转炉留渣单渣法炼钢工艺试验

转炉留渣单渣法炼钢工艺试验
转炉留渣单渣法炼钢工艺试验

转炉留渣单渣法炼钢工艺试验

(天津钢铁集团有限公司,

天津300301)[摘要]天钢为降低转炉冶炼成本,对转炉留渣单渣炼钢工艺进行研究。通过理论测算和针对性试验,采用留渣单渣炼钢新工艺后,与原不留渣单渣工艺相比,降低了辅料消耗16.25kg/t 钢,钢铁料消耗降低了3.18kg/t 钢,脱磷率从85%提高到88%。该工艺能够安全可靠地应用于Q235、20等普通钢种的冶炼生产,显著降低了炼钢成本,取得了较好的经济效益。[关键词]

转炉;留渣;

单渣工艺Test of Converter Hot Heel and Single Slag Method Steel-making Process

(Tianjin Iron and Steel Group Co.,Ltd.,Tianjin 300301,

China)

Tiangang studied converter hot heel and single slag process in order to reduce the melting

cost of converter.By means of theoretical measurement and calculation and targeted test,hot heel and single slag new process,compared with single slag process without hot heel,reduced auxiliary material consumption by 16.25kg/t tonnage steel and steel material consumption by 3.18kg/t tonnage steel and improved dephosphorization rate from the 85%to 88%.The process could be safely and reliably applied to the melting production of common steel such as Q235and 20.Steel-making cost was prominently

good economic benefit obtained.converter;hot heel;single slag process

收稿日期:2017-03-26

修回日期:2017-04-18

作者简介:吴杰,男,工程师,主要从事转炉炼钢技术管理工作。

1引言

天津钢铁集团有限公司

(以下简称天钢)炼钢车间配有3座120t 并排顶底复吹转炉,不具备双联法炼钢的设备要求,所使用炼钢冶炼方法是单渣法和双渣留渣法。单渣法冶炼主要用于冶炼Q235、

20等普通钢种,双渣留渣法主要用于冶炼要求较高的低P 钢种。

随着2016年钢铁行业所用原料价格攀升,钢铁企业盈利空间进一步压缩,要求企业进一步降低成本来应对市场的考验。

通过对不留渣单渣法转炉终点渣成分分析,发现终渣仍存在较大的P 容量空间且渣中含Fe 较多,P 容量空间较大可以用来继续脱P ,而含Fe 量较多的炉渣又可以用来代替部分钢铁料,钢铁料消耗是炼钢成本的重要组成部分,其消耗量所占费用约占炼钢过程总成本的90%,降低钢铁料消耗能显著的降低炼钢成本,

提高企业竞争力,而留渣单渣工艺恰恰能回收渣中Fe 并减少辅料消耗,而达到进一步降低钢铁料消耗的目的,天钢开展了留渣单渣工艺研究,对留渣单渣工艺进行了理论研究和生产实践。2实验原理

转炉生产普碳品种原来采用的是不留渣单渣模式,此种冶炼模式操作简单,技术成熟,目前被广泛采用,但存在钢铁料消耗以及辅料成本相对较高的缺点,采用留渣单渣法能够很好解决单渣法冶炼普碳品种的不足,但是留渣单渣法主要存在兑铁喷溅安全隐患,以及终点渣循环利用磷富集影响过程脱磷等难点。为了能有效解决留渣单渣法工艺难点,攻关组进行了理论测算和针对性的试验。2.1留渣兑铁喷溅机理分析及应对措施

留渣操作在兑铁时,铁水与炉渣接触,铁水中

[C]与渣中

(FeO )反应生成CO 和[Fe],反应式如下:[C]+(Fe )=CO+[Fe]+Q

(1)

