典型时序逻辑电路.ppt

合集下载

10章时序逻辑电路课件

10章时序逻辑电路课件

/0
010
101
/1
(b) 无效循环
32
时序图
CP Q0 Q1 Q2 Y
33
⑤ 电路功能
有效循环的6个状态分别是0~5这6个十进制数字的格雷码, 并且在时钟脉冲CP的作用下,这6个状态是按递增规律变 化的,即:
000→001→011→111→110→100→000→… 所以这是一个用格雷码表示的六进制同步加法计数器。当 对第6个脉冲计数时,计数器又重新从000开始计数,并产 生输出Y=1。
4
10.2.1 基本RS触发器
❖ 用或非门实现的基本RS触发器
(a)逻辑图
(b)逻辑符号
G1
S
≥1
Qb
S
Q
输入高电平有效
≥1
R
Qa
R
G2
由逻辑图可得逻辑表达式为:
Q 第55 章
( d )基本RS触发器的动作特点
在基本RS触发器中,输入 信号直接加在输出门上,所 以输入信号在全部作用时间 里(即:S或R为1的全部时间) 都能直接改变输出端Q和Q的 状态。
K2 Q1n K1 Q0n K0 Q2n
调题图
29
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
QQ12nn
1 1
J 2Q2n J1Q1n
K2Q2n Q1nQ2n Q1nQ2n Q1n K1Q1n Q0nQ1n Q0nQ1n Q0n
上升沿触发有效
Q
Q
1J C1 1K
J CP K
下降沿触发有效
16
10.3.同步时序逻辑电路的分析方法
任一时刻的输出信号不仅取决于此时刻的输入信号, 而且取决于上一个时刻的输出状态。

数字电子技术基础第五章时序逻辑电路PPT课件

数字电子技术基础第五章时序逻辑电路PPT课件

减小功耗
优化电路结构,降低电路的 功耗,减少能源浪费。
提高可靠性
通过优化设计,提高电路的 可靠性和稳定性,降低故障 发生的概率。
提高性能
优化电路结构,提高电路的 响应速度和性能,满足设计 要求。
05 时序逻辑电路的实现技术
基于中小规模集成电路的时序逻辑电路实现技术
概述
中小规模集成电路是将多个晶体管集成在一块芯片上,实现时序逻辑功能。
冒险现象
由于竞争现象的存在,时序逻辑电路 的输出可能会产生短暂的不确定状态, 这种现象称为冒险现象。
04 时序逻辑电路的设计方法
同步时序逻辑电路的设计方法
建立原始状态图
根据设计要求,确定系统的输入和输出变量,并使用状 态图表示系统的状态转换关系。
逻辑方程组
根据状态图和状态编码,列出逻辑方程组,包括状态转 移方程、输出方程和时钟方程。
分类
根据触发器的不同,时序逻辑电 路可分为同步时序电路和异步时 序电路;根据电路结构,可分为 摩尔型和米立型。
时序逻辑电路的功能与特点
功能
实现数据的存储、记忆、计数、分频 等功能。
特点
具有记忆功能、输出状态不仅与当前 输入有关还与之前状态有关、具有时 钟信号控制等。
时序逻辑电路的应用场景
01
02
数字电子技术基础第五章时序逻辑 电路ppt课件
目 录
• 时序逻辑电路概述 • 时序逻辑电路的基本电路的实现技术 • 时序逻辑电路的应用实例
01 时序逻辑电路概述
时序逻辑电路的定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,其输出不仅取决于当 前的输入,还与之前的输入状态 有关。
03
数字钟
利用时序逻辑电路实现时 间的计数和显示。

