营销战略三角模型

营销战略三角模型
营销战略三角模型

营销战略三角模型

模型结构与要求

科特勒提出的战略业务三角模型由三个维度构成:公司战略、公司战术和公司价值。这三个维度又可细分成九个要素,分别是:市场细分、目标市场、市场定位、差异化、营销推广、销售、品牌、服务、流程。

公司战略旨在赢得"心智份额",即在顾客的心智中占据一定的位置,核心要素是定位;公司战术是为了赢得" 市场份额",即用与众不同的营销策略来吸引顾客,核心要素是差异化;而公司价值则意在"心理份额",即使顾客内心接受,核心要素是品牌。事实上,这三个核心要素是相互支持的整合关系,定位是企业对顾客作出的承诺,这个承诺应当具有差异性,一旦这个差异性为顾客带来价值,就会产生一个强势品牌,强势品牌又支持了定位。该三角模型其实是一个战略业务架构,其意义在于:在经营环境不确定时,企业可依此更加系统化和整合化地开展业务活动。

公司战略

迈克尔·波特将战略定义为"不是要做什么,而是限制不能做什么"。迈克尔·哈姆林也认为,集中和核心竞争力是公司竞争战略的核心。由此可知,营销在战略层面的主要任务就是定位。这个过程是:首先,公司通过市场细分来识别市场中各种类型的需求群体;下一步是从中选择企业想要和能够服务的目标市场,然后,企业必须建立一个清晰的定位,以求在购买者心理找到合适的位置。

(1)市场细分

由于资源有限,任何一家公司都无法为市场提供所有需要的产品,因而,识别市场中的不同需求群体是有必要的。常见的细分变量有地理、人口、心理(生活方式)、行为等四种。四种细分各有千秋:地理或人口细分便于操作,而心理与行为细分则能清楚描绘特定购买群的特征。

(2)目标市场

在选择正确的目标市场时,有四个标准应当考虑:细分市场的大小、细分市场成长潜力、公司竞争优势以及公司的竞争地位。通过这些标准的衡量,公司可以选择到既与其目标又与其资源相匹配的目标细分市场。

(3)市场定位

做市场定位时,公司要注意以下四点:定位应与公司优势相匹配、定位应被顾客正面接受(喜欢和信任)、定位应持续一段时间。需要强调的是,定位其实是公司向顾客作出的承诺。因此,为了使其定位为顾客正面接受,公司首先应当具备履行承诺的能力。

公司战术

战略和价值的实现需要依赖战术,它指导企业在市场竞争中具体如何做。战术包括三个要素:差异化、营销组合和销售。差异化是"核心"战术,因为它是吸引现有或潜在顾客购买某公司产品的基础。差异化需要在营销组合中得以体现。营销组合被称为"创意"战术,因为公司可以创造性地调整4P要素以求差异化。最后,销售是"获取"战术,因为它是唯一可以通过交易从市场中实现利润的要素。

(1)差异化

公司可以在三个层面实施差异化:内容(提供什么)、背景(如何提供)以及基础设施(提供的辅助物)。"内容"是核心部分,是公司为顾客实际提供的东西;"背景"是辅助部分,它是关于公司为帮助顾客"感受"提供物的差异性而做的努力;"基础设施"包括技术或人,用以支持内容和背景的差异化。例如,网上购书过程中,书是"内容",送书上门是"背景",送书人是基础设施。

(2)营销组合

为使差异性有效,公司必须构建一个适当的营销组合,即众所周知的4Ps。其中,产品和价格是价值的提供部分,渠道和促销是价值的传递部分。为使组合有效,两大部分必须整合设计。

(3)销售

差异化和营销组合还需销售来支持。针对质量导向型(偏重产品质量)、价值导向型(偏重价格与品质的平衡)或价格导向型(偏重价格)的目标市场,公司可以选择适当的销售技巧。就质量导向型市场而言,公司可以采取解决方案法,此时销售人员的任务是主动识别顾客面临的难题,并提供解决方案;就价值导向型市场而言,公司可用利益销售法,以有竞争力的价格提供高质量的产品;就价格导向型市场而言,公司可以尽可能最低的价格提供版本较低的产品。

公司价值

为获取或留住顾客,公司必须为顾客创造价值并使其满意。价值可用"总收入"与"

总支出"之比来衡量(从顾客的角度)。"总收入"包括顾客获得的所有利益(如产品的功能利益、方便性等等)。而"总支出"是顾客为获得这些利益必须付出的东西(如产品价格、运费等等)。基本的价值战略有五种:第一种是多对少,即顾客获得更多的利益却支付了更少的成本(与竞争者相比,下同)。