控制反应不激烈向右进行则能控制兑铁过程

转炉留渣单渣法炼钢工艺试验

doi :10.3969/j.issn.1006-110X.2017.04.001

〈钢铁冶炼〉

1--

转炉炼钢过程工艺控制的发展与展望要求

转炉炼钢过程工艺控制的发展与展望要求 发表时间:2018-12-31T11:57:53.667Z 来源:《建筑学研究前沿》2018年第28期作者:亓传军[导读] 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力。山东泰山钢铁有限公司不锈钢炼钢厂技术科山东莱芜 271100 摘要:在转炉冶炼控制方面,钢厂关注更多的是终点钢水是否合格,但随着日益增加的市场竞争压力和环境要求,钢厂希望尽可能实现节能降耗,减少气体排放,而过程控制的优化是实现这一目标的有效手段。通过对转炉炼钢过程进行优化控制,使炼钢进程以合理的方式进行,使辅料和能源消耗最小化,才能使企业在市场经济条件下更具竞争力,并且过程控制也是转炉全自动控制发展的重要部分。文章 重点就转炉炼钢过程工艺控制的发展与展望进行研究分析,以供参考。关键字:转炉炼钢;工艺技术;发展对策;未来展望 引言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动炼钢业的经济发展。 1转炉炼钢工艺的目的 转炉冶炼主要是将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。 2转炉炼钢过程工艺控制现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,所以抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来,炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 3转炉炼钢过程工艺控制的发展对策3.1优化入炉料结构,合理使用好铁矿石有数据测得,与原材料成分相近的高炉铁水和铁块的实际金属收得率约为93%和92%,自产废钢和社会废钢的金属收得率约为97%和88%。根据铁钢产能的平衡及铁水废钢价格,通过热平衡和物料平衡计算,优化了入炉料结构。实际炉料结构中采用增大入炉原料中铁水比例,降低废钢配比,增加矿石使用量的工艺措施,可有效地提高炉料金属收得率,降低金属料消耗。为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼的影响,在实际生产中,对矿石加入工艺进行了调整。在转炉溅渣及加废钢后,根据铁水的条件直接将2/3左右的矿石加入炉内后再兑铁,在兑铁过程中与废钢搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅的原则下,尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅,吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 3.2优化冶炼工艺,减少炉渣铁耗和氧耗3.2.1优化吹炼工艺,减少喷溅和氧耗喷溅是造成铁耗损失的主要原因之一,为消除或减轻喷溅采取了以下措施:根据天车限载的要求,进一步降低装入量,使转炉装入量得到合理控制,适当提高了炉容比,有效地保证了炉内有效工作容积,以利于减少喷溅;前期化好渣,在第二批造渣料加入前后,通过提前成渣的方法,将泡沫渣的高峰期前移,以便与脱碳的峰值时刻错开;改进吹炼工艺,吹炼前期采用大氧压适当降低枪位操作,利于熔解废钢,在硅氧化完毕之后、脱碳的高峰期到达之前,暂时降低供氧强度,然后再将其平缓地恢复到正常值,吹炼终期采用大氧压低枪位操作,加强熔池搅拌,保证终点钢水成分和温度的均匀,降低了氧耗,同时降低炉渣氧化性。 3.2.2优化造渣工艺,实施少渣炼钢,减少炉渣铁耗为了减少单炉产渣量,在生产中采取精料方针,在进一步完善转炉留渣溅、渣操作工艺应用基础上努力提高入炉原料质量,使用高品位石灰和矿石,采用轻烧白云石造渣。根据铁水Si、S含量情况合理调整造渣料消耗,在确保满足生产需要的情况下适当减少石灰量消耗。铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷,这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。4转炉冶炼工艺过程控制的未来展望

炼钢工艺的发展历程

炼钢工艺的发展历程 2008年12月8日摘自冶金自动化网 炼钢方法(1) 最早出现的炼钢方法是1740年出现的坩埚法,它是将生铁和废铁装入由石墨和粘土制成的坩埚内,用火焰加热熔化炉料,之后将熔化的炉料浇成钢锭。此法几乎无杂质元素的氧化反应。 炼钢方法(2) 1856年英国人亨利·贝塞麦发明了酸性空气底吹转炉炼钢法,也称为贝塞麦法,第一次解决了用铁水直接冶炼钢水的难题,从而使炼钢的质量得到提高,但此法要求铁水的硅含量大于0.8%,而且不能脱硫。目前已淘汰。 炼钢方法(3) 1865年德国人马丁利用蓄热室原理发明了以铁水、废钢为原料的酸性平炉炼钢法,即马丁炉法。1880年出现了第一座碱性平炉。由于其成本低、炉容大,钢水质量优于转炉,同时原料的适应性强,平炉炼钢法一时成为主要的炼钢法。 炼钢方法(4) 1878年英国人托马斯发明了碱性炉衬的底吹转炉炼钢法,即托马斯法。他是在吹炼过程中加石灰造碱性渣,从而解决了高磷铁水的脱磷问题。当时,对西欧的一些国家特别适用,因为西欧的矿石普遍磷含量高。但托马斯法的缺点是炉子寿命底,钢水中氮的含量高。 炼钢方法(5) 1899年出现了完全依靠废钢为原料的电弧炉炼钢法(EAF),解决了充分利用废钢炼钢的问题,此炼钢法自问世以来,一直在不断发展,是当前主要的炼钢法之一,由电炉冶炼的钢目前占世界总的钢的产量的30-40%。 炼钢方法(6)