《时序逻辑电路分析》课件

《时序逻辑电路分析》课件
优化触发器设计
采用低功耗、高速的触发器设计,减少资源占用。
提高工作速度的优化方法
并行处理
通过并行处理技术,提高电路的工作 速度。
时钟分频与倍频
根据电路的工作频率需求,合理选择 时钟的分频与倍频方案,以优化工作 速度。
THANKS
感谢观看
REPORTING
PART 03
时序逻辑电路的设计
REPORTING
同步设计法
01
同步设计法定义
同步设计法是一种基于时钟信号 的设计方法,用于构建时序逻辑
电路。
03
优点
同步设计法具有较高的可靠性和 稳定性,能够实现复杂的逻辑功
能。
02
工作原理
在同步设计法中,所有操作都严 格在时钟信号的驱动下进行,保 证了电路的稳定性和可靠性。
《时序逻辑电路分析 》PPT课件
REPORTING
• 时序逻辑电路概述 • 时序逻辑电路的分析方法 • 时序逻辑电路的设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化设计
目录
PART 01
时序逻辑电
时序逻辑电路的定义、特点
时序逻辑电路的特点包括
具有记忆功能、具有时钟信号控制、具有输入信号和输出信号等。
时序逻辑电路的基本组成
时序逻辑电路由触发器、组合逻 辑电路和时钟信号源三部分组成 。
组合逻辑电路用于实现输入信号 到输出信号的逻辑变换,主要由 门电路组成。
总结词:时序逻辑电路的基本组 成
触发器是时序逻辑电路中的核心 元件,用于存储状态信息,常见 的触发器有RS触发器、D触发器 、JK触发器和T触发器等。
04
异步时序逻辑电路是指触发器的时钟输入端接在不同的时钟源上,时 钟信号独立作用于各个触发器,实现状态异步转换。

时序逻辑电路PPT课件

时序逻辑电路PPT课件
时序逻辑电路可以分为同步时序 逻辑电路和异步时序逻辑电路, 其中同步时序逻辑电路是最常用 的类型。
工作原理
状态表示
时序逻辑电路中的状态通常由存储元件(如触发器)来存储,根据 输入信号的变化,电路的状态会随之改变。
状态转移
时序逻辑电路中的状态转移是由输入信号和当前状态共同决定的, 根据一定的逻辑关系,电路会从一个状态转移到另一个状态。

02
可编程逻辑控制器(PLC)
在工业控制系统中,时序逻辑电路用于实现可编程逻辑控制器,用于自
动化控制和数据处理。
03
传感器接口
时序逻辑电路用于实现传感器接口电路,将传感器的模拟信号转换为数
字信号,并传输给微控制器或可编程逻辑控制器进行处理。
04
CATALOGUE
时序逻辑电路的优化
优化设计
设计
使用基本的逻辑门电路, 根据需求逐一设计电路。
自动化工具设计
使用EDA(电子设计自动 化)工具进行设计,提高 设计效率。
混合设计
结合手工设计和自动化工 具设计,根据具体情况选 择合适的设计方法。
设计工具
硬件描述语言
使用Verilog或VHDL等硬件描述语言进行设计。
EDA工具
时序逻辑电路
目录
• 时序逻辑电路简介 • 时序逻辑电路设计 • 时序逻辑电路的应用 • 时序逻辑电路的优化 • 时序逻辑电路的发展趋势
01
CATALOGUE
时序逻辑电路简介
定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,它能够根据输入信号 的变化,按照一定的逻辑关系, 输出相应的信号。
分类
输出信号
时序逻辑电路的输出信号是根据当前状态和输入信号来确定的,它会 随着状态的变化而变化。

第六章时序逻辑电路-PPT精选.ppt

第六章时序逻辑电路-PPT精选.ppt

数据预置 : 设A3A2A1A0 = 1011 ,
在存数脉冲作用下,也有 Q3Q2Q1Q0 = 1011 。
四位串入 - 串出的左移寄存器
数据预置
A3
A2
A1
A0
存数 脉冲
LOAD
&
&
&
&
串行 1 SD0
1
1
0
输出
Q
3
D
Q2 D
Q1 D
Q0 D
Q
清零
Q
脉冲 RD
Q
Q
CP 移位
CLR
脉冲
下面将重点讨论 兰颜色的 那部分电路的工作原理。
四位串入 - 串出 四位串入 - 串出 的右移寄存器: 的左移寄存器:
D0 = Q1 D1 = Q2 D2 = Q3
D0 = L D1 = Q0 D2 = Q1
D3 = R
D3 = Q2
S=0 时, 也能够实现左移 , 方案可行 !
D0 = SL + SQ1 = 1·L + 0·Q1 = L
D1 = SQ0 + SQ2 = 1·Q0 + 0·Q2 = Q0 D2 = SQ1 + SQ3 = 1·Q1 + 0·Q3 = Q1 D3 = SQ2 + SR = 1·Q2 + 0·R = Q2
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端


FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
数据预置
A3
A2
A1
&

数字电子技术时序逻辑电路PPT

数字电子技术时序逻辑电路PPT
CP0 CP0 CP1 CP3 Q0 CP2 Q1
写驱动方程: J 0 K 0 1
J1 J2
Q3 K2
1
K1
1
J 3 Q1Q2
K3 1
写状态方程:
Q0n1 QQ1n2n11
n
Q0
Q3
n
Q2
n
Q1
(CP0 下降沿动作) (Q0 下降沿动作) (Q1下降沿动作)
Q3n 1
Q1Q2
画时序图: 该电路能够自启动。
5.1.2 异步时序逻辑电路的分析方法
异步时序电路的分析步骤:
① 写时钟方程; ② 写驱动方程; ③ 写状态方程; ④ 写输出方程。
[例5-2]试分析图示时序逻辑电路的逻辑功能,列出状态转换 表,并画出状态转换图。
解:图5-7所示电路为1个异步摩尔型时序逻辑电路。 写时钟方程:
Q3n(Q0
下降沿动作)
列状态转换表:
画状态转换图:
5.2 若干常用的时序逻辑电路 5.2.1寄存器
1. 基本寄存器
图5-2 双2位寄存器74LS75的逻辑图
图5-2所示为双2位寄存器74LS75的逻辑图。当 CPA = 1时,
送到数据输入端的数据被存入寄存器,当CPA =0时,存入
寄存器的数据将保持不变。
2n-1 M 2n
然后给电路的每一种状态分配与之对应的触发器状态组合。
4)确定触发器的类型,并求出电路的状态方程、驱动方程 和输出方程。 确定触发器类型后,可根据实际的状态转换图求出电路的状 态方程和输出方程,进而求出电路的驱动方程。
5)根据得到的驱动方程和输出方程,画出相应的逻辑图。
6) 判断所设计的电路能否自启动。
1.同步计数器 1)同步二进制计数器

常用的时序逻辑电路.ppt

常用的时序逻辑电路.ppt
• 功能 1.直接清零:当R01=R02=1,S91、 S92有低电平 时, 输出“0000”状态。与CP无关 在外部将QA和CPB连接 2.置9:当 S91= S92= 1 码计数器 时, 输出 1001 状态 构成 8421BCD CPA入QD QA出 3.计数:当R01、R02及S91、S92有低电平时,且当 在外部将QD和CPA连接 有CP下降沿时,即可以实现计数 构成5421BCD码计数器 CPB入QA QD QC QB出
二、同步十进制计数器
返回
一、同步二进制计数器
1、同步二进制加法计数器
原理:由二进制加法运算规则可知,在一个多位 二进制数的末尾加1时,若其中第i位以下各位 皆为1时,则第i位及以下各位均改变状态。 例: 1000 0111 + 1 —————————— 1000 1000 最低4位数都改变了状态,而高4位未改变。
目前常见的异步二进制加法计数器产品有: 4位:74LS293、74LS393、74HC393 7位:CC4024 12位:CC4040 14位:CC4060
二、异步十进制计数器
构成思想:如何使4位二进制计数器在计数过程中跳过 从1010到1111六个状态。
优点:结构简单
缺点:工作频率低;电路 状态译码时存在竞 争—冒险现象。
74ls75真值表输入输出cp1中规模寄存器74ls751中规模寄存器74ls752中规模寄存器74ls1752中规模寄存器74ls175四个维持阻塞d触发器构成74ls175真值表输入输出3中规模寄存器cc40763中规模寄存器cc4076异步置0输出三态控制保持cc4076ld装入数据ld保持en输出允许en74ls7574ls175cc4076均为并行输入并行输出假设4是低位寄存器1是高位寄存器由d触发器的特性方程可知

