最优控制理论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优控制理论

本词条由“科普中国”百科科学词条编写与应用工作项目提供专业内容并参与编辑

最优控制理论(optimal control theory),是现代控制理论的一个主要分支,着重于研究使控制系统的性能指标实现最优化的基本条件和综合方法。最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。它是现代控制理论的重要组成部分。

1简介

这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的动态规划和庞特里亚金等人提出的最大值原理。这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。

2研究内容

最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。这类问题广泛存在于技术领域或社会问题中。

例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。

3主要方法

为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。通常,性能指标的好坏取决于所选择的控制函数和相应的运动状态。系统的运动状态受到运动方程的约束,而控制函数只能在允许的范围内选取。因此,从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。解决最优

控制问题的主要方法有古典变分法、极大值原理和动态规划。

古典变分法

研究对泛函求极值的一种数学方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。

极大值原理

极大值原理,是分析力学中哈密顿方法的推广。极大值原理的突出优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足的条件。

动态规划

动态规划是数学规划的一种,同样可用于控制变量受限制的情况,是一种很适合于在计算机上进行计算的比较有效的方法。

最优控制理论已被应用于最省燃料控制系统、最小能耗控制系统、线性调节器等。

4优化技术

最优控制的实现离不开最优化技术,最优化技术是研究和解决最优化问题的一门学科,它研究和解决如何从一切可能的方案中寻找最优的方案。也就是说,最优化技术是研究和解决如何将最优化问题表示为数学模型以及如何根据数学模型尽快求出其最优解这两大问题。一般而言,用最优化方法解决实际工程问题可分为三步进行:

①根据所提出的最优化问题,建立最优化问题的数学模型,确定变量,列出约束条件和目标函数;

②对所建立的数学模型进行具体分析和研究,选择合适的最优化方法;

③根据最优化方法的算法列出程序框图和编写程序,用计算机求出最优解,并对算法的收敛性、通用性、简便性、计算效率及误差等作出评价。

5求解方法

所谓最优化问题,就是寻找一个最优控制方案或最优控制规律,使系统能最优地达到预期的目标。在最优化问题的数学模型建立后,主要问题是如何通过不同的求解方法解决寻优问题。一般而言,最优化方式有

离线静态优化方式和在线动态优化方式,而最优化问题的求解方法大致可分为四类:

1.解析法

对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,通常可采用解析法来解决。其求解方法是先按照函数极值的必要条件,用数学分析方法求出其解析解,然后按照充分条件或问题的实际物理意义间接地确定最优解。

这种方法适用于性能指标及约束有明显解析表达式的情况。其一般步是先用求导方法或变分法求出最优控制的必要条件,得到一组方程或不等式,然后求解这组方程或不等式,得到最优控制的解析解即为所求的最优控制。解析法大致可分为两大类。第一类,无约束时,采用微分法或变分法。第二类,有约束时,采用极大值原理或动态规划。[1]

(1)变分法:当控制向量不受约束时,引入哈密顿函数,应用变分法可以导出最优控制的必要条件,即正则方程、控制方程、边界条件、横截条件。

(2)极大值原理:在用变分法求解最优控制问题时,是假定控制向量u(O)不受任何限制,即容许控制集合可以看成是整个P维控制空间开集,控制变分u是任意的,同时还要求哈密顿出数H对u连续可微,但在实际工程上,控制变量往往受到一定的限制,这时可以用极大值原理来求解最优控制问题,这种方法其实是由变分法引申而来的,但由于它能应用于控制变量u(t)受边界限制的情况,并且不要求哈密顿出数H对u 连续可微,因此获得了广泛的应用。

(3)动态规划:极大值原理一样,是处理控制向量限制在一定闭集内的最优控制问题的有效数学方法,它把复杂的最优控制间题变为多级决策过程的递推函数关系,其基础和核心时最优性原理即在一个多级决策问题中无论初始状态和初始决策如何,当把其中的任何一级和状态再作为初始级和初始状态时,如下的决定对与这一级开始往后的多级决策过程的一部分必定仍然是一个最优决策。因此,利用这一最优性原理必然可把一个多级决策问题化为最优的单级决策问题并且本级决策与本级以前的任何决策无关,只与本级的初始位置和初始决策有关。对于连续系统用动态规划法求最优控制问题时,可以先把连续系统离散化,用有限差分方程近似代替连续方程,然后用离散动态规划法求解。

2.数值解法(直接法)

对于目标函数较为复杂或无明确的数学表达式或无法用解析法求解的最优化问题,通常可采用直接法来解决。直接法的基本思想,就是用直接搜索方法经过一系列的迭代以产生点的序列,使之逐步接近到最优点。直接法常常是根据经验或实验而得到的。[1]

相关文档
最新文档