瑞典人罗伯特·杜勒首先进行了氧气顶吹转炉炼钢的试验,并获得了成功。1952年奥地利的林茨城(Linz)和多纳维兹城(Donawitz)先后建成了30吨的氧气顶吹转炉车间并投入生产,所以此法也称为LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法, 如图1所示。 图1 BOF法 炼钢方法(7) 1965年加拿大液化气公司研制成双层管氧气喷嘴,1967年西德马克西米利安钢铁公司引进此技术并成功开发了底吹氧转炉炼钢法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进OBM法,1972年建设了3座200吨底吹转炉,命名为Q-BOP (Quiet BOP) ,如图2所示。 图2 Q-BOP法 炼钢方法(8) 在顶吹氧气转炉炼钢发展的同时,1978-1979年成功开发了转炉顶底复合吹炼工艺,即从转炉上方供给氧气(顶吹氧),从转炉底部供给惰性气体或氧气,它不仅提高钢的质量,而且降低了炼钢消耗和吨钢成本,更适合供给连铸优质钢水,如图3所示。 图3 转炉顶底复合吹炼法 炼钢方法(9) 我国首先在1972-1973年在沈阳第一炼钢厂成功开发了全氧侧吹转炉炼钢工艺。并在唐钢等企业推广应用,如图4所示。

转炉炼钢工艺的优化实践

转炉炼钢工艺的优化实践 摘要: 目前,我国炼钢行业正在快速发展,同时炼钢技术的进步主要围绕着高效率、高质量、低成本、低能耗、少环境污染等方面。对于炼钢技术采取优化措施,结合工艺优化和综合降耗,从炉料消耗、氧气消耗、石灰、合金消耗、煤气回收、除尘灰、钢渣综合处理等环节有效控制,明显提高炼钢的经济和质量效益。在整体上提高炼钢行业的竞争性,创新炼钢工艺,不断优化炼钢工艺等方面,取得了明显的效果。 关键词: 转炉炼钢工艺优化 0 前言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动了炼钢业的经济发展。本文主要通过对炼钢行业现状的分析,结合成功经验,对炼钢工艺优化提出一些既有效又经济的方法,降低成本的同时,提高炼钢产量,节约能源。笔者分析探讨了炼钢工艺优化的重要性和可实施性。 1总述炼钢行业的现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,因此抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,略钢炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 2炉料结构优化思路 目前,常用的转炉金属炉料有高炉铁水、铁块(生铁)、自产废钢、社会废钢( 以中型和小型废钢为主)等。炉料结构优化应以满足转炉炼钢需要为基础,以提高炉料金属收得率为出发点,找出成本最低的炉料配比为目的。炉料金属收得率是指某一金属炉料的单位投入量通过冶炼可以产出合格钢水的百分率。它受两方面因素影响: 一方面是炉料自身含量,另一方面是在冶炼过程中的各种损耗,包括原料中杂质元素化学损失、烟尘损失、喷溅及炉渣带钢造成的铁耗等。 3 提高炉料金属收得率工艺措施 3.1 优化入炉料结构,合理使用好铁矿石

转炉脱磷热力学及双渣操作分析(精)

