关于竖向不规则结构设计的浅析

关于竖向不规则结构设计的浅析
关于竖向不规则结构设计的浅析

龙源期刊网 https://www.360docs.net/doc/e915859739.html,

关于竖向不规则结构设计的浅析

作者:刘媛媛

来源:《西部论丛》2018年第10期

摘要:随着时代的发展,高层建筑越来越多的应用在城市中,而为了建筑的实用性和地

标性设计者对不规则造型情有独钟。竖向不规则设计对建筑结构抗震设计有着至关重要的影响,为了保证建筑结构的安全性,使设计者对竖向对不规则结构的建筑设计提出了更高的要求。下文对竖向不规则结构设计的特点、分类及设计重点做了浅析,同时取例共设计者探讨。

关键词:抗震设计竖向不规则结构刚度建筑结构

绪言

在现在的工程中,为追求美感,建筑立面造型多种多样,很多高层建筑出现层数不等,左右不对称的情况,从而出现竖向不规则高层建筑。对于此高层建筑,地震作用下,建筑物破坏在薄弱部位,而建筑的薄弱部位一般表现在不规则的部位,不规则一般都会引起质心和刚心之间的偏心,不规则结构往往会在一些部位产生应力集中,使建筑物在地震的作用下发生严重破坏。历史上地震后分析发现,一般做成重大灾害的建筑都是不规则结构的建筑物,造成大量的生命财产损失和严重后果。因此,在我国的《建筑抗震设计规范》中明确规定对不规则的建筑结构应采取加强措施。设计者在设计时,在保证结构安全的前提下,从理论设计的角度,采取适当的构造措施,优化结构布置,以此达到合理、安全、经济的效果。

首先介绍下结构竖向不规则的概念。我国对竖向布置不规则结构的设计要求主要在《建筑抗震设计规范》)和《高层建筑混凝土结构技术规程》中介绍说明。建筑结构竖向规则性即结构立面造型简单,抗侧力体系刚度强度、楼层重量(质量)等上下变化连续、均匀,一般情况下是各楼层质量较为均匀一致,楼层刚度与强度沿着建筑从下往上逐渐减小,抗侧力体系上能够保持稳定的连续性。当地震到来时,地震作用从地基通过基础传递到上部结构,结构会产生加速度,由于加速度的作用,结构的构图链体系件就会产生惯性力与内力。此时,一个结构传递地震作用的路径至关重要。

其次,竖向不规则结构的分类主要有以下三种:

1、强度分布不规则:建筑结构的楼层强度(楼层屈服承载力)是指结构在所考虑地震作用方向上,建筑结构楼层所有承受水平地震作用抗侧力构件的受剪承载力之和。造成某一楼层的强度不规则的原因主要由:竖向构件(剪力墙、柱)截面突变、截面纵向钢筋(或型钢)不足等原因造成的相邻上下楼层的楼层抗剪承载力的严重差异。通常把这种楼层成为“弱层”。弱层容易导致结构的塑性变形集中,从而导致结构局部或整体的不稳定或倒塌。通常楼层的抗震延性需求分布对楼层强度的改变较为敏感。

教学设计基本结构

教学设计基本结构内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

教学方案设计基本结构 1、教材分析与学情分析Teaching Analysis ; 教材分析考试时可以减写,学情分析即对学生情况的分析,相对来说可以多写,熟练的情况下可以不写,考试的时候最好还是写,教材分析几十个字,学情分析100字以内。 2、教学目标Teaching Aims; 教学目标是主线,必不可缺,分为三个维度,即知识与技能(knowledge and Ability),过程与方法(process and method),情感、态度与价值观 (emotion、attitude and value)。 教学目标要具体化、可操作化,根据课标要求、学生的实际确定目标。考试常用格式:使学生记住……事实,理解……概念,形成……技能,经历……的过程,掌握……的方法、应用……定律分析……的问题,坚定……的信念,养成……的习惯,激发……的热情。错误的格式:教给学生……,教学目标是对学生的要求,而不是对教师的,考试时一定要注意。 3、教学重点、难点Teaching Emphasis and Teaching difficult points; 教学重难点也是必不可缺的,依据课标要求、教材内容、学生已有知识来确定。考试时,教学重点、教学难点最好分开写。 4、教学方法Teaching Methods; 一般情况下要写,常用的教学方法有讲授法、谈话法、讨论法、读书指导法、练习法、实习法、实验法、演示法、参观法………… 5、课时安排; 课时:一般考1课时的教学设计,可以忽略不计。课前准备可写可不写。

