气体对空气的相对密度,从而测定二氧化碳气体的相对分子质量。 3.实验仪器与试剂 启普发生器,洗气瓶(2只),250mL锥形瓶,台秤,天平,温度计,气压计,橡皮管,橡皮塞等。 HCl (工业用,6mol·L-1),H2SO4 (工业用),饱和NaHCO3溶液,无水CaCl2,大理石等。 4.实验步骤 按图连接好二氧化碳气体的发生和净化装置。

图6.3.1 二氧化碳的发生和净化装置 1—大理石+稀盐酸;2—饱和NaHCO3;3—浓H2SO4; 4—无水CaCl2;5—收集器 取一个洁净而干燥的锥形瓶,选一个合适的橡皮塞塞入瓶口,在塞子上作一个记号,以固定塞子塞入瓶口的位置。在天平上称出(空气+瓶+塞子)的质量。 从启普发生器产生的二氧化碳气体,通过饱和NaHCO3溶液、浓硫酸、无水氯化钙,经过净化和干燥后,导入锥形瓶内。因为二氧化碳气体的相对密度大于空气,所以必须把导气管插入瓶底,才能把瓶内的空气赶尽。2~3分钟后,用燃着的火柴在瓶口检查CO2已充满后,再慢慢取出导气管用塞子塞住瓶口(应注意塞子是否在原来塞入瓶口的位置上)。在天平上称出(二氧化碳气体+瓶+塞子)的质量,重复通入二氧化碳气体和称量的操作,直到前后两次(二氧化碳气体+瓶+塞子)的质量相符为止(两次质量相差不超过1~2mg)。这样做是为了保证瓶内的空气已完全被排出并充满了二氧化碳气体。 最后在瓶内装满水,塞好塞子(注意塞子的位置),在台秤上称重,精确至0.1g。记下室温和大气压。 5.数据记录和结果处理 室温t(℃)____,T(K) ____ 气压p(Pa) ____ (空气+瓶+塞子)的质量A ____ g (二氧化碳气体+瓶+塞子)的质量B____g (水+瓶+塞子)的质量C____g 瓶的容积V=(C-A)/1.00____ ml ____ g 瓶内空气的质量W 空气 ____ g 瓶和塞子的质量D=A-W 空气

二氧化碳浓度监测装置

二氧化碳浓度监测装置 二氧化碳浓度监测装置(SK-600-CO2)是一款采用模块化设计、具有智能化传感器检测技术、整体隔爆(d)结构、固定安装方式的有毒气体检测仪。标准配置为带点阵LCD液晶显示、三线制4~20mA模拟和RS485数字信号输出,可选配置为可编程开关量输出等模块,根据用户需求提供定制化产品,还支持输出信号微调等功能,方便系统组网及维护。可检测CO2、CO2S、CO2、CO2、CO2、SCO2、CO2、CO2、NCO2、CO2、ClCO2、CO2等多种有毒有害气体,详情可咨询东日瀛能。同时我司二氧化碳CO2传感器销往:河北省、山东省、辽宁省、黑龙江省、吉林省、甘肃省、青海省、河南省、江苏省、湖北省、湖南省、江西省、浙江省、广东省等全国各地。 (注意:二氧化碳CO2传感器(SK-600-CO2)在不同的应用环境或行业有不同的别名,如二氧化碳CO2检测仪二氧化碳CO2变送器二氧化碳CO2探测器二氧化碳CO2探头便携式二氧化碳CO2探 头二氧化碳CO2检测装置) 特点 ■智能化EC传感器,采用本质安全技术,可支持多气体、多量程检测,并可根据用户需求提供定制化产品,无需工具可实现传感器互换、离线标定和零点自校准 ■智能的温度和零点补偿算法,使仪器具有更加优良的性能具有很好的选择性,避免了其他气体对被检测气体的干扰 ■多种信号输出,既可方便接入PLC/DCS等工控系统,也可以作为单机控制使用 ■超大点阵LCD液晶显示,支持中英文界面

