2018北师大版八上5.2《平面直角坐标系》说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系(第一课时)》的说课
常州市武进区湖塘实验初中张伟俊
一、教材分析
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。
二、教学目标
1、使学生了解平面直角坐标系的产生过程;
2、会正确画出平面直角坐标系;
3、使学生能在平面直角坐标系中,由点求坐标,由坐标描点;
4、初步培养学生把实际问题抽象成数学模型的能力;
5、让学生体会数学来源于实践,反过来又指导实践进一步发展的辩证唯物主义思想。
1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育.
三、重点难点
1、教学重点
能在平面直角坐标系中,由点求坐标,由坐标描点。
2、教学难点
⑴平面直角坐标系产生的过程及其必要性;
⑵教材中概念多,较为琐碎。如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
四、教法学法
本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
教无定法,贵在得法。本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;
对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和讲练相结合的方法。
教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。教学时先让学生观察数轴上(一维)的点与实数之间的一一对应关系,在生活中确定平面内(二维)的点的位置的方法,再与数轴上的点加以类比,从而引出平面内的点的表示方法,同时在学习中体会数形结合的思想。
为了提高课堂教学的效益,本节课将借助于多媒体课件与实物投影仪进行教学。
五、教学过程
⑴激发冲突、提出问题
在生活中,当去玻璃店配一块窗户玻璃时,营业员会对你提出什么问题呢?玻璃的长宽尺寸!这个过程用数学语言说,就是一个“量化”的过程。生活中,需要量化的问题有很多,路程的远近、运动的快慢、信号的强弱、地震强度的大小、导弹卫星运行轨迹的跟踪测算等,都需要用一定的数据去精确地“量化”。现在说“数字化世界”,似乎印证了两千年前古希腊毕达哥拉斯学派“万物皆数”的信条。除了大小、快慢、导弹卫星运行轨迹的跟踪测算等需要量化外,还有一种比较常见但又比较困难的问题──位置的量化!如为了说明一条公路上加油站的所在位置,一般来说,常是先在公路上选择一个彼此熟悉的位置作为事先的参照物(约定),然后只要说明加油站离开这个参照物的方向与距离,这实际上是数学中“数轴”的生活模型。从这个例子中,我们可以看出,要将一个物体的位置量化,必须经过两个过程:⑴事先作出约定(选参照物)⑵给出相关数据。由于公路可以看成是一条直线(一维问题),量化时,数的正负符号可以用来表示方向,数的绝对值大小用来表示距离,因此加油站的位置只要一个数据就可以“量化”确定(一维)。但生活中还有更广泛的情况,比如说朋友家住某个城市,第一次去他家玩时,势必要先了解他家住的位置(几村、几幢、几单元、几室),这实际上也是一个“位置量化”的问题。把这个问题抽象成一个数学问题,就是“如何确定平面(二维)上一个点的位置?”这个问题如何解决呢?
苏联著名数学家辛钦曾有这样一段话:“我想尽力做到在引进新概念、新理论时,学生先有准备,能尽可能地看到这些新概念、新理论的引进是很自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化地理解并掌握所学到的东西。”
这段话很精辟道出了引入新知识的一个重要原则──由自然到必然,就是说,在引进概念前,要让学生感到这是很自然的而且是不可避免的。
评注:说明知识的产生过程,让学生领悟知识产生的必要性,体会数学源于生活的道理。
⑵探索研究、构建模式
类似上面的过程,势必要先给出一些约定(选参照物),再给出一些数据,才有可能将这个点的位置确定。比如地球上一个点位置,就是通过这个点的经纬度两个数据确定的。
下面就请同学们思考:你事先作出什么约定,再给出什么样的数据,就可以确定平面上一个点的位置?注意:不同的学生事先作出的约定可能不同,即使约定相同,给出的数据方案也未必相同,那不要紧,只要最后确实能够达到“确定平面上一个点的位置”效果就行,教师忌急于抛出自己需要的方案,同时要对回答正确的学生大加鼓励与表扬!这里是体现各位学生创造性才能、培养学生思维发散性的极好素材。在思考过程中,要求同学们不要看书,提出的方案可以与书本上不相同,看看谁提出的方案既切实可行,又新颖简便?学生提出的方案可能有:直角坐标系、斜坐标系、极坐标系等。直角坐标系学生容易想到,对于极坐标系,由于学生有方向角知识的基础,所以也有可能想到,而斜坐标系对学生来说不容易想到,虽然笛卡尔当年首先创立的就是斜坐标系。
在经过师生一系列的讨论后,引出“平面直角坐标系”,揭示课题与学习目标。然后指导学生阅读教材,消化琐碎的概念,再结合多媒体讲解新课。
评注:不拘泥于课本中已有知识,重视培养学生创新意识。
⑶介绍历史,激发兴趣
早在十七世纪,法国数学家笛卡尔就发现不同的几何(主要指圆锥曲线)问题解决有不同的特殊性,因此人们不得不寻找解决每一个问题的特殊方法,这显得比较困难。因此笛卡尔设想将几何问题数量化,从而使其变成一个代数问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的,由此诞生了一门新的数学分支──解析几何。这好像在被一条大河隔开的代数和几何的两岸,架起了一座桥梁,把“数”与“形”统一起来,引起了数学的深刻革命,恩格斯称解析几何的诞生是数学发展的一个转折点!
笛卡尔的这种思想,尤其对于快速计算机出现的今天,更具有深远意义,事实上,中国数学家吴文俊、张景中等人对“机器证明几何问题”做了许多开创性的研究工作,取得令人瞩目、在国际领先的成果。
大凡伟大发现的背后似乎都带有一个动人的传说,如牛顿的“苹果落地”、阿基米德的“浴室顿悟”等故事,这里也可以适当提及关于笛卡尔观察“蜘蛛结网”导致发现坐标系的传说,激发学生热爱科学、投身科学与学习数学的兴趣。
评注:适当介绍一些数学史,可以激发学生的学习兴趣。教材是线