微弧氧化铝合金实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微弧氧化铝合金实验

一、实验目的:1.大概了解微弧氧化工艺的原理、操作步骤以及其对材料的强化方式。

2.通过实验与“材料性能学”的理论知识相结合。

二、实验原理:

微弧氧化又叫等离子阳极氧化,微弧氧化是从传统的阳极氧化过程中衍化来的,是在阳极氧化的过程中,对阳极施加高强度的电压,造成电流击穿阳极的过程,突破了传统的阳极氧化对电压,电流的限制。在击穿的过程中,会在金属形成的阳极氧化薄膜上发生弧光放电现象,从而形成放电通道,在微弧放电的过程中,会形成高温高压的条件,从而使金属表面生成优与原来的普通阳极氧化形成的氧化膜。微弧氧化就是将原来的普通阳极氧化的法拉第区引入到高压放电区域,克服原来普通阳极氧化对于难以快速生成的,低效率的缺陷,极大提高了膜层的综合性能。提高了基体与氧化层的结合力,结构致密,力学性能好,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。并且该工艺操作简单,不繁琐,不会产生对环境有污染的副产品,具有广阔的应用前景。

三、实验设备及材料:

试样及实验药品:30mm*25mm*2mm的LY12板材若干、微弧氧化溶液3份

实验设备:JHMAO-220/10A型便携式微弧氧化电源(图1)、超声波清洗机(图2)、TT260覆层测厚仪(图3)、HXD-1000TMC/LCD型显微硬度计、热镶嵌仪(图4)、MSD倒置金相显微镜及图像分析系统、烟雾腐蚀测量仪

图1JHMAO-220/10A型便携式微弧氧化电源图2超声波清洗机

图3TT260覆层测厚仪及其探头

图4热镶嵌仪

四、实验步骤:

1、工件前处理:除油除锈主要除去工件表面的各种油脂,这些油污包括植物油、动物油和矿物油。只有将这些油污彻底清除,才能达到工件的表面全部被水所润湿的目的。

2、抛光:使工件表面更加平整,微弧氧化膜层更加均匀。

3、超声波清洗机漂洗。

4、微弧氧化:(1)根据试验方案及实验条件,称取所需的电解质,在1000ml烧杯中用去

离子水溶解。

(2)将配置好的溶液放入冷却水槽中,按要求连接好阴极和阳极,注意确保工件和线路良好的接触,否则氧化时会因接触不良产生局部漏电现象。

(3)启动搅拌器,若使用小型冷却水槽,则不需要冷去系统,其放出的热量能够很快放出。

(4)启动微弧氧化电源,选择合适的工作方式(恒流或恒压),按实验条件设定工艺电参量进行微弧氧化。

(5)实验过程结束后,关闭微弧氧化电源及其它设备。

5、取出工件,用蒸馏水冲洗,干燥,对试样进行硬度,厚度,磨损,腐蚀等等性能的检测,并最终完成实验报告

五、实验结果及数据

铝合金微弧氧化宏观形貌:微弧氧化过程可以概述为4个阶段,每个阶段都有其独特的反应。在本次实验中,以钨酸钠为主要的着色剂,通过改变其浓度,改变电压大小,从而使铝合金的陶瓷膜层发生改变。其中宏观的形貌改变如下图:

其中由图5可知,只经过除锈除油,清洗,抛光打磨等步骤,而没有参与微弧氧化

的反应的铝合金其形貌,只仅仅具有铝金属本身的金属光泽。其中加入115g的钨酸钠之后,进行微弧氧化实验,对铝合金给予330V,340V,380V,三种氧化电压进行高压击穿,在铝合金表面出现明显颜色变化,能够用肉眼明显的观察到,其中由图6可以观察到。其颜色比明亮金属色更如同浅灰色。在向电解液中加入20g的钨酸钠,并对试样给予

280V,290,330V不等的给定电压值,使铝合金进行微弧氧化反应,生成陶瓷膜,在这次实验中能够看到,铝合金的表面生成的陶瓷膜,较上一次的实验有了很大的变化,其宏观形貌由图7可知,其铝合金微弧氧化生成的陶瓷膜颜色更加的变深灰色。在向电解液中加入20g的钨酸钠,并对试样给予260V,280,330V不等的给定电压值,使铝合金进行微弧氧化

