思考与练习答案(预测)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章思考与练习
1.预测是指什么?举例说明预测的作用。

答:预测是指根据客观事物的发展趋势和变化规律对特定的对象未来发展的趋势或状态做出科学的推测与判断。

预测可以为决策提供必要的未来信息,是进行决策的基础。

如在产品的销售方面,通过对顾客类型、市场占有份额、物价变动趋势、新产品开发等方面的预测,可以对市场销售起促进作用。

又如在生产方面,通过对原材料需求量、材料成本及劳动力成本的变动趋势以及材料与劳动力的可用量的变动趋势等方面的预测,便于企业对生产和库存进行计划,并在合理的成本上满足销售的需求
2.预测有哪些基本原理?预测有什么特点?影响预测精确度的最主要的因素是什么?如何提高预测的精确度?
答:预测的基本原理包括:系统性原理、连贯性原理、类推原理、相关性原理、概率推断原理。

预测的特点:一方面我们可以根据预测的基本原理,利用适当的预测方法对未来进行预测,因此预测是可能的;另一方面由于各种社会现象和自然现象的随机性以及人们认识能力的有限性等原因,因此不存在绝对准确的预测。

影响预测精确度的主要因素包括:预测资料的分析和预处理,预测问题的分析与认识、预测方法的选择和运用、预测结果的分析和处理等。

因此,要提高预测的精确度,需要从以上几个方面认真对待,从而为决策者提供可靠的未来信息。

3.叙述预测的基本步骤。

答:预测的基本步骤为;(1)确定预测目标;(2)收集、整理有关资料;(3)选择预测方法;(4)建立预测模型;(5)评价预测模型;(6)利用模型进行预测;(7)分析预测结果。

4.为什么要对收集的资料进行分析和预处理?如何鉴别异常数据?对异常数据应如何处理?
答:在预测工作中,所收集的资料是进行预测的基础,相关资料的缺少或数据的异常都会导致所建立的预测模型不准确,从而直接影响到预测的结果,所以需要对数据的异常情况进行鉴别与分析。

鉴别异常数据可采用图形观察法有统计滤波法。

异常数据处理的主要方法包括:剔除法、还原法、拉平法、比例法等。

5.预测有几种常用分类方法?这些分类方法有何不同之处?答:预测可以按预测的范围或层次不同、预测的时间长短、预测方法的客观性、预测技术的差异性、预测分析的途径等进行分类。

这些分类方法是按照不同的分类标准、不同的侧重点进行分类的。

6.什么是定性分析预测?什么是定量分析预测?两者有何不同?
答:定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势做出判断的预测方法。

定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。

定性分析预测偏重于预测者的经验和知识水平,定量分析偏重于数学模型的应用,实际工作中应将两种方法结合起来使用,从而提高预测的准确度。

第二章思考与练习
1.头脑风暴法与德尔非法的主要区别是什么?在专家选择上有何异同?
答:主要区别:头脑风暴法专家是面对面的,在融洽轻松的会议气氛中,敞开思想、各抒己见、自由联想、畅所欲言、互相启发、互相激励,使创造性设想起连锁反应,从而获得众多解决问题的方法;德尔非法专家是背对背的,经历3-5 轮多次反复,专家在多次的思考过程之后,不断地提高自己的观点的科学性,在此得出一致的较为科学合理的预测结果。

头脑风暴法要求参加会议的专家数目不宜太多,也不宜太少,一般10~15 个专家组成专家预测小组。

理想的专家预测小组应由如下人员组成:方法论学家——预测学家;设想产生者——专业领域专家;分析者——专业领域的高级专家,他们应当追溯过去,并及时评价对
象的现状和发展趋势;演绎者——对所论问题具有充分的推断能力的专家。

德尔菲法要求专家来源广泛。

一般应实行“三三制” 。

即首先选择本企业、本部门对预测问题有研究,了解市场的专家,占预测专家的1/3 左右。

其次是选择与本企业、本部门有业务联系,关系密切的行业专家,约占1/3。

最后是从社会上有影响的知名人士中间选择对
市场和行业有研究的专家,约占1/3。

同时,人数视预测主题规模而定。

2. 若用Delphi 法预测2012 年家用汽车的普及率,你准备:
1)如何挑选专家?
2)设计预测咨询表应包含哪些内容?
3)怎样处理专家意见?
4)为了提高专家意见的回收率,你准备采用什么办法?答:选择的专家应对预测的目标比较了解,有丰富的实践经验或理论水平,富于创造性和判断力,并且来源广泛,而专家人数视预测主题的规模而定。