基于多学科优化的船舶结构设计研究

基于多学科优化的船舶结构设计研究 发表时间:2017-09-21T14:15:44.680Z 来源:《防护工程》2017年第12期作者:叶帆[导读] 满足其实际设计要求,建立健全相关管理机制,合理解决其中存在的设计问题,提高优化设计工作效果。 武汉船舶设计研究院有限公司湖北省武汉市 430000 摘要:在船舶结构设计的过程中,设计者需要积极应用多学科优化设计方式,建立专门的框架体系,在继承有限元建模与分析软件优化技术的支持之下,科学开展船舶设计工作,逐渐提高设计质量与可靠性,增强其工作成效。 关键词:多学科;船舶结构;优化设计 在船舶设计的过程中,设计人员应用多学科优化设计方式,可以有效提高设计工作质量,建立科学的计算结构,对其进行校核处理,应用专门的软件设计技术,明确约束条件,提高结构的耐波性与操控性,满足其实际设计要求,建立健全相关管理机制,合理解决其中存在的设计问题,提高优化设计工作效果。 一、优化设计模型的构建措施 在建立优化设计模型期间,需要对船舱区域结构进行重点分析,主要因为其占有整个船体重量的70%左右,决定着船舶的造价与费用,因此,需要对其进行全面的处理,提高结构设计的优化型,做好区域结构设计工作。 第一,设计模型范围。对于模型范围而言,需要根据船舱实际情况,对其货仓进行划分处理,利用先进的定位技术,明确船舱的各类区域。一方面,需要建设完善的有限元模型,按照工作要求,对其进行优化处理。另一方面,需要建设有效分析区域模型,根据传承的设计要求,对其设计质量进行控制。且在结构优化设计期间,需要对燃油舱与淡水舱等重量进行检验,通过多点约束的方式,对其进行等效划分处理,全面调节空船重量与实体船舱重量之间的关系,及时发现其中存在的差值问题,采取有效措施对其进行改革,以此增强设计成效。 第二,边界条件的明确。设计者需要科学明确边界条件,按照国家《钢制海船入级规范》等条例,对船舱模型进行独立点约束,明确独立点的位置,对其横剖面与轴高速进行分析,提高前后端面约束处理工作质量。 第三,荷载调节措施。为了做好简化设计工作,需要对于船舱的装载情况进行分析,及时发现危险荷载中存在的问题,例如:静水荷载、波浪荷载等,科学计算船舱压力数据信息,以此提高优化设计工作效果。 二、舱段优化设计模型 在结构优化设计的过程中,需要对舱段优化设计模型进行全面分析,在严格控制的情况下,提高设计质量。 第一,设计变量的分析。在多学科优化设计期间,需要利用多个学科对船舶主尺度进行全面的分析,明确结构优化设计要求,在获取相关确定值之后,科学开展设计工作。首先,对于船体而言,可以利用高级强度钢对其进行建造处理,例如:AH32强度钢材料,对于货仓区域而言,需要对其纵向构件进行处理,利用AH36级强度的钢材料开展制作工作,提高优化设计工作质量,增强其工作效果[1]。其次,在有限元软件的限制之下,板单元的应力数据信息分析工作受到广泛重视,需要相关设计者对其设计参数进行全面的处理,在参数改变的情况下,提高系统设计质量。最后,需要对各类板单元的厚度进行控制,根据实际设计情况,对设计方案进行简化处理,在减少计算时间的基础上,提高设计工作效率与质量,满足其实际发展需求。同时,需要规范计算方式,选择离散设计变量开展优化设计工作,提高工作成效。 第二,边界条件的明确。设计者需要科学明确边界条件,按照国家《钢制海船入级规范》等条例,对船舱模型进行独立点约束,明确独立点的位置,对其横剖面与轴高速进行分析,提高前后端面约束处理工作质量。 第三,荷载调节措施。为了做好简化设计工作,需要对于船舱的装载情况进行分析,及时发现危险荷载中存在的问题,例如:静水荷载、波浪荷载等,科学计算船舱压力数据信息,以此提高优化设计工作效果。 二、舱段优化设计模型 在结构优化设计的过程中,需要对舱段优化设计模型进行全面分析,在严格控制的情况下,提高设计质量。 第一,设计变量的分析。在多学科优化设计期间,需要利用多个学科对船舶主尺度进行全面的分析,明确结构优化设计要求,在获取相关确定值之后,科学开展设计工作。首先,对于船体而言,可以利用高级强度钢对其进行建造处理,例如:AH32强度钢材料,对于货仓区域而言,需要对其纵向构件进行处理,利用AH36级强度的钢材料开展制作工作,提高优化设计工作质量,增强其工作效果[1]。其次,在有限元软件的限制之下,板单元的应力数据信息分析工作受到广泛重视,需要相关设计者对其设计参数进行全面的处理,在参数改变的情况下,提高系统设计质量。最后,需要对各类板单元的厚度进行控制,根据实际设计情况,对设计方案进行简化处理,在减少计算时间的基础上,提高设计工作效率与质量,满足其实际发展需求。同时,需要规范计算方式,选择离散设计变量开展优化设计工作,提高工作成效。 第二,约束条件分析。对于约束条件而言,需要参考屈服应力数据信息,对其进行全面的处理,满足相关工作要求。在此期间,需要根据国家规范,对其强度进行计算,如果将刚才的屈服应力条件作为约束条件,就要对其最小值进行计算,获取合理的优化设计成果。同时,在货仓区域优化设计期间,由于材料等级存在差异,系数也会有所不同,因此,在实际设计期间,需要制定针对性的约束条件设计方案,提高优化设计工作的合理性与有效性[2]。 第三,目标函数的分析。对于目标函数而言,在实际分析期间,需要科学设定重量值,对其进行最小化的优化处理,将表达式设置为: ×X2....X6]7 minFX 三、多学科优化船舶结构设计实现措施 (一)工作流程分析 第一,做好准备工作。首先,需要利用相关软件,建立有限元的模型,明确相关材料与各类属性,对荷载问题进行全面的分析与处理。其次,需要对属性进行分析,在强度检验的情况下,生成文件。再次,需要利用计算方式,对文件中的各类数据信息进行全面的计算,以此提高优化设计质量。最后,需要计算质量与应力报告,对各类模型进行分析[3]。