转炉脱磷热力学及双渣操作分析 一、转炉脱磷的冶金条件 众所周知, FeO 和 CaO 是生成稳定磷酸盐的最主要的氧化物。在转炉炼钢中, 我们以 FeO 为氧化剂,以 CaO 为磷氧化产物的稳定剂。通常炼钢脱磷反应如下: 1 在渣钢界面上 ][5][5 (5O Fe FeO += (1 2在与渣相相邻的金属层中 (][5][252O P O P =+ (2 3 在与金属相相邻的渣层中4( ( 4 (5252O P CaO CaO O P ?=+ (3 总反应描述为 []((([]Fe O P CaO CaO FeO P 5445252+?=++ (4 根据萨马林的数据 (5 在式(5中,氧化物和磷酸四钙的活度甩摩尔分数表示。 K p 随温度的升高急剧减小,在 1673 、 1773 和 1873K 下。 K p 相应为 7.8 ×108、 3.5 ×107、 2.1 ×106 。 根据式(5 ,在金属与炉渣平衡的情况下, (6 由式(6可见,促进炉渣对金属脱磷的热力学因素有: 1加人固体氧化剂(铁矿石、铁皮或用高枪位向熔池吹氧以增大 a (FeO 2加入石灰和促进石灰在碱性渣中迅速溶解的物质以增大 a (CaO ,亦即增大自由 CaO (不与酸性氧化物结合的的浓度; 3用更新与金属接触的渣相的方法,亦即放渣和加入 CaO 与 FeO 造新渣的方法来减小4(52O P CaO a ?

4保持适当的低温,因为温度从 1673 增到 1873K ,使反应(4的平衡常数 K p 减小到 1/370 。 应当指出, 上述关于温度对脱磷影响的结论, 仅仅是从热力学观点看是正确 06. 1547008 lg lg 4 (5 ( 4(52-==?T a a K a K CaO FeO p O P CaO p 4 (5 ( 4(52][%CaO FeO p O P CaO a a K a P ?= 的,为了加速脱磷必须有适当的高温,因为高温可以迅速生成高碱度铁质炉渣, 和保证得到均质流动的炉渣使传质过程加速。 我们引入脱磷指数 L P —熔渣的脱磷在渣—铁间的分配比作为衡量熔渣的脱磷能力的大小,其值越大则表明熔渣的脱磷能力越大。 L P 可由如下反应式推得 2[P]+5[O]=(P 2O 5 (7 [][] 5 5 2 2

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

转炉炼钢知识问答

转炉炼钢知识问答 1 转炉炼钢的原材料 1-1 转炉炼钢用原材料有哪些,为什么要用精料? 炼钢用原材料分为主原料、辅原料和各种铁合金。氧气顶吹转炉炼钢用主原料为铁水和废钢(生铁块)。炼钢用辅原料通常指造渣剂(石灰、萤石、白云石、合成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、硅钙合金、金属铝等。 原材料是炼钢的物质基础,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,采用精料以及原料标准化,是实现冶炼过程自动化、改善各项技术经济指标、提高经济效益的重要途径。根据所炼钢种、操作工艺及装备水平合理地选用和搭配原材料可达到低费用投入,高质量产出的目的。 转炉入炉原料结构是炼钢工艺制度的基础,主要包括三方面内容:一是钢铁料结构,即铁水和废钢及废钢种类的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比制度;三是充分发挥各种炼钢原料的功能使用效果,即钢铁料和造渣料的科学利用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度稳定工序质量,降低各种物料消耗,增加生产能力的基本保证。1-2 转炉炼钢对铁水成分和温度有什么要求? 铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。 A铁水的化学成分 氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。 (1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中WSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中SiO2含量过高,也

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

炼钢生产流程图解

钢铁生产工艺主要包括:炼铁、炼钢、轧钢等流程。 (1)炼铁:就是把烧结矿和块矿中的铁还原出来的过程。焦炭、烧结矿、块矿连同少量的石灰石、一起送入高炉中冶炼成液态生铁(铁水),然后送往炼钢厂作为炼钢的原料。 (2)炼钢:是把原料(铁水和废钢等)里过多的碳及硫、磷等杂质去掉并加入适量的合金成分。 (3)连铸:将钢水经中间罐连续注入用水冷却的结晶器里,凝成坯壳后,从结晶器以稳定的速度拉出,再经喷水冷却,待全部凝固后,切成指定长度的连铸坯。 (4)轧钢:连铸出来的钢锭和连铸坯以热轧方式在不同的轧钢机轧制成各类钢材,形成产品。 炼钢工艺总流程图

