新版应用题综合训练精讲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题综合训练精讲
应用题综合训练精讲
小升初数学:应用题综合训练精讲4
1. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄
比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
解:如果甲减少3,丙减少1,甲就是乙的2倍,丙就是乙的1/2。
那么余下的109-1-3=105岁是乙的2+1+1/2=7/2
所以乙是105÷7/2=30岁,甲是30×2+3=63岁,丙是
(30+2)÷2=16岁。
解:依题意得,甲=乙*2+3,乙=丙*2-2,则甲=[(丙*2-2)]*2+3=丙
*4-1,
三者年龄和是(丙*4-1)+(丙*2-2)+丙=109,解得丙=16岁
则甲=16*4-1=63岁,乙=16*2-2=30岁。
2. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车
以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两
站的中点70千米.甲、乙两站相距多少千米?
依题意“相遇点离两站的中点70千米”得快车比慢车多行了140千米,
但快车先行了60*1.5=90千米,得实际多行了140-90=50千米,
两车同行了50/(60-40)=2.5小时
则两地相距90+(60+40)*2.5=340千米
3. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分
甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的
距离是乙车与学校距离的2倍,求甲车离开学校的时间.
解:把8时32分时甲车行的看作3份,乙车行的看作1份,相差3-
1=2份。
由于速度相同,他们经过相同的时间,相差是份数是相同的。
所以到8时39分,由于甲车行的路程是乙车的2倍,所以乙车就行了与甲车相差的2份,
所以,甲车就行了2×2=4份。两个时刻相比较,两车都行了2-1=1份,所以,1份就是39-32=7分钟。因此甲车共行了7×4=28分钟。
39-28=11分,所以甲车离开学校的时间是8:11
解:依题意,设7分走的路程为A,则有3乙+A=(乙+A)*2
整理得乙=A,即7分行的路程=乙车原来行的路程
所以甲=3乙=3*7=21分,
甲车离开学校的时间是32-21=8:11
4. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
解:甲乙交换,完成时间是7-1=6小时,工作效率增加1/6-
1/7=1/42,
同理,丙丁交换也同样增加工作效率1/42。所以同时交换,工作效率变成了1/7+1/42×2=4/21 所以,完成这批零件的时间是
1÷4/21=5.25小时。即5小时15分。
5. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?解:解答这个题目的关键是考虑面积大的一个面多重叠。
要使表面积最小,关键是把比较大的面隐藏起来。建议把7*5的面隐藏,得到两排五块重叠摆法,长为7,宽为5*2,高为3*5 则长方体的表面积=(15*10+15*7+10*7)*2=650平方厘米
解:解答这个题目的关键是考虑面积大的一个面多重叠。
6. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的.团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
①45人:30*(40/10)+5*5=145元②208人:30*(210/10)*(1-10%)=567元
(1)10+10+10+5=45 30+30+30+5*5=115
(2)208=200+8 200/10=20>10
买20张团体票8张个人票20*30*(1-10%)+8*5=580
买21张团体票21*30*(1-10%)=567
买21张团体票更划算
7. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
把甲看作3份,那么乙就是4份,丙就是2份多22×2=44。
所以,每份是(260-44)÷(3+4+2)=24
所以,甲24×3=72分,乙24×4=96分,丙24×2+44=92
解:如果丙的分少44分,则丙的一半与甲的1/3、乙的1/4相等。此时总分是:260-44=216分
设丙是二份,则甲是3份,乙是4份所以一份是:216/[2+3+4]=24 即丙是24*2=48分
那么丙原来的分是:48+44=92分
8. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已
知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
解:甲做了4天,比乙多做4×1/30=2/15,所以,如果乙做
4×2+5=13天,
完成了1-2/15=13/15,所以,乙单独做需要13÷13/15=15天,
那么甲单独做需要1÷(1/15+1/30)=10天。
解:甲乙合作4天乙做5天完成,可以看作是甲做了4天乙做了9天
完成。
甲4天比乙4天多做:1/30*4=2/15
即乙做4天后再做9天可以完成:1-2/15=13/15
即乙13天完成13/15,所以乙的效率是:1/15
甲的效率是:1/15+1/30=1/10
即甲单独做要:1/[1/10]=10天,乙单独做要15天
9. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为
56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
我们把长蜡烛和短蜡烛的长度差看作1份,那么当长蜡烛同短蜡烛点燃前一样长时,