框架结构设计论文建筑工程师职称论文:浅谈建筑结构设计

框架结构设计论文建筑工程师职称论文 浅谈建筑结构设计 摘要:建筑结构设计是个系统的,全面的工作。需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。作为设计人员,要掌握结构设计的过程,保证设计结构的安全,还要善于总结工作中的经验。本文根据笔者的工作经验,对建筑进行结构设计时要注意的事项进行阐述。 关键词:建筑结构设计过程注意事项 0引言 结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要表达的东西。用基础,墙,柱,梁,板,楼梯,大样细部等结构元素来构成建筑物的结构体系,包括竖向和水平的承重及抗力体系。把各种情况产生的荷载以最简洁的方式传递至基础。 1结构的设计过程结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系

和受力构件。 结构计算阶段的内容为:首先,荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。其次,构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。再次,内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。最后,构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。 2进行结构设计时应注意的事项 2.1关于箱、筏基础底板挑板的阳角问题 2.1.1阳角面积在整个基础底面积中所占比例极小,可砍成直角或斜角。 2.1.2如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋。

路面结构组合设计

路面结构组合设计 1.1设计说明 1.1.1工程概况 (1)工程所在地:湖南省境内 (2)公路自然区划:区,由地下水位资料可知该路基为潮湿状态; (3)公路等级:一级公路(双向四车道、设中央分隔带); (4)路线总长度:1223.061m。 1.1.2设计内容 沥青混凝土路面 (1)拟定路面结构组合方案,进行方案比较。 (2)进行轴载换算(手算和程序计算),确定路面设计弯沉值。 (3)确定路基路面结构层设计参数。 (4)各结构层材料组成设计。 1.1.3设计成果 (1)设计说明书; (2)沥青路面结构设计图。 1.2 主要技术经济指标 1.2.1交通组成 经调查预测,本路竣工后第一年双向平均日交通量下表(辆/d)

预测交通组成表表2 备注:依据规范,轴重小于25KN的车辆不计入计算; 使用期内交通量平均增长率为4.7%,沥青混凝土路面设计使用年限15年。 2. 沥青混凝土路面结构设计 2.1轴载换算 路面设计以双轮组单轴载100KN为标准轴载,小客车不考虑轴载。 2.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次,昼夜交通量(辆/日)为双向车道年平均日通行车辆数。 ①轴载换算 轴载换算采用如下的计算公式: 式中:轴数系数 轮组系数 其中: 计算结果如下表(表3)所示:

轴载换算结果表 表3 注:轴载小于25KN 不计 ②累计当量轴次 根据设计规范,一级公路沥青路面的设计年限15年,四车道的车道系数取0.45。 累计当量轴次: 式中:第一年双向日平均当量轴次(次/日) 设计年限内交通量的平均增长率(%) 设计车道的车轮轮迹横向分布系数 2.1.2 验算半刚性基层底拉应力中的累计当量轴次

浅谈建筑结构设计中不规则结构设计问题

浅谈建筑结构设计中不规则结构设计问题 随着我国经济水平和科学技术水平的大幅提升,传统的、结构单一的建筑风格慢慢的无法满足人们的追求,不规则的建筑结构大量涌现,推动了建筑结构设计的多样化发展,实现了规则设计向不规则设计的转化,如何分析和设计不规则结构是必须解决的重要问题,本文主要针对所参与芜湖特色小镇项目的结构设计中不规则性问题进行了分析研究,并讨论优化此类设计的具体措施,意在提升建筑结构的设计水平,有效推动建筑行业的发展。 标签:建筑结构设计;不规则结构设计;问题 建筑设计规范中明确规定建筑宜择优选用规则的形体,其抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化,避免侧向刚度和承载力的突变。但是目前,随着各项事业的进步,经济的发展,越来越多的新颖别致、彰显个性的建筑出现,基本上都是不规则和特别不规则的,如何按照规范的精神,进行不规则建筑结构的抗震设计与计算分析,成为工程设计中必须解决的重要课题。 1、不规则结构的主要特点 1.1平面不规则 不规则问题在平面上主要分为三个类型:第一、扭转不规则,在具有偶然偏心的规定水平力作用下楼层两端抗侧力构件弹性水平移最大值与平均值的比值大于1.2;第二、凹凸性的不规则,建筑平面凹进尺寸比投影方向总尺寸大30%。第三、楼板局部不连续,主要是楼板平面刚度或尺寸产生急剧的变化或较大的楼层错层。 1.2竖向不规则 竖向不规则主要有包括以下几个类型:第一,侧向刚度不规则,其判断依据是楼层侧向的实际刚度值比小于相邻上一层楼层刚度值的70%,或者是小于该楼层以上相邻三个楼层平均侧向刚度值的80%,除去顶层或出屋面的小建筑外,局部收进尺寸大于相邻下一层相邻楼层刚度值的25%;第二,竖向抗侧力不规则,主要是以竖直方向的抗侧力形成的内力,利用水平转换向下传递作为基本依据;第三,楼层之间的质量突变,其判断标准在于楼层质量是否能够比下一层相邻的楼层质量高1.5倍;第四,楼层中的承载力突变,抗侧力结构的层间受剪承载力小于相邻上一层的80%。 2、芜湖特色小镇的结构不规则问题 2.1塔楼偏置 如上图1:钟楼位于建筑的一角,其高度和荷载远大于旁边与其相连的商业