对于2012 年家用汽车的普及率的预测可选择龙头汽车企业的专家代表、汽车行业或技术研究的高校和科研院所的专家代表、汽车行业主管部门的专家代表。

预测咨询表应包括经济增长率和国民平均收入、公共交通建设、国家汽车产业政策、购车程序、汽油价格等多个方面,可设置人均国内生产总值、人均粗钢产量、人均发电量、城镇化人口比重、汽油价格等多个指标。

采用中位数或期望均值确定预测值,用上下四分位数,或方差、或极差衡量专家意见的分散程度。

为了提高专家意见的回收率,首先在专家选择中采用自愿的原则,先期得到专家的同意。

根据每轮反馈情况,对每个专家的付出给予肯定,并辅以一定的报酬或者礼品等。

3. 某服装研究设计中心设计了一种新式女时装,聘请了三位最有经验的时装推销员来
参加试销和时装表演活动,最后请他们做出销路预测。

预测结果如下:
甲最乐观的销售量是800 万最悲观的销售量是600 万最可能的销售量是700 万件
乙:最乐观的销售量是750 万
件,
最悲观的销售量是550 万
件,
最可能的销售量是640
万件
丙最乐观的销售量是850 万最悲观的销售量是600 万最可能的销售量是700 万件甲、乙、丙这三位专家的经验彼此相当,试用专家意见汇总预测法预测新式时装的销售量。

假设:最乐观、最悲观、最可能的销售量的概率分别为0.3、0.2、0.5,则
4. 已知15 位专家预测2008 年电冰箱在某地区居民(以户为单位)中的普及率分别为:
0.2,0.2,0.2,0.2,0.25,0.25,0.25,0.3,0.3,0.3,0.3,0.35,0.35,0.35,0.4,试求专家们的协调结果和预测的分散程度。

15 1
答:n 15为奇数,k 8 ,预测期望值为:x中x8 0.3 。

由于k 8,故x下x4 x50.225 ,x上x12 x130.325
所以,分散程度即为:[0.225,0.35]
5. 某公司为实现某个目标,初步选定a,b,c,d,e,f 六个工程,由于实际情况的限制,需要从六项中选择三项。

为慎重起见,公司总共聘请了100 位公司内外的专家,请他们
来完成这一艰巨的任务。

如果你是最后的决策者,根据100 位专家最后给出的意见,如何做出最合理的决定。

答:根据专家意见等级比较法的原理S j k N B k N j,k ,本案例要求选择的是三个项目,则可令排在第一位的给3分,排在第二位的给2 分,排在第三位的给1分,没排上位的不给分,得:
S a 30*3+10*2+20*1=130 ,S b 10*3+10*2+40*1=90 ,
S c 16*3+10*2+20*1=88 ,S d 10*3+15*2+0*1=60 ,
S e 4*3+46*2+10*1=114 ,S f 20*3+9*2+10*1=88
由于:S a >S e >S b >S c >=S
j>S d
或者采用加权平均预测法,假设排在第1、2、3 位的权重分别为0.5、0.3、0.2,则E(a)=0.5*30+0.3*10+0.2*20=22 ,同理可得:
E(b)=16,E(c)=15,E(d)=9.5 ,E(e)= 17.8 ,E(f)= 14.7
所以,选择方案a,即该公司最应该启动的是a 工程,其次是e工程,再次是b 工程。