炼焦生产流程:炼焦作业是将焦煤经混合,破碎后加入炼焦炉内经干馏后产生热焦碳及粗焦炉气之制程。

烧结生产流程:烧结作业系将粉铁矿,各类助熔剂及细焦炭经由混拌、造粒后,经由布料系统加入烧结机,由点火炉点燃细焦炭,经由抽气风车抽风完成烧结反应,高热之烧结矿经破碎冷却、筛选后,送往高炉作为冶炼铁水之主要原料。 高炉生产流程:高炉作业是将铁矿石、焦炭及助熔剂由高炉顶部加入炉内,再由炉下部鼓风嘴鼓入高温热风,产生还原气体,还原铁矿石,产生熔融铁水与熔渣之炼铁制程。 转炉生产流程:炼钢厂先将熔铣送前处理站作脱硫脱磷处理,经转炉吹炼后,再依订单钢种特性及品质需求,送二次精炼处理站(RH真空脱气处理站、Ladle Injection盛桶吹射处理站、VOD真空吹氧脱碳处理站、STN搅拌站等)进行各种处理,调整钢液成份,最后送大钢胚及扁钢胚连续铸造机,浇铸成红热钢胚半成品,经检验、研磨或烧除表面缺陷,或直接送下游轧制成条钢、线材、钢板、钢卷及钢片等成品。

转炉少渣工艺技术分析

转炉少渣工艺技术分析 摘要:阐述了少渣炼钢的工艺路线,分析了转炉少渣吹炼的供气制度、造渣制度、温度制度、合金化制度等,介绍了国内外几家钢厂典型的少渣炼钢工艺及其冶金效果,指出少渣炼钢是未来炼钢的主要发展方向。 关键词:转炉;少渣炼钢;工艺制度 Progress and Prospect of Less Slag Steelmaking Process Abstract:The paper summarizes the process line of less slag steelmaking,and analyzes the system of gas supplying,slagging and alloying,that 0f the temperature and SO on.of less slag blowing in converter.introduces the typical processes of less slag steelmaking and its metallurgical effects of seven steel plants at home and abroad,meanwhile,points out that less slag steelmaking is the main development direction of the steelmaking in the future. Key words:converter;less 8lag steelmaking;process system 铁水“三脱”使传统炼钢工艺发生了显著变化,在铁水预处理阶段进行脱硅、脱磷和脱硫,使炼钢转炉的主要功能转变为调温和脱碳,同时炼钢渣量减少,形成了少渣炼钢工艺。由于少渣炼钢用的铁水硅含量很低,造渣用石灰加入量明显减少,降低了渣料消耗和能耗,喷溅少,铁损低,减少了污染物的排放。同时,因渣量少,氧的利用效率高,吹炼终点钢水中氧含量低,余锰高,合金元素收得率较高,从而降低了生产成本。另外,少渣炼钢工艺终点命中率高,改善了钢水的纯净度,为生产超纯净钢创造了条件。 1 少渣炼钢工艺路线 常见的转炉炼钢工艺路线有四种。第一种是传统的炼钢工艺,欧美各国的炼钢厂多采用这种模式,即铁水先脱硫预处理后,再转炉炼钢。通常转炉炼钢渣量占金属量的10%以上,转炉渣中FeO含量在17%左右。此外,渣中还含有约8%的铁珠,该工艺钢铁料消耗高。第二种炼钢工艺是先在铁水沟、混铁车或铁水罐内进行铁水“三脱”预处理,然后在复吹转炉进行少渣炼钢,这种工艺的不足之处是脱磷前必须先脱硅,废钢比低(≤5%),脱磷渣碱度过高,难于利用。第三种炼钢工艺是20世纪90年代中后期日本各大钢厂试验研究成功的转炉铁水脱磷工艺,该工艺解决了超低磷钢的生产难题。与第二种工艺路线的明显区别是脱磷预处理移到转炉内进行,转炉内自由空间大,反应动力学条件好,生产成本较低。具体工艺是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳[1、2],即“双联法”。典型的双联法工艺流程为:高炉铁水_+铁水预脱硫-+转炉脱磷_+转炉脱碳_+炉外精炼.+连铸。由于受设备和产品的限制,也有在同一座转炉上进行铁水脱磷和脱碳的操作模式,类似传统的“双渣法”。第四种炼钢工艺是对第三种炼钢工艺进行了改进,与第三种工艺的明显不同是将部分脱碳渣(约8%)返回脱磷转炉,脱磷后的铁水进入脱碳转炉脱碳。该工艺是目前渣量最少、最先进的转炉生产纯净钢的工艺路线。在上述四种转炉炼钢工艺路线中,后三种炼钢工艺铁水经过“三脱”预处理后再脱碳炼钢,能够做到少渣操作。四种