6船舶中剖面结构优化设计

第六章 船舶中剖面结构优化设计 6.1 概述 船舶结构设计通常是从船中剖面设计开始的。中剖面各部分的结构形式、构件尺寸和它们的连接方法,都集中地反映了船舶的结构概貌。船体中部结构是保证其总纵强度的主要部分,也是船体结构重量的主要部分,因此,进行中剖面结构优化设计是十分有意义的。那么,如何运用最优化方法和计算机技术,在保证船体结构必需的强度和刚度情况下,选择最佳的结构方案,使其重量最轻或成本最低呢?这就是本章所要讨论的问题。 本章首先介绍了适用于船舶结构优化问题的混合离散变量的直接搜索法(MDOD 法),接着应用MDOD 法分别讨论了基于“规范”法和直接计算方法的中剖面结构优化设计,并给出了国内外学者(包括编著者)在船舶结构优化设计方面的一些研究成果。 6.2 离散变量的结构优化设计 结构优化设计大体上可分为三个阶段。第一个阶段是建立数学模型,把一个工程结构的设计问题变成一个数学问题;第二个阶段是选择合理、有效的计算方法;第三个阶段是编制计算机程序,进行设计方案的优化计算和评估。 介绍结构优化设计的教材已有一些[1,2],但由于船舶结构的设计的方法大都是离散的变量, 真正处理起来并不简单。本章将介绍新近发展起来直接处理的混合离散变量优化问题方法[3]。 6.2.1 结构优化的数学模型 混合离散变量优化问题与一般的连续变量优化问题的区别在于,前者的设计变量中既包含有连续变量也有离散变量,而后者只包含连续变量。其数学模型可简单的表达为 min )(X f (6-1) s.t. (X )≤0 j =1,2,3,…,NC g j (6-2) 式中 ub i lb i x x x ≤≤ i =1,2,3,…,NN D T ND D T C D R x x x X X X X ∈==],,,[, ],[21L C T NN N D ND C R x x x X ∈=++],.....,,[21, C D n R R R ×= 其中:x i lb 和x i ub 分别为变量的下界值和上界值,D X 为离散变量的子集合(整型变量可 视为离散变量的特例),C X 为连续变量的子集合。 6.2.2 结构优化的方法

浅谈建筑结构设计中优化技术的应用 冯莹

浅谈建筑结构设计中优化技术的应用冯莹 摘要:传统民居及其建筑文化在建筑领域中占有极为重要非得位置,该种类型 的建筑是传统文化精髓的一种集中体现,见证了每个时代的人类与大自然之间的 和谐发展历程。因而当代建筑设计师,必须要有针对性的对我国传统民居建筑文 化中所蕴含的文化精髓及优势特点,展开全面详细的研究,才能有效推进传统民 居及其建筑文化基因与现代建筑能够共同发展。 关键词:建筑结构;设计;问题;应用 中图分类号:TU318 文献标识码:A 前言:在如今的建筑结构当中使用优化设计是非常常见的。同时,其也是能 够让建筑结构进行更新改造的一种方法,符合现在的发展水平和人们的需要的。 但是,在使用的过程当中,对于一些施工要点需要去引起注意。希望通过本文的 研究和分析,可以帮助相关人员对建筑结构优化设计有一个基础的了解。同时, 也希望能够促进我国建筑行业在未来能够持续健康发展。 1建筑结构设计方法的概述 对整体建筑设计进行完善的优化可以主要从两个方面进行:理论方面以及经 验方面。结构设计师通过对结构优化方法的学习,并且将其作为在实际的优化工 程中的理论基础,使得整体建筑得到优化,并且进一步完善建筑结构的细部设计。在进行实际的建筑设计优化过程中,应该以更加重视的态度进行实际的工作,并 且需要抓住整个建筑结构设计中的重点,对其重要的环节进行控制。以一个结构 设计优化的例子来说明,在进行实际的设计过程中,应该尽可能的使得其质量中 心和刚度中心重合,并且设计建筑图时,尽量使得其平面布置更加规整,从理论 上进行分析,所有合格的建筑结构都应该尽可能的满足这些要求。同时,为了使 整个结构的稳定性得到保障,需要对其承受荷载过程中的变形进行控制,保证其 水平荷载作用下的位移符合相关的设计标准。在进行竖向承重结构的布置过程中,应该尽可能的使得其竖向承重结构在一定程度上贯通。同时在进行实际的建筑结 构设计过程中,不仅需要对其结构的安全性以及稳定性进行考虑,同时还需要加 强对其经济性的考虑。因此为了使整个建筑的经济性得到保证,就需要尽可能的 减少对转换层的使用,减少刚度突变的部位,使整个建筑的变形协调一致. 2建筑结构优化设计的重要性 为了使结构在承受荷载以及正常使用的过程中表现更加优异,就需要对其结 构进行一定的优化。并且经过有效的结构优化之后,实用性以及美观性都能在一 定程度上得到较大的提升,建筑结构的工程造价也能更加准确的被估计。而建筑 设计不仅需要考虑到质量以及后期的业主的使用,还需要从开发商的角度进行考虑,开发商希望在实际的建设过程中利用最少的资金做到最多的事情,同时还需 要使其建筑本身的科学性以及安全性得到保障。 3优化设计的原则 1)安全性,城市的发展和科技的进步推动了房屋建筑技术的不断提升,并对结构设计提出了更多的要求。结构优化设计不仅可以降低工程投入,节约建设成本,更重要的是可以保证结构的安全性能。如果仅以节约资金投入作为结构优化 的判别依据,而不考虑结构的安全性,那么结构的优化将无任何价值和作用,并 且不能保证结构安全的优化设计也是行不通的,因此,安全性是设计人员结构优 化的根本原则和基础条件。 2)经济性,对建筑材料的优化使用是房屋设计经济性原则的主要方法,建筑