6. 试分析Delphi 法的优点与不足。

答:优点为:
(1)采用通讯调查的方式,因此参加预测的专家数量可以多一些,这样可以提高预测结果的准确性。

(2)预测过程要经历多次反复,在多次的思考过程之后,专家已经不断地提高自己的观点的科学性,在此结果上的出的预测结果,其科学成分、正确程度必然较高。

(3)这种方法具有匿名性质,参加预测的专家完全可以根据自己的知识或经验提出意见,因此受权威的影响较小,有利于各种观点得到充分发表。

(4)最终的预测结果综合了全体专家的意见,集中了全体预测者的智慧,因此具有较高的可靠性和权威性。

(5)德尔菲法的实质是利用专家的主观判断,通过信息的交流与反馈,使预测意见趋向一致,预测结果具有收敛性,即使无法取得同一意见,也能使预测见解明朗化。

同时,德尔菲法不受地区和人员的限制,用途广泛,费用低,准确率高。

缺点为:
(1)易受主观因素的影响。

预测精度取决于专家的学识、心理状态、智能结构、对预测对象的兴趣程度等主观因素。

(2)缺乏深刻的理论论证。

专家的预测通常建立在直观的基础之上,缺乏理论上的严格论证与考证,因此预测结果往往是不稳定的。

(3)技术上不够成熟。

如专家的概念没有统一的标准,选择专家时容易出差错。

调查表的设计也没有一个固定的方法,致使有些调查表的设计过于粗糙。

(4)预测结果是以中位数为标志的,完全不考虑离中位
22
数较远的预测意见,有时确实漏掉了具有独特见解的有价值的预见。

7.简述领先指标、同步指标、落后指标的区别,并举例说明。

答:(1)先期指标,也称领先指标或先行指标,是指其循环转折变化出现的时间稳定地领先于经济景气循环相应转折变化的经济指标,例如库存变动、股票价格、原料价格等。

(2)同步指标,也称一致指标,是指其循环转折变化在出现时间上与经济景气循环转折变化几乎同时出现(误差不超过2 个月)的经济指标,如国民生产总值、工业生产、就业与失业、个人收入、制造业和商业销售等。

(3)落后指标,也称迟行指标,是指其循环转折变动在出现的时间上稳定地落后于经济景气循环变动相应转折点(约3 个月以上,半个周期以内)的经济指标,例如,单位产品劳动成本、抵押贷款利息率、未清偿债务、库存总水平、长期失业、全部投资支出等。

8.举例说明类比法的具体应用。

答:对于一般消费品和耐用消费品的需求量预测,如通过典型调研或抽样调研测算出某市彩电年销售率为40%(即销售数与百户居民数之比,也就是每百户居民中有4 户购买),就可以以此销售率来推算其他城市的销售率了。

9.简述交叉影响分析法的预测步骤。

答:交叉影响分析法的步骤为:
(1)主观判断估计各种有关事件发生的概率,即初始概率。

(2)构造交叉影响矩阵,反映事件相互影响的程度。

(3)根据事件间相互影响,修正各事件发生的概率,根据修正后的结果作出预测。

通常利用随机数字表考察各事件是否发生。

如发生,就根据戈登提出的经验公式计算已发生事件对其它诸事件的交叉影响而产生的过程概率P j,全部事件均考察到时,则完成一次试验;通过多次试验,最后由试验中各事件发生的次数与试验总次数对比求得各事件在未来最终发生的概率P* ,称为校正概率。

试验次数越多,校正概率越稳定,预测效果就越理想。

第三章思考与练习
1. 简要论述相关分析与回归分析的区别与联系。

答:相关分析与回归分析的主要区别:
(1)相关分析的任务是确定两个变量之间相关的方向和密切程度。

回归分析的任务是寻找因变量对自变量依赖关系的数学表达式。

(2)相关分析中,两个变量要求都是随机变量,并且不必区分自变量和因变量;而回归分析中自变量是普通变量,因变量是随机变量,并且必须明确哪个是因变量,哪些是自变
量;
(3)相关分析中两变量是对等的,改变两者的地位,并不影响相关系数的数值,只有一个相关系数。

而在回归分析中,改变两个变量的位置会得到两个不同的回归方程。

联系为:
(1)相关分析是回归分析的基础和前提。

只有在相关分析确定了变量之间存在一定相关关系的基础上建立的回归方程才有意义。

(2)回归分析是相关分析的继续和深化。

只有建立了回归方程才能表明变量之间的依赖关系,并进一步进行预测。

2. 某行业8 个企业的产品销售额和销售利润资料如下:
根据上述统计数据:
(1)计算产品销售额与利润额的相关系数;
解:应用excel 软件数据分析功能求得相关系数r 0.9934 ,说明销售额与利润额高度相关。

(2)建立以销售利润为因变量的一元线性回归模型,并对回归模型进行显著性检验(取
=0.05 );
解:应用excel 软件数据分析功能求得回归方程的参数为:a 7.273,b 0.074 据此,建立的线性回归方程为Y? 7.273 0.074x
①模型拟合优度的检验
由于相关系数r 0.9934 ,所以模型的拟合度高。