第二种是多对同,即顾客获得更多的利益却支付了相同的成本;第三种是同对少,即顾客获得相同的利益却支付了更少的成本;第四种是多对多,即顾客获得更多的利益却支付了更多的成本;第五种是少对少,即顾客获得更少的利益也支付了更少的成本。价值的核心要素是品牌,它相当于公司或产品的价值指示器。品牌的价值必须通过优质的服务来提升,所以服务被称为价值的提升器。价值的第三个要素是流程,它有助于价值的提升,称为价值助能器。

(1) 品牌

对于顾客和潜在顾客来说,价值指示器--品牌显示了公司的属性、利益、价值、文化和个性。创建和维护品牌资产不易,需要持续的巨额投资,例如品牌广告一项投入,美国的公司每年要花去1-3亿美元。创建品牌远不止设计一个标志或猛烈的广告攻势那么简单,他是一项系统工程。此外,品牌还应当由适当的服务和优秀的流程来支持。

(2) 服务

如今的服务已不仅仅指售前或售后服务,它已成为市场竞争的一大利器,应当用大写的"S"表示(服务的英文是"Service")。事实上,每项业务都是一个服务过程。

(3) 流程

以上所述的八个要素还应有好的流程来组织。最重要的流程主要有三种:供应链管理、基于市场的资本管理和新产品开发。供应链管理的目的是使供应链中的成本最小化;基于市场的资本管理的目的是使所有基于市场的资本最优化(如对业务环境状况的掌握、公司与各利益相关者之间的关系等);新产品开发则旨在生产革新产品和使生产流程达到最高效率。

市场之时,产业中的企业经营者不能正确认识或是忘记了产业兴起的真正原因,或是忙于抢占市场而无暇顾及产业的发展大计,以至忽视了悄然袭来的顾客需求变化和产业衰退的阴影。人们经常把亨利·福特作为产品导向的失败典型,把他主要作为一个发明家,但实际上,福特其实是最成功的营销家(Marketer)之一,当然也是最失败的营销家之一。当大多数企业生产商在进行成本加成定价时,福特就提出并推行了由价格决定成本而不是相反的做法。他推出500美元的Model T型车并大获成功,其实是一场营销战的经典案例。福特的错误在于,他成了自己成功经验的俘虏,在产业环境和顾客需求已经发生巨大变化之时,仍沉迷于过去成功的光荣之中,忘掉了成功的真正原因。

营销推广是以当今互联网为媒介的一种推广方式,是在网上把自己的产品或者服务利用网络手段与媒介推广出去。很多企业在经营的过程中,都需要做营销推广。如果是由自己的公司负责营销推广的话,会花费大量的人力物力。本文介绍关于营销推广中与营销战略相关的内容,如果让汇桔网为您的公司做营销推广服务,不仅能节约成本和经济,更能达到更好的营销效果!

相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB

小高奥数几何-三角形五大模型及例题解析 (1)

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) 如图,三角形AED 占三角形ABC 面积的 23×14=16 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) D C B A b

梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个 三角形相似。 h h H c b a C B A a c b H C B A ① a b c h A B C H === ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形典型模型及例题

:相似三角形判定的基本模型 (三)母子型 (四)一线三等角型: 1:相似三角形模型 (一)A字 型、 A字型(斜A字型) C (二)8字 型、 8字型 (平 行) (蝴蝶 型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是"一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: :相似三角形判定的变化模型

/ B E C 一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCDK AD// BC对角线AC BD交于点O, BE/ CD交CA延长线于E. 例3 :已知:如图,等腰△ ABC中, AB= AC ADL BC于D, CG/ AB BG分别交AD AC于E、F. 求证:BE2 EF EG . 1、如图,已知AD^^ ABC的角平分线,EF为AD的垂直平分线.求证:FD2 FB FC . DEB DAC . ABC . A

2、已知:AD 是Rt △ ABC 中/A 的平分线,/ C=90 , EF 是AD 的垂直平分线交 AD 于M, EF 、 BC 的延长线 交于一点 M 求证:⑴△ AME^A NMD; (2)ND 2 =NC- NB 5已知:如图,在 Rt △ ABC 中,/ C=90°, B(=2, AC=4, P 是斜边 AB 上的一个动点,PD 丄AB 交边 AC 于 点D (点D 与点A C 都不重合),E 是射线DC 上一点,且/ EP[=Z A.设A 、P 两点的距离为 x , △ BEP 的 面积为y . (1)求证:AE=2PE (2) 求y 关于x 的函数解析式,并写出它的定义域; (3)当厶BEP-与^ABC 相似时,求△ BEP 的面积. 3、已知:如图,在△ ABC 中,/ ACB=90 , 求 证:EB- DF=AE DB CDL AB 于D, E 是AC 上一点,CF 丄BE 于F 。 4.在 ABC 中,AB=AC 高 AD 与 BE 交于 H, EF BC ,垂足为F ,延长AD 到G,使DG=EF M 是AH 的中点。 证:GBM 90 G