时序逻辑电路课件

时序逻辑电路课件

E
控制单元
Clk
B[0]
Init Add Done Cnt Shr
Init: DX, BY, T0 , A0, C0
Cnt: TT-1
Add: {C, A}A+D
Shr: {C, A, B}{C, A, B}>>1ZLeabharlann , C0时序逻辑电路
10
乘法器控制单元
• 状态图
Start Reset
Reset
S0
• 寄存器组
• 8个8位寄存器,记为 R0~R7
• ALU为前例
• MEM为存储器
• DI/DO: 输入/输出数据 • MA: 地址 • MW: 写使能
R0 R1-R2
8
3
DA D
WE Register
3
3
AA File BA
A
B
8 8
K
8
01
MUX
MB
8
4
X
Y
ALU
SF H
DI MA MW
MEM
Reset
S0
Done
!Start
Start/Init
S1
Cnt
!B[0]
B[0]/Add
S2
E
Shr
!E
时序逻辑电路
17
乘法器仿真波形
时序逻辑电路
18
寄存器传送
• 寄存器之间传输数据 • 每个寄存器的数据输入
处配置多路数据选择器 (MUX) • 每个寄存器的输出数据 连接到所有MUX • 灵活实现多个数据同时 传送
S2
else next_state = S0;
E
Shr

时序逻辑电路分析PPT参考幻灯片

时序逻辑电路分析PPT参考幻灯片
Mealy电路 电路的输出是输入变量及触发器现态的函数, 这类时序电路亦称为Mealy型电路
Ii



E
路k
CP 或 CP


存储电路 S m
电 路
j O
4
Moore型电路
电路输出仅仅取决于各触发器的现态,而不受电路当时的输入 信号影响或没有输入变量,这类电路称为Moore型电路
Ii



E
路k
CP 或 CP
存储电路 输出
•••
组合电路
存储电路
•••
Z1 外部输出 Zm
•••
Y1 Yr
内部输出
•••
存储电路 输入
触发器是构成时序逻辑电路的最主要的单元
1
4.2.2 时序逻辑电路的分类:
按时序电路中触发器的动作特点来分: 1. 同步时序电路 2. 异步时序电路 按时序电路输出信号的特点来分: 1. 米里型(Mealy) 2. 莫尔型 (Moore)
11
时序逻辑电路分析的任务: 分析时序逻辑电路在输入信号的作用下,其状态和
输出信号变化的规律,进而确定电路的逻辑功能。
分析过程的主要表现形式:
时序电路的逻辑能是由其状态和输出信号的变化 的规律呈现出来的。所以,分析过程主要是列出电路状 态表或画出状态图、工作波形图。
12
4.3.1 分析同步时序逻辑电路的一般步骤:
4.2 时序逻辑电路的基本概念
4.2.1 时序电路的基本结构
结构:一定包含存储电路(触发器组成),而且它的输出往往反馈到输 入端,与输入变量一起决定电路的输出状态。
特点:任意时刻输出不仅取决于该时刻输入,而且还与原来的状态有 关。具有记忆功能。

数字逻辑电路教程PPT第5章时序逻辑电路

数字逻辑电路教程PPT第5章时序逻辑电路

示意图、功能表
74161功能表
74161符号
波形图
012 34 56 7
VCC QCC Q0 Q1 Q2 Q3 T LD 16 15 14 13 12 11 10 9
74LS161
1 2 34 56 7 8
Cr CP D0 D1 D2 D3 P GND
T4161(74LS161)的外引脚图
例5-5 试用74161构成八位二进制加法计数 器。
状态表 状态图
驱动方程 特性方程
状态方程
CP触发沿 时序图
概括逻辑功能
[例5-1]试分析图5-2所示时序电路的逻 辑功能。
⑴根据图5-2所示逻辑图写出的驱动方程为: 写出的输出方程为:
⑵将上式代入JK触发器的特性方程 ⑶求得状态方程:
求状态转换表和状态转换图,画波形图。 设电路的初始状态
代入状态方程和输出方程得
若无效状态在CP作用下不能进入有效循环,则表明电路 不能自启动。
[例5-2]试分析图5-5所示时序电路的逻辑功能。
图5-5
解:⑴根据图5-5写出的驱动方程如下:
图5-5
状态方程、输出方程如下:
⑵列状态转换表(表5-2),画出状态转换图(图5-6)
3、确定逻辑功能:X=0,回 到00状态,且F=0;只有连续 输入四个或四个以上个1时, 才使F=1否则F=0。故该电路 称作1111序列检测器。
预置数与CP同步,清零与CP异步。
Q1
Q2
Q3
Q4
Qcc
T Q Cr LD CP
寄存器
➢ 在数字系统和计算机中,经常要把一些数据信 息暂时存放起来,等待处理。
➢ 寄存器就是能暂时寄存数码的逻辑器件。 ➢ 寄存器内部的记忆单元是触发器。 ➢ 一个触发器可以存储一位二进制数,N个触发