②回归方程的显著性检验
应用excel 软件数据分析功能得F?=450.167 F0.05 (1,6) 5.99, 说明在=0.05水平下回归效果显著.
③回归系数的显著性检验
t?=21.22 t0.025 (6) 2.447, 说明在=0.05水平下回归效果显著. 实际上,一元线性回归模型由于自变量只有一个,因此回归方程的显著性检验与回归系数b 的显著性检验是等价的。

(3)若企业产品销售额为500万元,试预测其销售利润。

根据建立的线性回归方程Y? 7.273 0.074x ,当销售额x 500 时,销售利润
Y? 29.73万元。

某公司下属企业的设备能力和劳动生产率的统计资料如下:
该公司现计划新建一家企业,设备能力为千瓦人,试预测其劳动生产率,并求出其95%的置信区间。

解:绘制散点图如下:
散点图近似一条直线,计算设备能力和劳动生产率的相关系数为0.9806 ,故可以采用线性回归模型进行拟合
应用excel 软件数据分析功能求得回归方程的参数为:a 3.115,b 1.43
据此,建立的线性回归方程为Y? 3.115+1.43x ,对模型进行检验如下:
(1)模型拟合优度的检验
由于相关系数r 0.9806 ,所以模型的拟合度高。

(2)回归方程的显著性检验
应用excel 软件数据分析功能得F?=300.34 F0.05 (1,12) 4.75,说明在=0.05水平回归效果显著.
(3)回归系数的显著性检验
t?=17.33 t0.025(12) 2.1788, 说明在=0.05 水平下回归效果显著.
当设备能力为7.2千瓦/人时根据建立的线性回归模型Y? 3.115+1.43x ,可得劳动生产率Y? 13.41。

其95%的置信区间为[12.44,14.38]
4.某市1977 ~1988 年主要百货商店营业额、在业人员总收入、当年竣工住宅面积的统计数据如下:
(1)建立多元线性回归模型;
解:应用 excel 软件数据分析功能求得多元线性回归模型的参数为:
0 0.2233, 1 0.1. 2 0.077
据此,建立的线性回归方程为 Y ?
0.2233 0.1x 1 0.077x 2
(2)
对回归模型进行拟
合优度检验、 F 检验、 t 检验和DW检验(取
=0.05 )
解:①拟合度检验
应用excel 软件计算得 R 0.9808 ,接近于 1,说明模型的拟合程度越高
②F 检验
应用excel 软件计算得 F ? 113.88,查表得 F 0.05(2,9) 4.26,故 F ?
F 0.05(2,9) 说明在 =0.05 水平下回归效果显著。

③t 检验
应用excel 软件计算得 t?1 5.188,t?2 0.849,查表得 t 0.025(9) 2.262,故t?1 t 0.025
(9) , 说明在 =0.05水平下 1显著不为 0,自变量 x 1对Y ?
有显著影响,而 t?2 t 0.025(9) ,
故接受 假设 2 0,说明 x 2 对Y ?
无显著影响。

④ DW检验
n
(e i e i 1)
通过计算得 DW i 2
n
2
e i 2
i1
当 a 0.05,m 2,n 12时,查 DW 检验表,因 DW 检验表中,样本容量最低是 15,故
取:
d L 0.82,d U 1.75 ,则有 4 d U DW < 4 d L 之间。

由此可以得出检验无结论。

检验结果表明,
不能判断回归模型是否存在自相关。

(3) 假定该市在业人员总收入、当年竣工住宅面积在
1988 年的基础上分别增长 15%、
17%,请对该市 1989 年主要百货商店营业额作区间估计(取
=0.05 )。

解:回归方程为 Y ?
0.2233 0.1x 1 0.077x 2 。

但由于 x 2对Y 无显著影响,故用方程
Y ?
0.2233 0.1x 1 做回归预测:
Y ?
0.2233 0.1x 1 0.2233 0.1 248.5 1.15 28.8
预测区间为: [Y
?
t 2(n m 1)S 0] ,即[28.8 t 0.025(9) 1.4848],故当 1989年在业
人员总收入为 285.775 千万元时,在 =0.05 显著性水平上,营业额的区间估计为:
55.31
2.79 19.84
[25.44,32.16] 千万元。

