电子封装中的铝碳化硅及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子封装中的铝碳化硅及其应用

1 引言

铝碳化硅AlSiC(有的文献英文所略语写为SiCp/Al或Al/SiC、SiC/Al)是一种颗粒增强金属基复合材料,采用Al合金作基体,按设计要求,以一定形式、比例和分布状态,用SiC颗粒作增强体,构成有明显界面的多组相复合材料,兼具单一金属不具备的综合优越性能。AlSiC研发较早,理论描述较为完善,有品种率先实现电子封装材料的规模产业化,满足半导体芯片集成度沿摩尔定律提高导致芯片发热量急剧升高、使用寿命下降以及电子封装的"轻薄微小"的发展需求。尤其在航空航天、微波集成电路、功率模块、军用射频系统芯片等封装分析作用极为凸现,成为封装材料应用开发的重要趋势。

2 封装AlSiC特性

封装金属材料用作支撑和保护半导体芯片的金属底座与外壳,混合集成电路HIC的基片、底板、外壳,构成导热性能最好,总耗散功率提高到数十瓦,全气密封性,坚固牢靠的封装结构,为芯片、HIC提供一个高可靠稳定的工作环境,具体材料性能是个首选关键问题。常用于封装的电子金属材料的主要特性如表1所示。

在长期使用中,许多封装尺寸、外形都已经标准化、系统化,存在的主要缺陷是无法适应高性能芯片封装要求。例如,Kovar(一种Fe-Co-Vi合金)和Invar(一种Fe-Ni合金)的CTE低,与芯片材料相近,但其K值差、密度高、刚度低,无法全面满足电子封装小型化、高密度、热量易散发的应用需求合金是由两种或两种以上的金属元素或金属与非金属元素所组成的金属材料,具有其综合的优势性能。随之发展的Mo80 Cu20、Cu/Invar/Cu、Cu/Mo/Cu等合金在热传导方面优于Kovar,但期比重大于Kovar,仍不适合用作航空航天所需轻质的器件封装材料。

常用金属封装材料与CaAs的微波器件封装需求存在性能上的差距,使得研发一种新型轻质金属封装材料,满足航空航天用器件封装成为急需,引发相关部门调试重视。经过近些年来的深入研究,AlSiC取得产业化进展,相继推动高硅铝合金Si/Al实用化进程,表2示出其主要性能与常用封装材料的对比。将SiC与

Al合金按一定比例和工艺结合成AlSiC后,可克服目前金属封装材料的不足,获得高K值、低CTE、高强度、低密度导电性好的封装材料。

从产业化趋势看,AlSiC可实现低成本的、无须进一步加工的净成形(net-shape)或需少量加工的近净成形制造,还能与高散热材料(金刚石、高热传导石墨等)的经济性并存集成,满足大批量倒装芯片封装、微波电路模块、光电封装所需材料的热稳定性及散温度均匀性要求,同时也是大功率晶体管、绝缘栅双极晶体管的优选封装材料,提供良好的热循环及可靠性。

3 封装AlSiC类型

封装金属基复合材料的增强体有数种,SiC是其中应用最为广泛的一种,这是因为它具有优良的热性能,用作颗粒磨料技术成熟,价格相对较低;另一方面,颗粒增强体材料具有各向同性,最有利于实现净成形。AlSiC特性主要取决于SiC 的体积分数(含量)及分布和粒度大小,以及Al合金成份。依据两相比例或复合材料的热处理状态,可对材料热物理与力学性能进行设计,从而满足芯片封装多方面的性能要求。其中,SiC体积分数尤为重要,实际应用时,AlSiC与芯片或陶瓷基体直接接触,要求CTE尽可能匹配,为此SiC体积百分数vol通常为50%-75%,表3示出某厂家产业化净成形AlSiC级别的详细情况。

此外,AlSiC可将多种电子封装材料并存集成,用作封装整体化,发展其他功能及用途。研制成功将高性能、散热快的Cu基封装材料块(Cu-金刚石、Cu-石墨、Cu-BeO等)嵌入SiC预制件中,通过金属Al熔渗制作并存集成的封装基片。在AlSiC并存集成过程中,可在最需要的部位设置这些昂贵的快速散热材料,降低成本,扩大生产规模,嵌有快速散热材料的AlSiC倒装片系统正在接受测试和评估。另外,还可并存集成48号合金、Kovar和不锈钢等材料,此类材料或插件、引线、密封环、基片等,在熔渗之前插入SiC预成型件内,在AlSiC复合成形过程中,经济地完成并存集成,方便光电器件封装的激光连接。

采用喷射沉积技术,制备了内部组织均匀、性能优良、Si含量高达70wt%(重量百分率)的高硅铝合金SiAl封装材料,高硅铝合金CE牌号的性能如表4所示,由于其CTE与Si、GaAs该匹配,也可用于射频、微波电路的封装及航空航

天电子系统中,发展为一种轻质金属封装材料。

4 封装AlSiC制备

SiC颗粒与Al有良好的界面接合强度,复合后的CTE随SiC含量的变化可在一定范围内进行调节。由此决定了产品的竞争力,相继开发出多种制备方法。用于封装AlSiC预制件的SiC颗粒大多在1μm-80μm范围选择,要求具有低密度、低CTE,高弹性模量等特点,其热导率因纯度和制作方法的差异在80W(m·K)-200W(m·K)之间变化。基体是强度的主要承载体,一般选用6061、6063、2124、A356等高强度Al合金,与SiC按一定比例和不同工艺结合成AlSiC,解决SiC 与Al润湿性差,高SiC含量难于机加工成型等问题,成为理想的封装材料。

制备500vol%-75vol%SiC高含量的封装用AlSiC多采用熔渗法,其实质是粉末冶金法的延伸。它通过先制备一定密度、强度的多孔基体预制件,再渗以熔点比其低的进入填充预制件,其理论基础是在金属液润湿多孔基体时,在毛细管力作用下,金属液会沿颗粒间隙流动填充多孔预制作孔隙,脱模无须机械加工,在其表面上覆盖有一层0.13mm-0.25mm厚的完美Al合金层,按用途电镀上Ni、Au、Cd、Ag,供封装用。

熔渗法是AlSiC制备的关键,一般分为有压力渗透和无压力渗透,前者根据生产过程中压力施加的大小,方式的不同,又分为挤压熔渗、气压压力熔渗、离心熔渗铸造法等,主要特点是需要真空和高压设备,渗透时间较短,有效控制Al与SiC的界面反应,同时与精度的模具相配套,获得适用性发展。后者是将Al合锭放置在SiC预制件上,在合金熔点以上保温,Al合金液依托毛细管力的作用自发渗入预制件中,所需设备简单,予以低成本制备,但产品的机械性能与热性能略低,对基体合金的成份有较为严格的要求,浸透需要在保护气氛中进行。粉末冶金法对SiC体积分数可在15%-75%之间调节,SiC承载量大,但较难实现材料的一次成形。

AlSiC封装材料产业化引起国内科研院所、大学等单位的广泛重视,积极着手研发其净成形工艺,部分单位研制成功样品,为AlSiC工业化生产积累经验,离规模化生产尚有一定距离,存在成本高、SiC体积含量不高、低黏度、55%-75%高体积分浆料的制备与浆粒原位固化技术等问题。5 封装AlSiC的应用

相关文档
最新文档