时序逻辑电路分析幻灯片PPT

时序逻辑电路分析幻灯片PPT





Q1 Q0 00 D1 D0 持 持 数
功能表
自动化学院应用电子教学中心
47
四位二进制同步加法计数器74LSl61
符号图
74LS161输出及进位时序图
自动化学院应用电子教学中心
48
四位二进制同步加法计数器74LSl61
符号图
①引脚简介 ②输出数据说明 ③异步清零功能 ④同步预置数功能 ⑤进位输出功能 ⑥工作方式选择
74LS194符号图
74LS194是4位双向移位存放器,能根据需要将 数码左移,也能将数码右移。同时还具有并行预置数、 清零等辅助功能,能较好的满足实际应用需要。在应 用中也可根据具体情况选用8位类似的移位存放器。
自动化学院应用电子教学中心
41
4位双向移位存放器74LS194
输入
输出
CR S1
S0 DSL DSR CP D0
J0Q0n 1Q0n 1Q0n Q0n J1Q1n Q0nQ1n Q0nQ1n
ZQ0 Q1
自动化学院应用电子教学中心
状态方程 输出方程
8
例5.2.1 时序逻辑电路分析
mi
tn
Q1
Q0
tn1
Q1
Q0
tn
Z
0
0
0
0
1
0
1
0
1
1
0
0
2
1
0
1
1
0
3
1
1
0
0
1
状态转换表
自动化学院应用电子教学中心
9
例5.2.1 时序逻辑电路分析
Q
n 2
Q
n 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)按计数器中触发器状态的更新是否同步 可分为同步计数器和异步计数器。在同步计 数器中,所有要更新状态的触发器都是同时 动作的;在异步计数器中,并非所有要更新 状态的触发器都是同时动作的。
(2)按计数进制可分为二进制计数器、十进制计 数器和N进制计数器。 按照二进制数规律对时钟脉冲进行计数的电路称 为二进制计数器。 在计数器中,被用来计数的状态组合的个数称为 计数器的计数长度,或称为计数器的模。
图6.7 74163 符号及功能表
2、 MSI 74160 74160是中规模集成 8421BCD码同步
十进制加法计数器,计数范围是0~9。它具 有同步置数、异步清零、保持和十进制加法 计数等逻辑功能。
图6.8 74160 符号及功能表
注意:74160的 CLR 是低电平有效的异步清
零输入端,只要该信号一为0,它就马上将各触 发器清零,而不需要等待时钟有效边沿的到来, 也就是说,异步清零不受时钟信号CLK的控制, 这也就是为什么叫异步的原因!注意和同步的区 别。
例1:
按照十进制数规律对时钟脉冲进行递增计数 的同步电路称为同步十进制加法计数器。
下图所示电路是由四个下降沿动作的JK触发 器构成的同步十进制加法计数器。
& ≥1
& &
&
C
1
J0 Q0
CP0
K0 Q0
CP
J1 Q1 CP1
K1 Q1
J2 Q2 CP2
K2 Q2
J3 Q3 CP3 K3 Q3
图6.1 同步十进制加法计数器
第六章 常用典型时序逻辑电路
6.1 计数器 (P193) 6.2 寄存器 6.3 移位寄存器型计数器
6.1 计数器
6.1.1 计数器概述 计数器是一种用途非常广泛的时序逻辑电路,它
不仅可以对时钟脉冲进行计数,还可以用在定时、 分频、信号产生等逻辑电路中。
计数器的种类很多,根据它们的不同特点,可 以将计数器分成不同的类型。典型的分类方法有如 下几种:
输出方程:
C Q3nQ0n
驱动方程:
J0 K0 1
J1
K1
Q0n
n
Q3
J2 K2 Q1nQ0n
J3 K3 Q2nQ1nQ0n Q3nQ0n
状态方程:
Qn1 0
n
Q0
Qn1 1
(Q0n
n
Q3
)
Q1n
Qn1 2
(Q1nQ0n )
Q2n
Qn1 3
(Q2nQ1nQ0n
Q3nQ0n )
Q3n
Q3n Q2n Q1n Q0n CP0 CP1 CP2 CP3 Q3n+1 Q2n+1 Q1n+1 Q0n+1 Y