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

建筑不规则结构设计的应用研究

建筑不规则结构设计的应用研究 发表时间:2019-05-07T11:23:41.320Z 来源:《防护工程》2019年第2期作者:马健兴 [导读] 相关的设计人员必须对结构不规则性问题进行深入分析,在此基础上制定出科学合理的设计方案,从根本上确保建筑不规则设计的科学性和合理性。 浙江宸泰建筑设计研究院有限公司浙江义乌 322000 摘要:最近几年以来,我国在不断的推进城市化进程,使得对于建筑用地的需求量在迅速增加,城市用地出现紧张局面,为了使得该问题得到一定程度的缓解,越来越多的高层建筑拔地而起,进入人们的视线。但是,由于多方面因素的影响,比如人的审美观点、外部环境因素以及建筑所处位置的地质因素等,不可避免的需要对建筑结构实施不规则设计。 关键词:高层建筑;结构设计;不规则性 1不规则高层建筑结构的发展现状 现阶段,我国的建筑工程项目的种类繁多,其需要考量其所面对的各类施工环境以及施工条件等外力因素,其受到多种外力因素的作用,使得建筑设施的结构无法保证绝对的规则性以及对称性。通常建筑设施的不规则形主要表现在凹凸不平的表面上、部分建筑楼板的断裂等方面。其建筑工程项目活动的开展必须要以建筑结构的不规则性位置为基准,不能影响到其建筑结构模型的构建,同时,其还应当确定出其结构的实际布置方案,找出建筑设施自身较为薄弱的部位,尽可能的去提升整体建筑结构自身的合理性。通常来说,不规则的建筑结构会导致其在水平方面产生偏心侧力,同时还会导致其产生不同程度的扭转变形,让其结构的抗侧力无法发挥出其效用,另外其还会加大其实际的施工成本,因此,相关的设计人员必须要懂得实时的调整建筑结构的设计方案,利用规则以及对称等设计方式提升其建筑设施自身的结构性能。大多数的建筑施工人员会为了满足城市化的发展需求,尝试这建造一些极具创新性的建筑设施,目前,我国很多城市中都出现了较多的复杂的不规则结构,其结构的出现带动了我国建筑行业的发展,会在一定程度上增加其建筑设施的美感,但是其设计以及构建也会给相关的施工设计人员带来工作上的挑战。 2不规则建筑设计特点分析 现代建筑中,不规则建筑分为平面不规则与竖向不规则2种。平面不规则建筑又包括楼板局部不连续、扭转不规则以及凹凸不规则3种;竖向不规则主要指楼层的侧向刚度不规则、竖向抗侧力构件不连续以及楼层承载力突变。下文主要对这2种不规则建筑进行论述。2.1平面不规则特点 在现代建筑中,平面不规则主要有3种表现形式:楼板局部不规则。即楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或有较大的楼层错层;建筑外形凹凸不平,这种不规则类型主要表现为建筑某一结构面会向下或向内凹陷,且有具体的凹陷尺寸,如商场的设计;扭转不规则,即在规定的水平力作用下,楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。 2.2建筑竖向不规则的特点 在建筑不规则设计中,平面不规则是建筑不规则的一种类型,竖向不规则也是建筑不规则的一种表现类型,通常将竖向不规则类型的特点分为以下几点:建筑的侧向刚度不规则,判断建筑是否为侧向刚度不规则的标准为侧向刚度值,如果某楼层的侧向刚度与上一楼层的侧向刚度值相比较小,并小于上一楼层的70%,并且水平向的收进尺寸比下一楼层的水平向收进尺寸大,且大于25%,那么可以将这一建筑判断为侧向刚度不规则;竖向抗侧力构件的内力由水平转换构件向下传递,为竖向不规则;竖向不规则设计类型的判读标准为楼层的承载力,如果楼层的承载力发生变化,并且楼层间的抗侧力结构受到的剪力小于上一层的结构受到剪力的80%,那么可判断建筑为竖向不规则类型。 3建筑不规则结构种类 3.1竖向不规则 侧向刚度不规则,确定是否为该种类型的标准如下:和上层相邻楼层相比,某楼层其侧向刚度数值低于前者的70%,或者是和上面三层的平均侧向刚度相比,低于前者的80%,建筑的顶层不包括在内,其他楼层水平收缩值应该超过下一相邻楼层水平收缩值的25%;竖向抗侧力结构构件不连续,确定是否为该种类型的标准如下:利用水平转换构件作为桥梁,使得竖直方向上一些抗侧力结构本身内力向下传递;楼层承载力突变,对于这种类型的不规则建筑,其各个楼层中抗侧力结构构件受到的剪切程度低于上一相邻楼层对应值的80%。 3.2平面不规则 毫无疑问如果平面质量存在偏心问题,必然会对建筑平面不规则造成一定的影响,建筑中所使用的结构构件其截面尺寸如果存在差异会引起质量偏心问题,另外,在施工过程中以及建筑使用过程中同样有可能引起质量偏心问题;再就是平面刚度如果存在偏心同样会影响到建筑平面不规则性,平面刚度又可以细分为平面外刚度以及平面内刚度,所谓平面内刚度指的是和载荷作用方向相同的刚度,相反地,和载荷作用方向相反的刚度称之为平面外刚度。在建筑施工的过程中,受到施工条件以及周围施工环境的影响,此外,不同结构构件承担的载荷一般也存在差异,这些因素的存在造成平面结构刚度不均匀,造成偏心问题;最后就是平面强度,如果存在偏心也会影响到建筑平面不规则性,通常情况下,不管是设计人员还是施工人员都只注重平面刚度偏心问题以及平面质量偏心问题,而强度偏心问题却经常被忽视。在建筑施工过程中,不管是钢筋还是混凝土都存在选择不确定性,这必然会导致建筑结构的设计强度和实际施工强度之间不完全一致,使得结构构件截面存在不同程度的强度偏心,最终对结构的不规则性产生影响。 4建筑不规则结构设计的应用 从当前我国高层建筑不规则结构的应用情况来看,高层建筑的不规则部位更容易受到外力的损害,因此,高层建筑不规则结构的设计要完善主体结构,而在建筑的结构设计中,主要依靠柱、墙、板、梁、楼梯等结构元素完成建筑结构设计,因此,在高层建筑结构设计中,要保证建筑结构的完整性,利用概念设计的方式确定具体的结构方案,确保建筑结构的合理性。 4.1适当调整偏心距 在高层建筑不规则设计中,偏心距是一个重要因素,对建筑的质量有重要的影响。偏心距的测算需要依据其测算公式,根据受压构件