■免开盖,红外遥控器操作,单人可维护 ■本地报警指示,一体化声光报警器(选配) ■仪器具有超量程、反极性保护,能避免人为操作不当引起的危险 ■丰富的电气接口,可供用户选择 ■通过ATCO2、UL、CSA等认证,具有国际化高端品质 (同时对于不同行业的针对性应用有:二氧化碳CO2报警装置高精度二氧化碳浓度监测装置二氧化碳CO2检测模块二氧化碳CO2传感器RS485信号输出二氧化碳CO2报警器4-20mA信号输出二氧化碳C O2报警器固定式带液晶显示型二氧化碳CO2检测仪带显示带声光报警器固定式二氧化碳CO2检测仪等产品模式) 东日瀛能科技二氧化碳CO2探头厂家二氧化碳CO2探头价格详情可咨询东日瀛能SK-600-CO2 技术参数: ■产品名称:二氧化碳CO2报警器SK-600-CO2 ■检测气体:二氧化碳CO2 ■检测原理:电化学原理、催化燃烧原理 ■检测范围:0-10ppm、0-20ppm、0-50ppm、0-200ppm、0-5000pp等任意可选 ■分辨率:0.1ppm、0.1ppm、0.2ppm、1ppm、25ppm等可选 ■检测方式:扩散式、泵吸式可选 ■显示方式:液晶显示 ■输出信号:用户可根据实际要求而定,最远可传输2000米(单芯1mm2屏蔽电缆) ①两线制4-20mA电流信号输出(三线制可选) ②RS-485数字信号输出,配合RS232转接卡可在电脑上存储数据(选配) ③2组继电器输出:无源触电容量220VAC3A,24VDC3A(选配) ④报警信号输出:现场声光报警,报警声音:<90分贝(选配) ■检测精度:≤±2%(F.S) ■重复性:≤±1% ■零点漂移:≤±1%(F.S/年) ■报警方式:声、光报警

水中硫化物的测定

实验一 水中硫化物的测定 一、实验目的 1.掌握用碘量法测定水中硫化物含量的原理和基本操作; 2.分析影响实验结果准确度的因素; 3.了解硫化物测定的其它方法。 二、实验原理 水中的硫化物包括溶解性的H 2S 、HS -、S 2-,存在于悬浮物中的可溶性硫化物、酸可溶性金属硫化物以及未电离的有机、无机类硫化物。硫化氢易从水中逸散于空气,产生臭味,且毒性很大,它可与人体内的细胞色素、氧化酶及该类物质中的二硫键(—S —S —)作用,影响细胞氧化过程,造成细胞组织缺氧,危及生命。因此硫化物是水体污染的一项重要指标。在厌氧工艺中,一般采用碘量法测硫化物。测定水中硫化物的方法还有对氨基二甲基苯胺分光光度法、电位滴定法、离子色谱法、极谱法、库仑滴定法、比浊法等。 碘量法是环境监测中常用的一种氧化还原滴定法。在硫化物的测定中,碘量法是使硫化物在酸性条件下与过量的碘作用,再用硫代硫酸钠标准溶液滴定反应剩余的碘,直到按化学计量定量反应完全为止,然后根据硫代硫酸钠的浓度和用量计量硫化物的含量,滴定时以淀粉指示剂反应为终点。 222S I I S --+→+(碘和硫化物摩尔比是1:1) 223224622N a S O I N a S O N aI +→+(碘和硫代硫酸钠摩尔比是1:2) 根据上述两个反应式,计算水样中硫化物浓度。 三、实验方法 本方法适用于含硫化物1mg/L 以上的水和污水的测定。当试样体积为200mL ,用0.01mol/L 硫代硫酸钠溶液滴定时,可用于含硫化物0.40mg/L 以上的水和污水的测定。 1、仪器和设备 烧杯、移液管、锥形瓶、滴定管、容量瓶。 2、试剂 纯水、盐酸、K 2Cr 2O 7、淀粉、碘化钾、碘、硫代硫酸钠。 3、溶液的配制 (1) 盐酸溶液:1:1,用盐酸ρ=1.19g/mL 配置。 (2) 重铬酸钾标准溶液:C(1/6K 2Cr 2O 7)=0.1000 mol/L 。称取在105℃烘干2h

二氧化碳相对分子质量及测定

实验四二氧化碳相对分子质量的测定 一、实验目的 1.学习气体相对密度法测定分子量的原理和方法,加深理解理想气体状态方程式和阿佛加德罗定律;2.学会大气压力计的使用; 3.巩固分析天平的使用; 4.了解启普发生器的构造和原理,掌握其使用方法,熟悉洗涤、干燥气体的装置。 二、实验原理 阿佛加德罗定律:同T、P,同V的气体物质的量相等 理想气体状态方程式:PV= nRT = m RT/M 对同T、P,同V的空气(air)和二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)的质量和相对分子质量 则, [教学重点] 分析天平的使用 启普发生器的使用 分子量的测定和计算 [教学难点] 分析天平的称量操作 启普发生器的使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计的使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中的水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片的反光,可以看到水银面与象牙针的间隙,再调节螺旋至间隙恰好消失为止; 3.调节游标。转动控制游标的螺旋,使游标的底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上的刻度单位为hPa。整数部分的读法:先看游标的零线在刻度标尺上的位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数。例如,游标零线与标尺上1160相吻合,气压读数即为1161.0 hPa,如果游标零线在1161与1162之间,则气压计读数的整数部分即为1161,再由游标确定小数部分。小数部分的读法:从游标上找出一根与标尺上某一刻度相吻合的刻度线,此游标读数即为小数部分,如1161.5 hPa; 5.读数后转动气压计底部的调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度和纬度等项校正。 二、电子天平的使用 1.电子天平的使用精确度0.1 mg (最大载荷200 g) (1)使用前观察天平仪是否水平,如不水平,用水平脚调整水平;

