中考题中常考的圆的六种解题策略(题型分类+例题解析+真题反馈)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考题中常考的圆的六种解题策略
第一种场景:遇到弦。
轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.
例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F
(1)求证:FC=FB;
(2)若CD=24,BE=8,求⊙O的直径.
【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.
【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC =FB.
(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,
OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,
解方程得:r=13.所以⊙O的直径为26.
【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.
练习反馈
1.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()
A.8cm B.5cm C.3cm D.2cm
2.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()
A.4 B.2 C.D.2
3.(2018•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()
A.50°B.60°C.80°D.100°
4.(2018•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()
A.B.C.D.
5.(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()
A.6 B.8 C.5 D.5
6.(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.
7.(2018•北京)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.
8.(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.
9.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.
(1)图2中,弓臂两端B1,C1的距离为cm.
(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.
10.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.