浅谈房屋建筑的结构设计优化技术 李兵仁

浅谈房屋建筑的结构设计优化技术李兵仁 摘要:目前我国的经济发展已经达到了一定的水平,人们对于居住环境的要求 也随之不断增加。在保证了房屋建筑所有的功能特点之后,应尽可能地控制施工 成本,这就需要在进行房屋建筑设计时尽可能使用结构设计的优化技术。将从房 屋建筑结构的优化技术的内容、房屋建筑的结构设计与经济性的关系以及优化技 术在房屋建筑结构设计中的应用3个方面进行论述与分析,进而详细地对我国的 建筑结构优化技术进行探讨。 关键词:房屋建筑;结构设计;优化技术;应用 引言 如何实现结构的最优化设计,保证结构的功能性以及安全耐久性,同时最大 限度节省建筑的占地面积以及追求经济性,是优化设计的主要目标。进行房屋建 筑的结构优化包括进行整体房屋结构的优化设计以及细部结构的优化设计。计算 机时代的降临,以及计算机结合相关设计理论,实现了工程设计问题向数学计算 问题的一种转换。因此,对于相关计算机技术的掌握,也是实现最优化设计的一 种前提条件。 1 房屋建筑结构的优化技术的内容 要使用房屋建筑结构优化技术,就需要首先了解房屋建筑结构优化设计的主 要内容,通常情况下,房屋建筑结构可以进行以下的优化技术。在考虑房屋建筑 的结构使用功能以及安全设计要求的前提之下,应对于房屋结构设计过程中可能 存在的问题进行考虑,通过最经济合理的方式来完成该结构设计的内容。这个过 程就是房屋建筑的结构优化设计过程。其主要内容有:1)认真分析房屋建筑结构,对于整体设计过程进行最优化分析并进行相关的设计改进;2)对于房屋建 筑结构设计的子结构作为单独对象进行最优化分析以及相关的设计改进。对于子 结构的最优化分析与改进时,通常可以对于子结构进行进一步的细分,子结构主 要包含细部构造、主体结构、屋盖结构、围护结构以及下部的基础结构部分。 2 房屋建筑与经济性的关系 1)如何处理房屋建筑结构设计的层数与用地面积之间的关系。我们知道多层建筑与高层建筑,随着层数的不断增加,由于其使用的土地面积一定,因此,使 得单位层数所使用的土地面积就会减小。但是实际的设计中并非如此,随着建筑 物层数的增加,建筑物的高度随之增加,然而为了确保建筑物内部的光线质量, 需要适当地增加建筑物之间的间距,如此就会增加建筑物的用地面积。由此可见,建筑物的总建筑面积所使用的土地面积与建筑物层数之间的联系不是一种必然性。因此就需要使用房屋建筑结构优化设计来实现建筑物层数与建筑物的占地面积之 间的关系进行协调。通常情况下,高层建筑物的优化设计方法是通过减小上部的 面积来实现建筑物整体光照的效果,这样可以尽可能达到减小占地面积的效果, 然而上部的建筑面积也会随之相对减小。如何寻找两者之间的相互协调点来实现 这种平衡,是需要通过相关的优化设计技术来实现的。 2)如何处理房屋建筑的结构分部部分与建筑物层数之间的关系。由于同一个建筑物只需要一个公用屋盖,因此,建筑物的屋盖部分的单位设计成本会随着建 筑物层数增加而降低。但是对于建筑物的基础部分则又有所不同,我们知道同一 个建筑物的基础部分是属于共同的,随着建筑物层数的增加,基础部分承受的上 部荷载也会随之增加,那么,设计中就需要提高基础构件的承载力,这样就会增

浅谈建筑结构设计

浅谈建筑结构设计 建筑结构设计是个系统的,全面的工作。需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。作为设计人员,要掌握结构设计的过程,保证设计结构的安全,还要善于总结工作中的经验。本文根据笔者的工作经验,对建筑进行结构设计时要注意的事项进行阐述。 标签:建筑结构设计过程注意事项 0 引言 结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要表达的东西。用基础,墙,柱,梁,板,楼梯,大样细部等结构元素来构成建筑物的结构体系,包括竖向和水平的承重及抗力体系。把各种情况产生的荷载以最简洁的方式传递至基础。 1 结构的设计过程 结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。 结构计算阶段的内容为:首先,荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。其次,构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。再次,内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。最后,构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。 2 进行结构设计时应注意的事项 2.1 关于箱、筏基础底板挑板的阳角问题 2.1.1 阳角面积在整个基础底面积中所占比例极小,可砍成直角或斜角。 2.1.2 如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋。