二氧化碳CO2浓度探测器

二氧化碳CO2浓度探测器 二氧化碳CO2浓度探测器特点: ★是款内置微型气体泵的安全便携装置 ★整机体积小,重量轻,防水,防爆,防震设计. ★高精度,高分辨率,响应迅速快. ★采用大容量可充电锂电池,可长时间连续工作. ★数字LCD背光显示,声光、振动报警功能. ★上、下限报警值可任意设定,自带零点和目标点校准功能,内置 温度补偿,维护方便. ★宽量程,最大数值可显示到50000ppm、100.00%Vol、100%LEL. ★数据恢复功能,免去误操作引起的后顾之忧. ★显示值放大倍数可以设置,重启恢复正常. ★外壳采用特殊材质及工艺,不易磨损,易清洁,长时间使用光亮如新. 二氧化碳CO2浓度探测器产品特性: ★是款内置微型气体泵的高精度的手式安全便携装备; ★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年; ★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好; ★检测现场具有现场声光报警功能,气体浓度超标即时报警,是危险现场作业的安全保障;★现场带背光大屏幕LCD显示,直观显示气体浓度/类型/单位/工作状态等; ★全量程范围温度数字自动跟踪补偿,保证测量准确性; ★半导体纳米工艺超低功耗32位微处量器;

★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能;★全中文/英文操作菜单,简单实用,带温度补偿功能; ★防高浓度气体冲击的自动保护功能; 二氧化碳CO2浓度探测器技术参数:

二氧化碳CO2浓度探测器简单介绍: 二氧化碳CO2浓度探测器报警器高精度、高分辨率,响应快速,超大容量锂电充电电池,采样距离远,LCD 背光显示,声光报警功能,上、下限报警值可任意设定,可进行零点和任意目标点校准,操作简单,具 有误操作数据恢复功能. 二氧化碳CO2浓度探测器应用场所: 医药科研、学校科研、制药生产车间、烟草公司、环境检测、楼宇建设、消防报警、污水处理、石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、锅炉房、加气站、垃圾处理厂、隧道施工、输油管道、航空航天、工业气体过程控制、室内空气质量检测、地下燃气管道检修、危险场所安全防护、军用设备检测等。

空气中二氧化碳含量的测定实验

空气中二氧化碳含量的测定实验 空气中二氧化碳含量的测定实验教案 化学一班申伟静郝冬丽张冬冬徐亚辉一,教学目标 知识目标: 1、了解测定二氧化碳含量的简单方法; 2、掌握二氧化碳的基本性质和生活中的应用; 3、通过老师讲解理解二氧化碳在整个环境中作用。 技能目标: 1、通过观看教师的演示实验提高对实验的观察、比较能力。 2、学习掌握如何使用针筒和使用玻璃仪器要注意事项; 3、感悟用分类、对比的学习方法来学习化学的重要作用。 情感目标: 1、通过实验探究来激发学生学习的积极性和主动性, 2、实验初步养成严谨求实的科学态度。 3、通过对课程的学习可以让同学认识到环境保护重要性。 二,教材分析 本节主要围绕探究测定空气中二氧化碳含量的实验,学习定量测定混合气体中某种气体含量的方法,认识空气中二氧化碳组成及表示方法,增进对二氧化碳的理解。增加学生爱护环境的意识。 三,学情分析 已知 1、学生通过前面的学习,已了解和初步掌握了关于二氧化碳的基本性质。 2、学生通过对实验前的预习掌握了空气中二氧化碳含量测定的基本原理和操作方

法。 3、学生在学习中,知道了二氧化碳在我们生活中的作用和在生活中应用。 4、学生在生活中知道保护环境重要意义。 未知 1、学生在实际操作中会出现不规范操作,对实验的结果造成影响。还可能损坏仪器。 2、学生在生活中虽然知道环保知识,但付诸实践上仍然不知如何做。 3、学生缺少实验中观察实验现象变化能力。在实验过程中都需要一直观察严谨的态度。四,重点难点 重点:空气中二氧化碳含量测定的实验步骤 难点:实验的原理 五,教学过程 实验教学过程 实验环 节教师活动预想学生活动设计意图 【导入新课】:前一段时间日本的核辐射 引起了一场轩然大波,中国的一些城市也 依次检测到碘-131微量辐射。核安全检测空局利用的是手势核素检测仪检测到的微量创设情境,激发兴趣, 元素。同学们,设想一下如果让我们来测引入新课。 碘-131这种微量元素含量大家怎么测呢,让学生通过自主、合 气这个问题放在实验室来进行试验是不是与作学习,了解探究实 以往的实验不一样了呢,这个实验我们提验步骤、方法和原理, 出的是一个问题。那是因为今天我们的实齐声回答:是培养学生阅读和解决中验即将进入一个新的转折点——探究式实问题的能力。 验

相关文档
最新文档