/0 0000 /1 1111 /0 1110 /0 1101
/0
/0 0001
1100 /0
/0
/0
0010
0011
Q3Q2Q1Q0 /B
1011
1010
/0
/0
/0 0100
1001 /0
3、 MSI 74191
MSI 74191是中规模集成四位同步二进制加/减 可逆计数器,计数范围是0~15。它具有异步置数、 保持、二进制加法计数和二进制减法计数等逻辑功 能。
图6.9 74191计数器符号和功能表
6.1.3 MSI计数器应用 用MSI计数器模块构成任意进制计数器
利用MSI计数器模块的清零端和置数端,结合 MSI计数器模块的串接,可以构成任意进制的计 数器。
在二进制计数器中,触发器的所有状态组合都 被用来计数,因此,n位二进制计数器的模为2n。 按照十进制数规律对时钟脉冲进行计数的电路 称为十进制计数器。在十进制计数器中,只有十 个状态组合被用来计数,十进制计数器的计数长 度为10。
按照N进制数规律对时钟脉冲进行计数的电路称 为N进制计数器。在N进制计数器中,有N个状态 组合被用来计数,N进制计数器的计数长度为N。 (3)按计数过程中的增减规律可以分为加法计数器、 减法计数器和可逆计数器。下面看一个例题。
/0 00 00
/1 10 01
/0
10 00 /0
/0 11 10
/0 00 01
11 11
/1 /0
00 10
Q3Q2Q1Q0
/C
01 11 /0
01 10 /0
/1
10 10
10 11
/0
00 11
/0
01 00 /1
/0
01 01
图6.2 例1状态转换图
11 00 /0
11 01
CP Q0 Q1 Q2 Q3 C
清零法是在计数器尚未完成计数循环之前,使其清零端 有效,让计数器提前回到全0状态。 置数法是在计数器计数到某个状态时,给它置入一个 新的状态,从而绕过若干个状态。 计数器模块的清零和置数功能有同步和异步两种不同的 方式,相应的转换电路也有所不同。
例3 用74163构造十五进制加法计数器。 解:74163是具有同步清零和同步置数功能的四位二进
图6.3 同步十进制加法计数器的时序图
例2:异步二进制减法计数器 按照二进制数规律对时钟脉冲进行递减计 数的异步电路称为异步二进制减法计数器。
图6.4所示电路是由四个下降沿动作的JK 触发器构成的四位异步二进制减法计数器。
1
J0 Q0
CP
CP0
K0 Q0
J1 Q1 CP1
K1 Q1
J2 Q2 CP2
0101 /0
0110 /0
0111 /0
1000
图6.5 状态转换图
CP Q0 Q1 Q2 Q3 B
图6.6 时序图
6.1.2 MSI几个典型计数器 1、MSI 74163
74163是中规模集成四位同步二进制加 法计数器,计数范围是0~15。
它具有同步置数、同步清零、保持和二 进制加法计数等逻辑功能。
K2 Q2
J3 Q3 CP3
K3 Q3
&
B
图6.4 四位异步二进制减法计数器
状态方程:在各个触发器下降沿到来时有
Qn 1 0
n
Q0
Qn 1 1
n
Q1
Qn 1 2
n
Q2
Qn 1 3
n
Q3
Q3n Q2n Q1n Q0n CP0 CP1 CP2 CP3 Q3n+1 Q2n+1 Q1n+1 Q0n+1 Y
假设已有N进制的计数器模块,要构造M进制 的计数器,当N>M时,只用一ห้องสมุดไป่ตู้MSI计数器模块 即可;当N<M时,必须要用多个MSI计数器模块 进行串接。下面分别来讨论这两种情况。
1、已有计数器的模N大于要构造计数器的 模M
思路:当已有计数器的模N大于要构造 计数器的模M时,要设法让计数器绕过其中 的N-M 个状态,提前完成计数循环,实现 的方法有清零法和置数法。
制加法计数器,它的计数循环中包含16个状态,因此又称十 六进制计数器。用74163构造十五进制加法计数器就是要提 前一个状态结束计数循环,使状态1110的下一个状态改为 0000而非原来的1111,如下图所示。
相关文档
最新文档