关于船舶结构优化设计方法的分析

关于船舶结构优化设计方法的分析 摘要:船舶优化设计方法有很多,从经典的优化设计方法到启发式优化设计方法,是从不同的角度采用不同的算法进行设计,船舶结构越来越复杂化,因此设 计者需要明确自身的优势,并且根据市场的需求进行船舶结构的优化设计。 关键词:船舶结构;优化水;方法 前言:船舶结构的优化设计需要满足刚度、强度、稳定性等多方面的要求, 同时也要科学利用数学方法以及计算机编程。在实践过程中,设计者需要掌握更 多的技能,才能真正满足当前船舶优化设计的要求。 一、经典优化设计方法 传统的船舶设计方法主要是针对简单的结构,比如一些规范的公式或者是经 验公式等,设计者一般需要把这些公式编程程序,并且利用准则法一级数学规划 等方式对一些问题采用求解的方式。准则法是根据问题的工程经验等建立的最佳 设计准则,这样就可以构建最优迭代式进行求解。采用物理的方式进行计算,比 较简单,而且结构重分析次数比较少,收敛的速度比较快。船舶工程中经常使用 的准则法有位移准则法、能量准则法等,数学规划化则是将规划论作为基础,然 后具有较好的通用性,能够对不同性质的优化问题进行求解,经典优化算法也具 有比较广泛的用途,但是其中也存在一些问题: (一)准则法缺乏数据理论的基础,收敛性无法有效证明,使用的准则法不 一定能够达到最优的结果,因此在整个优化的过程中也需要设计者进行干预才能 得到满意的结果。数学规划法理论性较强,但是其收敛性无法有效保证,特别是 需要进行大量的计算,因此收敛较慢。 (二)经典优化算法的搜索得了会基于梯度信息的最速下降法,但是在分析 实际的工程问题时,无法有效获取信息,所以导致经典算法在工程上的使用存在 较大的限制。 (三)梯度信息搜素偶的方式,无法有效解决高非线性问题,尤其是无法得 到最优解,这样的话就会在极大程度上影响结果,虽然可以得到局部最优解,但 是不是整体的最优解。而且这一过程也要依赖于初始点,设计者需要不断的进行 分析,通过初始点的计算,会降低工作的效率。 (四)经典优化算法一般可以解决连续变量优化的问题,在船舶结构优化过 程中会出现离散变量优化问题,因此其适应性不够[1]。 二、智能型的优化设计方法 随着技术的不断几部,船舶结构的优化设计也有了新的方法,智能型优化设 计方法就是其中之一。智能型优化设计方法的主要内容是:搜索优秀的相关产品 资料,然后不断的进行整理,将其概括成典型的模式,然后进行关联分析,类比 分析以及敏度分析,进行寻找设计对象以及样本模式间的相似度,差异性和设计 变量敏度等,需要根据某一准则实施的样本模式进行变化,然后可以产生很多符 合设计要求的新模式,最后可以利用综合评估和经典优化的方式进行调参以及优选,最后可以得到一个最优的方案。智能型优化设计方法的优势在于创造性较强,但是也存在一些缺点,比如可靠性不高,因此分析计算其产生的各种性能指标的 过程中,需要注意多目标的模糊评估,如果其中存在一些问题,还是需要依靠经 典优化设计方法来进行参数的调整。 三、启发式优化设计方法 当前船舶行业发展迅速,市场竞争也越来越激烈,因此船舶的大型化也对结

浅谈装配式建筑的结构设计优化

浅谈装配式建筑的结构设计优化 装配式建筑的主要构件为预制构件,即将建筑的全部构件或者是部分构件分割为若干个单元,在工厂内预制完成后,运输到现场,将这些预制构件采取可靠连接方式搭建起来。与传统建筑相比,装配式建筑结构、装配式建筑物的制作工艺有着很大的不同,且装配式建筑结构设计过程中缺乏综合考虑,建设成本较高,导致装配式建筑的应用范围十分有限,无法得到更为广泛的应用。面对这样的问题,装配式建筑的结构设计优化,显得十分重要,也十分必要。本研究主要对装配式建筑的结构设计要点进行了分析,并探讨了装配式建筑的结构设计优化措施,以供参考。 标签:装配式建筑;结构设计;优化 相比较于传统建筑,装配式建筑的建造速度快、受气候影响较小,可以减少建筑垃圾的产生与建筑污水的排放,也能减少粉尘、噪声及有害气体,符合节能减排、绿色环保的现代化建筑理念的要求,因此,装配式建筑近年来得到了越来越多的关注与重视。 1、装配式建筑的结构优化设计要点 装配式建筑的结构设计中,为确保结构设计的可操作性与可行性,必须明确掌握装配式建筑的结构设计要点。装配式建筑结构优化设计指的是,在确保装配式建筑功能性、安全性的基础上,应尽可能地降低能源消耗,采取精细化、标准化、专业化的结构设计,通过多专业协作、多方案比较、精细化设计、标准化管理,实现土建成本、建筑功能以及结构安全的有机结合,实现装配式建筑的效益最大化[1]。 装配式建筑的结构设计中,首先,要充分考虑装配式建筑的功能需求,深入分析装配式建筑的立面造型、户型、柱网布置以及分缝等方面的内容,提出可行性建议,将建筑的不规则度、高度以及复杂度控制在合理的范围之内。其次,初步设计阶段,必须综合考虑建筑的结构布置、结构体系、建筑材料、基础型式以及各项参数,对多种方案进行可行性、经济性分析,从中选出最优方案,实现对土建造价的有效控制[2]。最后,施工图阶段,通过标准化配筋方法、精确的计算把控、科学的模型调整,并对施工图进行精细化内审、优化,实现对土建造价的进一步控制。 2、装配式建筑的结构设计优化措施 2.1有效利用相关政策 相比较于传统建筑,装配式建筑的建设成本相对较高,现阶段,我国为促进装配式建筑的发展,国家及各地区纷纷出台相关优惠政策,为装配式建筑的发展提供了良好的驱动力。在装配式建筑结构设计中有效利用相关政策,便可以在很