试谈转炉炼钢法的分类

转炉炼钢工艺 转炉炼钢工艺 绪论 1、转炉炼钢法的分类 转炉是以铁水为主要原料的现代炼钢方法。该种炼钢炉由圆台型炉帽、圆柱型炉身和球缺型炉底组成。炉身设有可绕之旋转的耳轴,以满足装料和出钢、倒渣操作,故而得名。 酸性空气底吹转炉——贝塞麦炉(英国1856年) 空气转炉{ 碱性空气底吹转炉——托马斯炉(德国1878年) 碱性空气侧吹转炉(中国1952年) 转炉{ 氧气顶吹转炉——LD(奥地利1952年) 氧气转炉{ 氧气底吹转炉——OBM(德国1967年) 顶底复吹转炉(法国1975年) 2、氧气顶吹转炉炼钢法简介 (1) 诞生的背景及简称 现代炼钢生产首先是一个氧化精炼过程,最初的贝氏炉和托马斯炉之所以采用空气吹炼正是利用其中的氧。二次世界大战以后,工业制氧机在美国问世,使利用纯氧炼钢成为可能,但原来的底吹方式炉底及喷枪极易烧坏。美国联合碳化物公司于1947年在实验室进行氧气顶吹转炉的实验并获成功,命名为BOF。奥地利闻之即派有关专家前往参观学习,回来后于1949年在2吨的转炉上进行半工业性实验并获成功,1952年、1953年30吨氧气顶吹转炉分别在Linz和Donawitz建成投产,故常简称LD。 1967年12月德国与加拿大合作发明了氧气底吹转炉,使用双层套管喷嘴并通以气态碳氢化合物进行冷却。 1975年法国研发了顶底复吹转炉,综合了LD和OBM的优点,77年在世界年会上发表。 (2) 氧气顶吹转炉的特点 1)优点 氧气顶吹转炉一经问世就显示出了极大的优越性,世界各国竟相发展,目前成为最主要的炼钢法。其优点主要表现在: (1)熔炼速度快,生产率高(一炉钢只需20分钟); (2)热效率高,冶炼中不需外来热源,且可配用10%~30%的废钢; (3)钢的品种多,质量好(高低碳钢都能炼,S、P、H、N、O及夹杂含量低); (4)便于开展综合利用和实现生产过程计算机控制。 2)缺点 当然,LD尚存在一些问题,如吹损较高(10%,)、所炼钢种仍受一定限制(冶炼含大量难熔元素和易氧化元素的高合金钢有一定的困难)等。 3 氧气转炉的发展趋势

转炉炼钢设备

1 概述 1.1氧气顶吹转炉炼钢特点 氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下: 1.生产效率高 一座容量为80 吨的氧气顶吹转炉连续生产24 小时,钢产量可达到日产3000 — 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢 300 — 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。 2.投资少,成本低 建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。 3.原料适应性强 氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。 4.冶炼的钢质量好,品种多 氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。 1 / 35

5.适于高度机械化和自动化生产 由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。 1.2 转炉炼钢机械设备系统 氧气顶吹转炉炼钢法,是将高压纯氧[压力为0.5~1.5MPa ,纯度99.5% 以上,(我厂为99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。氧气顶吹转炉的主要设备有: 1.转炉本体系统: 包括转炉炉体及其支承系统——托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。 2.氧枪及其升降、氧气装置及配套装置。 氧枪包括枪体、氧气软管及冷却水进出软管。 根据操作工艺要求氧枪必须随时升降,因此需要升降装置,为保证转炉连续生产,必须设有备用枪,即通过换枪装置,随时将备用枪移至工作位置,同时要求备用枪的氧气,进出水管路连接好。 3.散装料系统: 氧气顶吹转炉炼钢使用的原料有: (1)金属料——铁水、废铁、生铁块; (2)脱氧剂——锰铁、硅铁、硅锰、铝等; (3)造渣剂——石灰、萤石、白云石等;

