反例在教学中的作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JIUJIANG UNIVERSITY
毕业论文
题目反例在教学中的作用
院系理学院
专业数学教育
姓名谭燕燕
年级 B0912班
指导教师孔祥文
2012年 4月4日
目录
摘要 (3)
关键词 (3)
引言 (3)
1反例的含义 (3)
2反例的来源与构造 (5)
3、反例在数学教学中的作用 (5)
3.1能够帮助学生正确全面地理解数学概念 (6)
例题1 (6)
3.2能够增强学生发现问题、纠正错误的观念 (8)
例题2 (8)
例题3 (9)
3.3使学生理解并掌握数学中的有关定理、性质 (9)
例题4 (9)
3.4加深学生对教学公式、法则的正确理解 (9)
例5 (10)
3.5提高学生否定错误的命题的能力 (10)
例6 (10)
4、运用反例必须注意一些问题 (11)
5、总结 (12)
参考文献 (13)
反例在教学中的作用
【摘要】
数学是一门缜密的科学,它有自己独特的思维方式和逻辑推理体系,在数学发展史中,反例与证明有着同等重要的地位。尤其是在揭示事物的虚假性时,有其特殊的魅力,起着十分重要的作用。所谓反例,通常是用来说明一个命题不成立的例,即符合命题的条件但与命题的结论相矛盾的例。在数学中要证明一个命题成立,就要严格地论证在符合题设的各种可能的情况下结论都成立,而要推翻一个命题,却只要指出在符合题设的某个特殊情况下结论不成立,也就是只要举出一个反例就行。
【关键词】
反例来源构造辨证作用
【引言】
反例,就是故意变换事物的本质属性.使之质变为其他知识,在引导思辩中,从反面突出事物的本质属性的否定例证。在逻辑学中,反例是相对于某个全称命题的概念。反例在数学、哲学和自然科学中都有重要的应用。举例来说,对一个命题:所有的天鹅都是白色的。这是一个全称命题,声明对于某类事物全体(所有的天鹅),都有某个性质(是白色的)。为了说明这个命题不是真的,只需要举出一个例子,其对象属于这类事物,但不具有命题中声称的性质就可以了。
这样的例子称为反例:一只不是白色的天鹅就是这个命题的反例。反例的威力来源于形式逻辑,它与证明是相反相成的两种逻辑方法。论证是用已知为真的判断,确定另一个判断的真实性;而反例是用已知为真的事实去揭露另一判断的虚假性。它们都是为了揭示事物的本质和内在联系。美国数学家B.R.盖尔鲍姆说:“冒着过于简单的风险,我们可以说(撇开定义、陈述以及艰苦的工作不谈)数学由两大类——证明和反例组成,而数学也是朝着两个主要的目标——提出证明和构造反例”发展。
数学中的反例通常是指符合某个命题的条件,但又与该命题结论相矛盾的例子,也即指出某命题不成立的例子.在数学的发展史中,反例和证明有着同等重要的地位.一个正确的数学命题需要严密的证明,谬误则靠反例即可否定.
如何帮助学生学好数学?首要问题是帮助,促使学生掌握好基本概念和基本性质.解决这一问题的有效方式之一,是重视和恰当的使用反例. 因此,在数学的学习中,反例有着极为重要的意义,举反例的方法在数学学习中应经常为同学们所用,它会使同学们对概念,定理,公式的理解更全面,透彻, 它在发现和认识数学真理,强化数学基础的理解和掌握,以及培养学生的思维能力和创造能力等方面的意义和作用是不可低估的.
在数学中,要证明一个命题成立,需严格地论证由已知条件推理出结论。而要证明一个命题错误,十分简洁而又极具说服力的办法就是举反例。下面我将从反例的来源与构造,反例在数学教学中的作用,
运用反例应该注意的问题这三个方面来论述。
一,反例的来源与构造对于数学学科
证明一个猜想是真实的,必须经过严格的推理论证;证明一个猜想是假的,只须找到猜想命题的反例.在数学学习中,出现了这样一种现象,教师为了说明一个命题为假命题, 举出一个反例, 说明反例虽然满足命题的条件, 却无命题的结论, 但反例怎样得到呢?教师很少分析甚至不做分析.学生感到老师确实高明,从肚子里能掏出一个一个非常具有说服力的反例,就像舞台上的魔术师,能从帽子里掏出一个又一个白鸽,虽然非常精彩,却是观众学不会的. 与获得证明的方法一样,反例的获得也需要经过一系列深层次的思维活动,其方法包括:观察与实验,归纳,分析与综合,概括与抽象等,反例决不能凭空得到。第一:从定义入手获得反例概念是数学学科的细胞,是反映事物本质的思维形式.在逻辑学中,定义是明确概念内涵的逻辑方法.在数学问题中,若首先给出一个概念的定义,然后判断一个猜想是否正确,则反例的获得常常需要从定义入手。第二:运用特殊化,运动变化的思想获得反例特殊化一般是从考虑一组给定的对象集合过渡到考虑该集合中一上较小的集合或仅仅一个对象,特殊化在求解问题时常常用到.
二,反例在数学教学中的作用
反例的寻找为新兴学科的发展提供了源泉被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论.它与动力系统的混沌理论交叉结合,相辅相成.
它承认世界的局部可能在一定条件下.过程中,在某一方面(形态,结构,信息,功能, 时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以 是连续的,因而拓展了视野. 虽然分形几何的概念是美籍法国数学家曼德尔布罗特1975 年首 先提出的, 但最早的工作可追朔到 1875 年, 德国数学家维尔斯特拉斯构造了处处连续但处处不可微的函数,集合论创始人康托德国数学家)构 造了有许多奇异性质的三分康托集.1890 年,意大利数学家皮亚诺构造了 填充空间的曲线.1904 年,瑞典数学家科赫设计出类似雪花和岛屿边缘 的一类曲线.1915 年,波兰数学家谢尔宾斯基设计了象地毯和海绵
一 样的几何图形.这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉.以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只 是作为分析与拓扑学教科书中的反例而流传开来.
1,运用反例进行教学,能够帮助学生正确全面地理解数学概念 数学概念的教学,不仅要运用正面的例子加以深刻阐明,而且要通过合适的反例,从另一个侧面抓住概念的本质,使学生对所学概念进一步反思,从而达到深刻理解和掌握该概念的目的。
例1:关于函数的概念,不少学生片面地认为:一个变量随着另一个变量的变化而变化,它们之间的关系就是函数关系,为了帮助学生澄清、纠正这一错误认识,可向学生提出这样的两个问题:
(1)人的身高与年龄成函数关系吗?
(2)若x x y cot tan ∙= , 则y 是x 的函数吗?