几何图形 五大模型

直线形面积计算的五大模型 一、等积变换模型 (1) 等底等高的两个三角形面积相等; (2) 两个三角形的底相等,面积比等于他们高的比;(或者两个三角形的高相等,面积比 等于他们底的比) AB 为公共边,所以 21::ABC ABD s s h h ??= 1h 为公共的高,所以 1 2 ::BD DC s s = (3) 两个三角形面积的比等于这两个三角形底与各自对应高的乘积的比。 底和高均不同,所以 ()21 ::)(ABD CDE BD DC h s s h ??=?? 比如:两个三角形的底的比是5:3,与各自底对应的高的比是7:6, 那么他们的面积的比是(5×7):(3×6) 二、鸟头定理(共角定理) 两个三角形中有一个角相等或者互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两条夹边的乘积之比。 BAC DAC ∠∠和互补,::DAC BAC DA AC BA AC s s ??=??所以 E :E :D A B A C D A A B A A C s s ?? ∠=??A 为公共角,所以 推理过程:连接BE ,运用等积变换模型证明。

三、蝴蝶定理模型 1.任意四边形中的比例关系(蝴蝶定理) 1 2 4 3 ::s s s s =或者1 3 4 2 s s s s ?=? 1 4 2 3 1 2 4 3 +AO:OC s s s s s s s s == =::():(+) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以是不规则四边形的面积关系与四边形内三角形相联系;另一方面也可以得到与面积对应的对角线被分割的两段之间的比例关系。 2.梯形中比例关系(梯形蝴蝶定理) 22 13 :a b s s =: 22 1324 ::a b s s s s =:::ab :ab 整个梯形对应的面积份数为: 2 (a+b) 四、相似模型 相似三角形性质: (金字塔模型) (沙漏模型) 下面的比例关系适用如上两种模型: 1、 AD AE DE AF AB AC BC AG === 2、 22 ::ADE ABC s s AF AG ??= 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变,他们都是相似的),与相似三角形相关的常用的性质以及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比; (2) 相似三角形的面积比等于他们的相似比的平方。

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

相似三角形”A“字模型含详细答案经典

教师辅导教案 授课日期:年月日授课课时:课时

1 ?平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2 ?如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似?可简单说成:两角对应相 等,两个三角形相似. 3 ?如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成 比例,两个三角形相似. 5. 如 果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 6 ?直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明) 7 ?如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的 腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型 A字形 图①A字型,DE//BC ;结论: AD AE AB AC DE BC , 【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮 他 调整过来吗证明步骤正确的顺序是( ) 已知:如图,在△ ABC中,点D, E, 求证:△ ADE s^ DBF. 证明:①又??? DF// AC, ②??? DE/ BC, ③???/ A=Z BDF, ④???/ ADE=Z B, F分另【J在边AB, AC, BC上,且DE / BC, DF/ AC, ? △ADE s^ DBF. A.③②④① B.②④①③ C.③①④② D.②③④① 【解答】证明:②I DE / BC, ④ADE=Z B, ①又??? DF/ AC, ③A=Z BDF, ? △ ADE s^ DBF.故选:B. 国① 【练1】如图,在△ ABC中,/ ACB=90 , BC=16cm, AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8 秒时,△ CPQ 与厶ABC相 似. 【解答】解:CP和CB是对应边时,△ CPC SA CBA 所以, 16-2t t 16_12, 即 解得t=4.8; CP和CA是对应边时,△ CPC S^ CAB, 厂1口厂1门

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

最新相似三角形典型模型及例题资料

:相似三角形判定的基本模型 (一)A字型、反A字型(斜A字型) (二)8字型、反8字型 (四)一线三等角型: 1:相似三角形模型 A (平 行) (蝴蝶 型) 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

精品文档 (五)一线三直角型 : 三直角相似可以看着是 "一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似, 这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: :相似三角形判定的变化模型 ■ t / a c ----- 1———— a b c ¥ 旋转型:由A字型旋转得到8字型拓展 B C

A K / I / /x/ * B C ———£------ d 一线三直角的变形 2:相似三角形典型例题 (1) 母子型相似三角形 例1 :如图,梯形ABCD中,AD // BC,对角线AC、BD交于点O, BE// CD交CA延长线于E. 2 求证:OC = OA OE . 例2:已知:如图,A ABC中,点E在中线AD上,.DEB二.ABC . 求证:(1) DB2= DE DA; (2) . DCE 二/DAC . 例3 :已知:如图,等腰A ABC中,AB= AC, AD丄BC于D, CG// AB, BG分别交AD、AC于E、F . 求证:BE2 = EF EG . 2 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线?求证:FD FB FC .