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

转炉炼钢低氮控制实践

转炉炼钢低氮控制实践 2009-11-23 9:50:39 李安东、郑皓宇、徐文杰 (宝山钢铁股份有限公司不锈钢事业部炼钢厂) 摘要:宝钢不锈钢事业部炼钢厂引进宝钢分公司的转炉低氮控制技术,结合不锈钢分公司碳钢炼钢的自身特点,在重点品种IF钢的冶炼过程中,进行转炉低氮控制工艺转化,得出了可操作工艺参数,并推广应用到其它优质低氮钢,形成了规范的转炉低氮控制技术,为不锈钢事业部生产高等级的汽车面板钢作了充分的技术储备。 关键词:转炉冶炼,钢水脱氮 Study on Low-Nitrogen Controlling Technology Li Andong、Zhen Hao yu、Xu Wen Jie (Melting Shop of Baoshan Iron & Steel Co. Ltd. Stainless Steel Business Unit) Abstract: The melting shop of Baosteel Stainless Steel Branch introduced low- nitrogen controlling technology from Baosteel Branch. Combining with the smelting process characteristics of carbon steel, Baosteel Stainless steel Branch applied the technology to the converter in smelting process of IF steel to draw the operational process parameters. And the technology has also been applied to other high-quality low–nitrogen steel and become a standardized low-nitrogen converter controlling technology that is existing as the sufficient technical reserves for the production of high-grade steel panels of motor vehicles. Key words: smelting in converter, denitrigenation from steel 1 前言 钢水中氮的控制贯穿于铁水预处理-BOF-精炼-CC的全过程,基本的控制方法可分为两个方面,即脱氮+防止增氮[1,2]。从理论上讲,铁水预处理、转炉冶炼、RH真空精炼工序均可

转炉高磷铁水的冶炼

转炉高磷铁水的冶炼 刘春森唐山德龙炼钢厂 摘要:随着市场形势的恶化,高炉大量廉价高磷矿的使用和烧结配加钢渣粉等一系列降本措施的应用,使我厂铁水磷含量不断升高,铁水最高磷含量达到0.160%,传统冶炼工艺已经无法满足现有钢种的脱磷要求,通过采用留渣双渣法解决了转炉高磷铁水的冶炼问题,达到了转炉高效脱磷的目的,但采用留渣双渣进行脱磷会对生产节奏造成一定的影响。 关键词:转炉炼钢;高效脱磷;留渣双渣 1 前言 2013随着钢铁市场形势的恶化,成本最低化成为每个企业亟需解决的问题。唐山德龙毗邻京唐港,具有临港优势,原料以外矿为主,但目前使用的主流外矿普遍磷含量偏高,造成高炉铁水磷偏高,平均在0.120%左右。如果烧结要配加钢渣粉,则铁水磷含量还会继续提高,据以往经验,最高可到0.160%左右。转炉脱磷负担重,不仅制约到下一步继续开发低磷钢种,也阻碍了烧结配加钢渣粉降成本的途径。鉴于以上两点,唐山德龙提高转炉脱磷效率的研究,无论对于继续开发低磷钢,还是放开铁水磷含量,降低铁前成本,具有重要意义。 2 传统转炉冶炼工艺 2.1 单渣法 就是在冶炼过程中只造一次渣,中途不倒渣、不扒渣、直到终点出钢。当铁水Si、P、S含量较低时,或者钢种对P、S要求不严格,以及冶炼低碳钢种时,均可以采用单渣操作。单渣操作工艺比较简单,吹炼时间短,易于实现自动控制。 2.2 双渣法 双渣法是在冶炼过程中到两次渣,第一次倒渣后继续冶炼再次造渣,第二次倒渣后才出钢。双渣法主要是在冶炼高硅铁水时应用,目的是为了减少喷溅的发生。双渣法能够冶炼硅比较高的铁水但是增加钢铁料消耗。 2.3 留渣法 留渣法是将上一炉的终点渣部分或全部留给下一炉使用,此方法的有优点是能够降低白灰消耗,实现少渣冶炼。留渣法的缺点是兑铁过程容易喷溅造成安全隐患。 以上三种冶炼方法在我厂均有采用,在冶炼Q195时采用用单渣法操作平均