5. 下表是某百货商店某年的商品销售额和商品流通费率数据,根据表中数据:(注:题中的商品销售额为分组数据,自变量取值可用其组中值)
商品年销售额/ 万元组中值
(x)
商品流通费率/%
(Y )
3 以下 1.5 7.0
3-6 4.5 4.8
6-9 7.5 3.6
9-12 10.5 3.1
12-15 13.5 2.7
15-18 16.5 2.5
18-21 19.5 2.4
21-24 22.5 2.3
24-27 25.5 2.2
1)拟合适当的曲线模型;
解:绘制散点如下:
根据散点图的形状,与双曲线函数接近,故采用双曲线模型。

1
设双曲线回归预测方程为:Y 0 1 1
x
1
令x ,则方程可转换为:Y 0 1x
x
应用excel 软件数据分析功能求得参数为:0 2.225, 1 7.621,由此可得双曲线回
1
归方程为:Y 2.225 7.621
x
(2)对模型进行显著性检验;(取=0.05 )
由于上述双曲线回归方程是通过对其变换后的线性方程Y 0 1x 而得到的,因此这里显著性检验主要对方程Y 0 1x 进行检验,包括:
①模型拟合优度的检验
相关系数r 0.9673 ,所以模型的拟合度高。

年销售额
3
② 回归方程的显著性检验
应用 excel 软件数据分析功能得 F ?
=101.92 F 0.05(1,7) 5.59,说明在 =0.05 水平下 回归效果显著 . ③ 回归系数的显著性检验
t ?
=12.079 t 0.025(7) 2.365 ,说明在 =0.05 水平下回归效果显著 .
1
通过以上检验,说明回归预测方程 Y
2.225 7.621 的检验是显著的
x
( 3)当商品销售额为 13万元时,预测商品流通费率 :
1
当商品销售额为 13万元时,预测商品流通费率为 y? 2.225 7.621 2.811(%)
13
6.已知下表中 (x i ,Y i )为某种产品销售额的时间序列数据,其中 x i 为时间序号, Y i 为 产品销售额(单位:万元) 。

试利用龚帕兹生长曲线预测 2005 年该产品的销售额。

解:将上述数据分为三组: 为第一组, 为第二组,
为第三组;然后求各组的 Y i 值的对数和:
36
S 1 lnY i 5.3984 , S 2
lnY i 6.3064 ,
i 1 i 4
b 0.7781
所以 a 0.3958
5.3948 0.4711 1 0.7781 ( 0.9268)
0.7781 1
所以 k 10.71 ,则预测模型为: Y? 10.71 0.3958
0.7781
故 Y?2005 10.71 0.39580.7781
9.933(万元)
9
S 3 lnY i 6.7359
i7
利用公式,求得:
b
3
S 3 S 2
S
2 S
1
6.7359 6.3064
0.4295
0.4711 ,所以 0.9116
ln a (S 2 S 1)(b 1)
(b r 1)2
b
(6.3064 5.3948) (0.7781 1)
2
(0.4711 1)2 0.7781
0.9268
lnK
S 1
(br
b 11) b
lna 2.371
即 2005 年该产品的销售额预测为 9.933 万元。

第四章 思考与练习
1. 什么是时间序列?时间序列预测方法有什么假设? 答:时间序列是一组按时间顺序排
序的数据。

时间序列预测方法的假设: ①假设预测目标的发展过程规律性会延续到未来。

②假设预 测对象的变化仅仅与实践有关。

2.
移动平均法的模型
参数 N 的数值大小对预测值有什么影响?选择参数
N 应考虑哪些问
题?
答:N 值越大对数据修匀的程度越强,建立移动模型的波动也越小,预测值的变化趋势 反应也越迟钝。

N 值越小,对预测值的变化趋势反应越灵敏,但修匀性越差,容易把随机干 扰作为趋势反应出来。

选择 N 的时候首先需要考虑预测对象的具体情况,是希望对预测对象的变化趋势反应的 更灵敏还是钝化其变化趋势从而更看重综合的稳定预测; 其次,如果时间序列有周期性变动, 则当 N 的选取刚好是该周期变动的周期是,则可消除周期变动的影响。

3. 试推导出三次移动平均法的预测公式。

解:有了二次移动平均的预测模型的推导过程,
同理可以推广出三次移动平均法的预测 模型:
已知时间序列 X 1 , X 2 ,..., X t , N 是跨越期
则可设此直线趋势预测模型为:
( 3) b t 2(M t M t ) /( N 1)
4. 移动平均法与指数平滑法各有什么特点?为什么说指数平滑法是移动平均法的改进? 答:移
一次移动平均数:
( 1)
X t
X t 1 ... X t N 1
M t
t
t 1 N
t
N 1

