绝对值知识总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.4 绝对值
第四课时
三维目标
一、知识与技能
(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.
(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.
二、过程与方法
通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.
三、情感态度与价值观
培养学生积极参与探索活动,体会数形结合的方法.
教学重、难点与关键
1.重点:正确理解绝对值的概念,能求一个数的绝对值.
2.难点:正确理解绝对值的几何意义和代数意义.
3.关键:借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.
四、教学过程
一、复习提问,新课引入
1.什么叫互为相反数?
2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?
五、新授
在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.
1.观察课本第11页图1.2-5,回答:
(1)两辆汽车行驶的路线相同吗?
(2)它们行驶路程的远近相同吗?
• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.
课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,
•我们就把这个距离10叫做数-10、10的绝对值.
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里的数a可以是正数、负数和0.
例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.
2.试一试:
(1)│+2│=______,│1
5
│=_____,│+10.6│=________.
(2)│0│=_______.
(3)│-12│=_______,│-20.8│=_______,│-321
7
│=_______.
3.你能从上面解答中发现什么规律吗?
学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?
从而得出绝对值的代数意义:
(1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数.
我们用a表示任意一个有理数,上述式子可以表示为:
①当a是正数时,│a│=_______;
②当a是负数时,│a│=_______;
③当a=0时,│a│=_______.
以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.
教师问:
(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?
(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?
(3)绝对值等于2的数有几个?它们是什么?
归纳:
①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.
②两个互为相反数的绝对值相等,即│a│=│-a│.
③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.
六、巩固练习
1.课本第12页练习1、2题.
第1题强调书写格式,防止出现“-8=8”的错误.
第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,•应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.
七、课堂小结
理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.
引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.
八、作业布置
1.课本第15页习题1.2第4、7、10题.
九、板书设计:
1.2.4 绝对值
第四课时
①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.
②两个互为相反数的绝对值相等,即│a│=│-a│.
③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.
2、随堂练习。

3、小结。

4、课后作业。

十、课后反思
1.2.4 绝对值
第五课时
三维目标
一、知识与技能
掌握有理数的大小比较的两种方法──利用数轴和绝对值.
二、过程与方法
经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.
三、情感态度与价值观
会把所学知识运用于解决实际问题,体会数学知识的应用价值.
教学重、难点与关键
1.重点:会利用绝对值比较有理数的大小.
2.难点:两个负数的大小比较.
3.关键:正确理解绝对值的概念.
四、教学过程
一、复习提问,引入新课
用“>”、“<”号填空.
1.5.7______6.3; 2.2
7
_____
3
8
; 3.0.03_______0;
4.│-3│_______│2│; 5.│-2
3
│_______│-
3
2
│.
五、新授
引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.
1.课本图1.2-6中共有14个温度,其中最低的是多少?最高的是多少? 2.请你将这14个温度按从低到高的顺序排列.
课本图1.2-6中的14个温度按从低到高排列为:
-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.
按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.
同样-5<-4,-31
2
<-3,-2<0,-1<1,…
从数轴上可知:
表示正数的点都在原点的右边;表示负数的点都在原点左边.
因此有正数大小0,0大于负数,正数大于负数.
两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?
探索:
我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.
即两个负数,绝对值大的反而小.
例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.
同样│-1│<│-3│,所以-1>-3.
例1:比较下列各对数的大小:
(1)-(-1)和-(+2);(2)-8
21
和-
3
7
;(3)-(-0.3)和│-
1
3
│.
解:(1)先化简,-(-1)=1,-(+2)=-2,
正数大于负数,1>-2.
即 -(-1)>-(+2).
(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.
│-
821│=821
,│-37│=37=921. 因为821<921,即│-821
│<│-37│, 所以-821>-37
. (3)先化简,-(-0.3)=0.3,│-13│=13
=.0.3, 0.3<0.3,即-(-0.3)<│-13│. 初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.
例2:已知a>0,b<0且│b │>│a │,比较a ,-a ,b ,-b 的大小.
解:方法一,可通过数轴来比较大小,先在数轴上找出a ,-a ,b ,-b•的大致位置,再比较.
由a>0,b<0可知表示a 的点在原点的右边,表示b 的点在原点的左边;由│b │>•│a │,可知表示b 的点离开原点的距离更远,即它应在表示a 的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图. -b -a a 0b
根据数轴上,较左边的点所表示的数较小,可得:
b<-a<a<-b .
六、课堂练习
1.课本第14页练习.
2.补充练习:
(1)比较大小,并用“<”连结.
①-34,-712
,-56;②-(-10),-│-10│,9,-│+18│,0. (2)有理数a ,b 在数轴上的表示如下图,用“>”或“<”号填空.
1-1a 0b
①a_____b ; ②│a │_____│b │; ③-a_____-b ; ④
1a _____1b
. 七、全课小结(提问式)
比较有理数的大小有哪几种方法? 有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较.
方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行.
在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.
八、作业布置
1.课本第15页习题1.2第5、6、8题.
九、板书设计:
1.2.4 绝对值
第五课时
1、表示正数的点都在原点的右边;表示负数的点都在原点左边.
因此有正数大小0,0大于负数,正数大于负数.
2、随堂练习。

3、小结。

4、课后作业。

十、课后反思。

相关文档
最新文档