相似三角形常见模型(总结材料)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分相似三角形模型分析一、相似三角形判定的基本模型认识
(一)A字型、反A字型(斜A字型)
B
(平行)
B
(不平行)
(二)8字型、反8字型
B
C
B
C
(蝴蝶型)(平行)
(不平行)
(三)母子型
B
(四)一线三等角型:
三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景
(五)一线三直角型:
(六)双垂型:
D
C 二、相似三角形判定的变化模型
旋转型:由A 字型旋转得到。8字型拓展
C
B E
D
A
共享性
G
A
B
C
E
F
一线三等角的变形
一线三直角的变形
第二部分 相似三角形典型例题讲解
母子型相似三角形
例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2
.
例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.
求证:(1)DA DE DB ⋅=2
; (2)DAC DCE ∠=∠.
例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .
求证:EG EF BE ⋅=2
.
相关练习:
1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2
.
A
C
D
E
B
2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF
是AD的垂直平分线交AD于M,EF、BC的延长线交于一点
N。
求证:(1)△AME∽△NMD; (2)ND2=NC·NB
3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB
4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC
⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=︒
GBM90
5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)
已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC
于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.
(1)求证:AE=2PE;
B
P
G
M
F
E
H
D
C
B
A
(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.
双垂型
1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED
2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE
求:点B 到直线AC 的距离。
C
共享型相似三角形
1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE= 120,已知BD=1,CE=3,,求等边三角形的边长.
2、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.
C
求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.
一线三等角型相似三角形
例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BE
例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.
①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;
②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;
(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直线..CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.
A
B C
备用图
A
D
C
A
D
B E
F
A
D A B C
P
Q
A
B
C
备用图
例3:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.
(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长.
(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点
E ,同时交直线DC 于点Q ,那么
①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;
②当CE =1时,写出AP 的长.
C
B
A
D
C
B
A D
例4:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以
M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .
(1)求证:△MEF ∽△BEM ;
(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.
C
D
A
B
P