五大模型(三角型等积变形、共角模型

杨秀情一一六年级秋季一一配套练习 【练练1】 如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点, H为AD边上的任意一点,求阴影部分的面积. 【练练2】 图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是_______ _ 【练练3】 (2008年”希望杯”二试六年级) 如图,E、F、G、H分别是四边形ABCD各边的中点,FG与FH交于点O, S i、S2、S3及S4分 别表示四个小四边形的面积?试比较s S3与S2 S4的大小.

【练练4】 如图,三角形ABC中,DC 2BD , CE 3AE,三角形ADE的面积是20平方厘米,三角形ABC的面积是多少? 【练练5】 (2008年第一届“学而思杯”综合素质测评六年级2试) 如图,BC 45,AC 21,ABC被分成9个面积相等的小三角形,那么 DI FK __________ .

【练练 6】 如右图,ABFE和CDEF都是矩形, 分的面积是_________ 平方厘米.

【练练7】 (2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是_________ 平方厘米. 【练练8】 如下图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20 ,宽是12,则它 内部阴影部分的面积是_________ ?

B E C 【练练9】 (第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长 方形面积的15%,黄色三角形面积是21cm2?问:长方形的面积是多少平方厘米? 【练练10】 如图,正方形ABCD的边长为6, AE 1 .5, CF 2 .长方形EFGH的面积为________________

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

小学数学几何五大模型教师版

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b; 4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S△ABC:S△ADE=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

相似三角形典型模型及其例题

:相似三角形判定的基本模型 三)母子型 四)一线三等角型: 三等角型相似三角形是以 等腰三角形(等腰梯形)或者等边三角形 为背景,一个与 形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示: 1:相似三角形模 型 一) A 字型、 反 A 字型(斜 A 字型) 二) 8 字型、 反 8 字型 平行) 蝴蝶型) 腰三角 C C

五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方 形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 六)双垂型:

:相似三角形判定的变化模型

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC,对角线AC、BD 交于点O,BE∥ CD 交CA 延长线于E. 2 求证:OC2 OA OE . 例2:已知:如图,△ABC 中,点 E 在中线AD 上, DEB ABC .求证:(1)DB2DE DA;(2)DCE DAC . 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:BE2 EF EG . 2 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FD 2 FB FC .

2、已知:AD 是Rt△ABC 中∠A的平分线,∠ C=90°,EF是AD 的垂直平分线交AD 于M,EF、BC的延

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形-模型分析与典型例题讲解大全

第一部分 相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行)(不平行) (二)8字型、反8字型 (蝴蝶型) (平行) (不平行) (三)母子型 D B D 垂直 不垂直 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

C A D 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。8字型拓展 C B E D A 共享性G A B C E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC ,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证: OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上,ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. 例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EG EF BE? = 2. 相关练习: 1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FC FB FD? = 2. 2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。 求证:(1)△AME∽△NMD; (2)ND2=NC·NB D E B

3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。 求证:EB·DF=AE·DB 4.在?ABC中,AB=AC,高AD与BE交于H,EF BC ⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。 求证:∠=? GBM90 G M F E H D C B A 5.已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y. (1)求证:AE=2PE; (2)求y关于x的函数解析式,并写出它的定义域; (3)当△BEP与△ABC相似时,求△BEP的面积. 双垂型 1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,求证:(1)△ABD∽△ACE;(2)△ADE ∽△ABC;(3)BC=2ED

奥数几何三角形五大模型带解析

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线 平行于CD . ④等底等高的两个平行四边形面积相等( 长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) D C B A b a s 2 s 1

如图,三角形AED 占三角形ABC 面积的23×14=1 6 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例, 且这两组对应边所夹的角相等则两个 S 4 S 3 s 2 s 1O D C B A S 4 S 3s 2 s 1 b a

相似三角形几种基本模型

相似三角形基本模型 经典模型 “平行旋转型” 图形梳理: AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ F'C B B C AEF 旋转到 AE‘F’ A B C AEF 旋转到AE‘F’ 特殊情况:B 、'E 、'F 共线

AEF 旋转到AE‘F’C B A A B C E F E' F'AEF 旋转到AE‘F’ C ,'E ,'F 共线 AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ C B A 母子型 已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 相似三角形常见的图形 1、下面我们来看一看相似三角形的几种基本图形: (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图) (2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) A E A D E 4 1 B (3) D B (2) D

(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”) (4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。 (5)母子型 已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD. 2、几种基本图形的具体应用: (1)若DE∥BC(A型和X型)则△ADE∽△ABC (2)射影定理若CD为Rt△ABC斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB ; (3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB. (4)当AD AE AC 或AD·AB=AC·AE时,△ ADE∽△ACB. B E A C D 1 2 B B C(D )

相关文档
最新文档