( 1) ( 1)
( 1)
二次移动平均数: M
( 2)
M t
M t 1 ... M t
N 1
M t
t
t
1
N
t N
1

三次移动平均数:
M
(3)
M t (2)
M t 1(2)
... M t N 1(2)

M
t
N

设时间序列 {X t }从某时期开始具有直线趋
势,
且认为未来时期也按此直线趋势变化,
X ?t T a t
b t T 其中 t 为当前的时期数; T 为由 t 至预测期数, T 1,2,... ;
at 2Mt
( 2) (3)
M t ;
(2)
动平均法:计算简单易行;预测是存储量大,仅考虑最近的N 个观察值等权看待,而对t-N 期以前的数据则完全不考虑,不能预测长期趋势。

指数平滑法:适用于中短期的预测方法,任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。

指数平滑法是对移动法的改进。

移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。

5.试比较移动平均法、指数平滑法和时间序列分解法,它们各自的优缺点是什么?
6.指数平滑法的平滑系数的大小对预测值有什么影响?选择平滑系数应考虑哪些问题?确定指数平滑的初始值应考虑哪些问题?
答:的大小对预测值得影响:的取值越大:近期资料对预测值得影响越强,远期资料的影响弱;
的取值越小:远期资料对预测值得影响增强。

选择的考虑的问题:①如果预测误差是由某些随机因素造成的,即预测目标的时间序列虽有不规则起伏波动,但基本发展趋势比较稳定,只是由于某些偶然变动使预测产生或大或小的偏差,这时,应取小一点,以减小修正幅度,使预测模型能包含较长的时间序列的信息。

②如果预测目标的基本趋势已经发生了系统的变化,也就是说,预测误差是由于系统变化造成的,则的取值应该大一点,这样,就可以根据当前的预测误差对原预测模型进行较大幅度的修正,使模型迅速跟上预测目标的变化。

不过,取值过大,容易对随机波动反应过度。

③如果原始资料不足,初始值选取比较粗糙,的取值也应大一点。

这样,可以使模型加重对以后逐步得到的近期资料的依赖,提高模型的自适应能力,以便经过最初几个周期的校正后,迅速逼近实际过程。

④假如有理由相信用以描述时间序列的预测模型仅在某一段时间内能较好地表达这个时间序列,则应选择较大的值,以减低对早期资料地依赖程度确定指数平滑的初始值应考虑的问题:如果数据序列较长,或者平滑系数选择得比较大,则经
(1) ( 1)
过数期平滑链平滑之后,初始值S0 对S t的影响就很小了。

故我们可以在最初预测时,选择较大的值来减小可能由于初始值选取不当所造成的预测偏差,使模型迅速地调整到当前水平。

假定有一定数目的历史数据,常用的确定初始值的方法是将已知数据分成两部分,用第一部分来估计初始值,用第二部分来进行平滑,求各平滑参数。

7.时间序列分解法一般包括哪些因素?如何从时间序列中分解出不同的因素来?答:时间序列份一般包括四类因素:长期趋势因素、季节变动因素、循环变动因素和不规则变动因素;
长期趋势因素和循环变动因素的分解:选择跨越期为季节变动的周期数的一次移动平均数序列MA,从而从时间序列中分离出长期趋势因素和循环变动因素T× C;季节变动因素和
随机因素:用时间序列除以一次移动平均序列,从而得到季节变动因素和随机性因素S× I。

用的方法消除S×I 的随机因素;长期趋势因素:用一种能最好的描述数据长期趋势的模型,从而得到长期趋势T,用MA/T ,得到循环变动分离。

已知某类产品以前个月的销售额如下表所示。

(1) 分别取N=3, N= 5,计算一次移动平均数,并利用一次移动平均法对下个月的产品销售额进行预测。

(2) 取N=3,计算二次移动平均数,并建立预测模型,求第16、17 个月的产品销售额预
测值。

(3)用一次指数平滑法预测下一个月的产品销售量,并对第14 、15 个月的产品销售额进行事后预测。

分别取α=0.1,0.3,0.5 ,S0(1)为最早的三个数据的平均值。

解:。

相关文档
最新文档