纳米滤膜在水处理方面的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米滤膜在水处理方面的应用

作者:刘英

(青海大学机械工程学院09材料科学与工程)

摘要:纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。

关键词:纳滤膜膜技术水处理

Nano- Membranes Applications In Water Treatment Of

Author: Liu Ying

(Qinghai University School of mechanical engineering09, materials science and Engineering)

Abstract: membrane appears in the last century eighty's,1993, academician Gao Congjie puts forward first in home nanofiltration membrane concept [1], in recent years, nanofiltration membrane separation technology has become a hot research field, and in the pharmaceutical, chemical, food, water treatment and other fields widely.

Key words: nanofiltration membrane technology in water treatment

引言

纳滤技术介于超滤和反渗透之间的一种膜分离技术, 其截留分子量在200~1000范围,孔径为几纳米,其分离对象的粒径为约1nm。纳滤膜有着很多显著的优点,例如操作压力低,通量高,对离子形式的盐和一些有机分子的高效去除能力,而设备投资和运行保养的费用却很低。正是因为这些优点,纳滤技术在世界范围内的各个领域被越来越多的应用。纳滤膜出现在上世纪八十年代,1993年,高从堦院士在国内首次提出纳滤膜概念[1],近年来,纳滤技术已经成为膜分离领域的研究热点,并在制药、生物化工、食品、水处理等诸多领域广泛应用。

一、纳米技术及其效应

纳米技术是指在1—100尺度上研究和应用原子、分子现象,由此发展起来的多学科、基础研究与应用研究紧密联系的新的科学技术。它是现代物理(介观物理、量子力学、混沌物理和分子生物学等)和先进工程技术(计算机、微电子和扫描隧道显微镜等技术)结合的产物。纳米技术包括纳米结构和纳米材料。纳米结构是指在纳米尺寸上构架功能性结构。纳米材料指的是构成材料的结构单元尺寸是纳米尺寸,并且用的材料性质是这个尺度上物质特有的非常规性质。纳米颗粒由于具有极小的尺寸,产生了常规颗粒的大块材料所不具备的新效应。

1. 小尺寸效应(又称体积效应)。当超细微粒的尺寸与光波的波长、传导电子

的德布罗意波长或超导态的相干长度或透射深度等物理特征尺寸相当或更小时,其周期性的边界条件将破坏,光、声、电、磁、热力学等特性会表现出新的小尺寸效应。

2.量子尺寸效应。当粒子的尺寸小到某一值时,金属的费米能级附近的电子能级由准连续变成离散,对于纳米半导体材料存在的不连续的最高被占据分子轨道和最低未被占据分子轨道的能级和能隙变宽,此现象称为量子尺寸效应。3.宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有贯穿宏观系统势垒而产生变化的隧道效应——宏观量子隧道效应。4.表面效应。表面效应是纳米粒子及固体材料中重要的效应之一,是指表面原子数随纳米结构尺寸减小而急剧增大后引起的性质上的变化。表1是颗粒粒径、原子数及表面原子数之间的关系。表面原子数的增加、原子配位的不足,必然导致纳米结构存在许多表面缺陷,使表面具有很高的活性,极不稳定,很容易与其他原子结合。纳米颗粒的粒径极小,具有巨大的比表面积的表面自由能。二、纳滤膜的研制

1.醋酸纤维素类纳滤膜周金盛等人应用相转化法制备了醋酸纤维素(CA)-三醋酸纤维素(CTA)不对称纳滤膜。针对CA/CTA比,混合溶剂比例,添加剂和制膜条件等因素对膜性能的影响进行了研究。所制得的膜在操作压力1MPa和进水温度5~25℃条件下,对1000mg/L的NaCl水溶液脱盐率达到了15~60%,而对1000mg/Na2SO4水溶液脱盐率为85~98%。刘玉荣等人[3]对醋酸纤维纳滤膜连续成膜工艺进行了研究,确定了连续制备醋酸纤维纳滤膜的工艺条件。在机制膜制备中,材料的毛疵点可能导致膜面的疵点和缺陷。而材料表面的微细的软毛,则有利于铸膜液与增强材料的结合,使膜不宜从增强材料上剥离。醋酸纤维类纳滤膜是早期在膜市场投入生产的产品,但使纳滤膜大量应用于生产实践当中并迅速发展的,是复合型纳滤膜的出现。

2.复合纳滤膜1993年,高从堦在国内首先采用界面缩聚法制备芳香族聚酰胺复合纳滤膜(PA类纳滤膜)的是,并指出该膜对MgSO4的脱盐率优于NaCl,可用于水质的软化。岑美柱和章勤等人采用高取代度氰乙基纤维素与二醋酸纤维素共混为膜材料,丙酮、二氧六环混合溶剂,以有机醇为主、加入适量其他添加剂为致孔剂,通过冰水凝胶浴干湿法纺丝,制得性能良好的中空纤维纳滤膜,该膜在给水质量浓度1800mg/L、操作压力为0.6MPa、水温25℃条件下,对二价盐CaCl2、一价盐NaCl的水溶液的脱盐率分别大于90%和小于60%,水通量均大于3.5mL/(cm2·h)。于品早[5]以聚偏氟乙酸(PVDF)为第二组分聚合物与三醋酸纤维素(CTA)共混,通过冻胶法纺丝工艺制备成中空纤维纳滤膜。研究了固含量,纺丝工艺和后处理条件对膜性能的影响,并测试了不同操作条件下的模性能,取得了满意的结果。

3.荷电纳滤膜

2.3.1 荷负电纳滤膜鲁学仁以丙烯酸-丙烯腈共聚物为荷电材料,以聚砜酰胺(PSA)为基膜研制了荷负电的纳滤膜。对共聚物的合成,荷电剂浓度,反应温度和反应时间等制膜条件进行了系统试验。同时还研究了荷电膜离子交换容量与膜性能的关系。制得的膜在0.6MPa下,对自来水脱盐率为40~50%,水通量为5~10mL/(cm 2·h),IEC为6.0×10-4~8.0×10-4meq/cm2。

苗晶等人采用均相合成的方法制备了一种典型的两性聚电解质-壳聚糖硫酸酯(SCS)。以SCS的水溶液为复合纳滤膜活性层铸膜液,戊二醛为交联剂,聚砜

相关文档
最新文档