反应,生成陶瓷膜,在这次实验中能够看到,铝合金的表面生成的陶瓷膜,较上一次的实验有了很大的变化,其宏观形貌由图8可知,其铝合金微弧氧化生成的陶瓷膜颜色为黑色。

铝合金微弧氧化微观形貌:经过粗磨,精磨,抛光,腐蚀后,可以利用金相显微镜能够对微弧氧化后的铝合金陶瓷膜进行观察,如图9。可以看出,在微观中,微弧氧化反应生成的陶瓷膜层较规整,平滑,但是其膜层厚度不是相同,由此可见,不同的浓度,不同给定电压对于微弧氧化生成的铝合金陶瓷膜都有其独特的影响。

图9陶瓷膜微观形貌

电压对铝合金微弧氧化膜生长的影响:实验选取了380V,340V,330V,290V,280V,260V 六个电压来分别进行试验。氧化膜硬度厚度如下表所示,通过下表可知:随着电压增大,氧化膜的硬度、厚度也随之增加。通过对陶瓷膜形貌进行观察发现电压为300V以下时陶瓷膜表面更加均匀,致密性更好,300V以上陶瓷膜变的粗糙,光洁度变差,并有轻微的烧蚀现象。其中溶液配制为第一次为210g六偏磷酸钠,60g硅酸钠,115g钨酸钠(见表2)第二次为210g六偏磷酸钠,60g硅酸钠,115g钨酸钠(见表3)第三次210g六偏磷酸钠,60g 硅酸钠,115g钨酸钠(见表4)

330V 340V 380V

陶瓷膜的强度HV 1164.83 1104.20 1275.06

陶瓷膜的厚度μm 35.81 36.68 34.25

氧化时间min 8 8 8

280V 290V 330V

陶瓷膜的强度HV 1641.60 1004.00 1067.46

陶瓷膜的厚度μm 41.34 41.74 45.93

氧化时间min 10 10 10

260V 280V 330V

陶瓷膜的强度HV 109.97 1253.73 1364.88

可以看出,在同一组实验中,浓度不变,只是增加电压,或者减小电压,对于板材的硬度,镀膜层的厚度都有很大的影响。

在钨酸钠浓度百分比为30%时,随着电压的增大,板材的硬度有了好呢大的提高,然而,陶瓷膜的厚度并未发生很大的变化,从而可直到再次浓度比下的最适合的电压为340V。

在钨酸钠浓度百分比为33%时,随着电压的增大,板材的硬度反而是愈来愈小,然而,陶瓷膜的厚度发生很大的变化,逐渐有些微增厚,从而可直到再次浓度比下的最适合的电压为280V。

在钨酸钠浓度百分比为36%时,随着电压的增大,板材的硬度有了很大的提高,然而,陶瓷膜的厚度波动范围有很大的浮动,从而可直到再次浓度比下的最适合的电压为330V。

其原因可能是随着电压的升高,击穿电流同样发生改变,当电压过高时,击穿电流不断在金属表面穿过,铝合金具有高阻抗性,从而使金属表面的温度不断升高,产生的热能不断增多,使表层的氧化铝薄膜被高温灼烧从而烧焦。

电解液浓度对铝合金微弧氧化膜生长的影响:本实验主要研究电解液中钨酸钠浓度对钛合金微弧氧化后陶瓷膜的影响。实验选用电解液硅酸钠均为10g/L,六偏磷酸钠均为35g/L,钨酸钠浓度分别19.2g/L、22.5g/L、25.8g/L五种电解液浓度。电压选取330V。对陶瓷膜硬度、厚度的检测结果如下表3所示,通过对数据分析发现:当钨酸钠浓度过低时时,火花放电现象不明显,陶瓷膜不会出现明显发黑现象,增大钨酸钠浓度,氧化膜厚度增加并且增厚速度变快。当钨酸钠浓度增加到25.8g/L时,铝合金微弧氧化膜表面产生明显的黑化现象。其中陶瓷膜在同种电压,不同浓度时的强度的变化(见表5),陶瓷膜在同种电压,不同浓度时的膜层厚度的变化(见表6)。

相关文档
最新文档