转炉炼钢原理汇总

2.2 转炉炼钢的原理2.2.1 转炉炼钢原理简介:这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200 摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300 摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化( FeO, SiO2 , MnO ) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷于硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15 分钟左右。如果空气是从炉低吹入,那就是低吹转炉。2.2.2 转炉冶炼的具体原理『(1)熔池元素氧化规律Si 的变化规律开吹时[ Si ]大量氧化,并结合为( 2 FeO ? SiO2 ),随石灰溶解转变为稳定化合物( 2CaO ? SiO2 ) Mn 的变化规律吹炼初期迅速氧化,中后期被[ C ]还原,后期由于渣中氧化性提高,[ Mn ]被再次氧化. C 的变化规律熔池中氧与碳生成CO }{气泡上浮,[% C ]×[% O ]=m(常数0.002~0.0025),[ C ]与[ O ] 成反比.吹炼初期由于[ Si ]、[ Mn ]的氧化,脱碳速度小,中期脱碳速度最快,后期[ C ]浓度低,脱碳速度下降. P 的变化规律低温、适宜的高碱度、高氧化性利于脱[P],吹炼前期应使石灰快速成渣,将( 3FeO ? P2 O5 ) 、置换为( 3CaO ? P2 O5 )和(4CaO ? P2 O5 )稳定化合物,使[P]去除. S 的变化规律高温利于脱[ S ],渣中( CaO ) 活度大,利于脱[ S ],但转炉渣的氧化性高,因此转炉的脱[ S ] 效率低.』[1] (2)转炉中各种元素具体的反应机理1 ○ Si 的变化规律钢液中硅的氧化特点在任何一种炼钢方法中,硅的氧化反应都进行得很激烈。因为硅是易氧化元素,在所有的杂质元素中,硅和氧的亲和力最大,硅的氧化产物是只溶于炉渣的酸性氧化物SiO2 ,它的分解压力比碳、锰、磷的氧化物分解压力都低,从而使得生成的SiO2 很稳定。所以,硅极易被氧化,且氧化时放出大量的热量。在氧气转炉中开吹几分钟内硅即被氧化完毕;在超高功率电炉大量用氧的情况下,在熔化末期或氧化初期,硅几乎氧化完毕;在普通电炉中熔化期硅将被氧化掉70%,少量的残余硅在氧化初期也能降低到最低限度;硅的氧化反应的反应产物容易从反应区排出。硅的氧化反应(1)硅的氧化反应方程式当金属炉料未被炉渣覆盖,或氧流直接吹入金属熔池时,炉料中的硅被气态氧直接氧化[ Si ] + {O2 } = ( SiO2 ) + 740645 J (1)当炉渣形成后或金属液滴和气泡与渣接触时,硅的氧化主要在炉渣与金属界面上进行2( FeO) + [ Si ] = ( SiO2 ) + 2[ Fe] + 341224 J (2)金属液中的[Si]和[O]的反应[ Si ] + [O] = ( SiO 2 ) + 817448 J (3)注意:硅的氧化都是较强的放热反应。(2)硅的氧化产物是SiO2 Si 氧化时产生的( SiO2 )起初与( FeO )结合生成硅酸铁( 2 FeO ? SiO2 ):( SiO2 ) + 2( FeO) = (2 FeO ? SiO2 ) (4)在碱性渣炼钢操作中,随着石灰的逐渐熔化, ( 2 FeO ? SiO2 ) 中的FeO 被强碱性的CaO 所置换得到氧化产物硅酸钙:2( FeO ? SiO2 ) + 2(CaO) = (2CaO ? SiO2 ) + 2( FeO) (5)硅酸钙(2CaO·SiO2)很稳定,所以在碱性炼钢操作中,冶炼前期Si 几乎全部被氧化,不会再被还原。硅的还原在酸性炼钢操作中,当熔池温度升高到一定程度后,将发生硅的还原反应。( SiO2 ) + 2[C ] = [ Si ] + 2{CO} (6)从反应式可看出,当有产生CO 气泡核心的条件时,就有可能发生Si 的还原反应。影响硅的氧化和还原反应的因素主要因素是温度、炉渣成分、金属液成分和炉气氧分压。(1) 温度低有利于硅的氧化;(2) 增加CaO、FeO 含量,有利于硅的氧化。(3) 金属液中增加硅元素含量,有利于硅的氧化;(4) 炉气中氧分压越高,越有利于硅的氧化。硅的氧化对冶炼的

炼钢工艺流程

【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 转炉冶炼工艺流程简介:

相关文档
最新文档