浅谈建筑结构设计在建筑工程质量中的作用

浅谈建筑结构设计在建筑工程质量中的作用 发表时间:2018-07-13T11:17:48.010Z 来源:《基层建设》2018年第13期作者:黄颖 [导读] 摘要:本文分析了几个建筑设计中结构设计方面存在的普遍问题,并提出了针对这些问题的防治方法,供大家参考借鉴。 身份证号:45042219890325XXXX 摘要:本文分析了几个建筑设计中结构设计方面存在的普遍问题,并提出了针对这些问题的防治方法,供大家参考借鉴。 关键词:建筑,结构设计,建筑结构,存在问题 引言 随着社会经济的发展和人们生活水平的提高,对建筑结构设计也提出了更高的要求。建筑工程质量直接关系到人民生命和财产的安全,建筑质量主要由设计质量和施工质量两个方面来衡量。建筑工程质量的优劣直接关系到人们的生命安全。建筑设计是一项繁重而又责任重大的工作,直接影响到建筑物的安全、适用、经济和合理性。但在实际设计工作中,常常发生建筑结构设计的种种概念和方法上的差错,这些差错的产生,有的是由于设计人员没有对一般建筑尤其是多层建部设计引起高度重视,盲目参照或套用其他的设计的结果;有的则是由于设计对设计规范和设计方法缺乏理解;还有的是由于设计者的力学概念模糊,不能建立正确的计算模式,对结构验算结果也缺乏判断正确与否的经验,为了避免或减少类似的情况发生,确保建筑设计质量能上一个台阶,应从以下几个方面对结构设计中的常见问题加以改进: 一、剪力墙砌体结构挑梁裂缝问题 底层框架剪力墙砌体结构房屋是指底层为钢筋混凝土框架--剪力墙结构,上部为多层砌体结构的房屋。该类房屋多见于沿街的旅馆、住宅、办公楼,底层为商店,餐厅、邮局等空间房屋,上部为小开间的多层砌体结构。这类建筑是解决底层需要一种比较经济的空间房屋的结构形式。部分设计者为追求单一的建筑立面造型来增加使用面积,将二层以上的部分横墙且外层挑墙移至悬挑梁上,各层设计有挑梁,但实际结构的底层挑梁承载普遍出现裂缝,该类挑梁的设计与出现裂缝在临街砌体结构房屋中比较常见。 原因是原设计各层挑梁均按承受本层楼盖及其墙体的荷载进行计算。但实际结构中,悬挑梁上部墙体均为整体砌筑,且下部墙体均兼上层挑梁的底摸,这样挑梁上部的墙体及楼盖的荷载实际上是由上往下传递。上述挑梁的设计计算与实际工程中受力及传力路线不符是导致底层挑梁承载力不足并出现受力裂缝的主要原因,解决的办法要么改变计算简图及受力路线,要么注意施工顺序和施工工序。 二、关于板面设置温度应力筋 《混凝土结构设计规范》GB50010-2002 第10.1.9条规定在温度收缩应力较大的现浇板区域内,钢筋间距宜取为150~200mm,并应在板的末配筋表面布置温度收缩钢筋,板的上下表面沿纵横两个方向的配筋率均不宜小于0.1%,对于这一条设计人员的理解又会产生出入。什么区域属于温度收缩应力较大的区域?笔者认为对于规则较短的建筑物我们可以在各楼面边跨及屋面层设置相应的温度应力钢筋,而对于超长结构,则建议在超长结构的长向均应设置双层钢筋。其余部位则可因人而异,功能重要的区域设置,有条件的建设子项设置,而不必过于强调。另外有一点,当地下室筏板厚度大于1200mm时,笔者建议在筏板中间配置温度收缩应力钢筋以抵抗大体积混凝土所产生的收缩及温度应力,配筋量笔者建议取1/2筏板厚的0.1%,且不小于φ12@200。 三、关于超长结构 混凝土结构设计规范第9.1.1 条中规定钢筋混凝土框架结构伸缩缝最大间距为55m,而7.1.2条则规定当采取后浇带分段施工,专门的预加应力措施或采取能减小混凝土温度变化或收缩的措施且有充分依据的,伸缩缝间距可适当增大。这两条在实际设计过程中较难把握。工程实例中超过55m 就设置伸缩缝,这显然是很难保证的,但采取后浇带分段施工后究竟应控制房屋长度多少而不至于产生裂缝等不良现象呢?这取决于各地区的温差及混凝土不同的收缩应力。按照常规,单层房屋超过55m在70m以内时,采取设置施工后浇带及相应的构造加强措施后,不设置伸缩缝是可行的,多个工程均未产生严重的裂缝。但在结构设计中必须对梁柱配筋进行概念上的调整。首先是长向板钢筋应双层设置,并适当加强中部区域的梁板配筋,中部区域作为一个中点必然受较大应力,而两侧梁柱,特别是边跨的柱配筋必须加强以抵抗温度应力带来的推力,而超长结构在角部容易产生的扭转效应也须我们在设计中对角部结构进行加强。当框架结构超过70m时,必须采取特殊的措施才能不设置伸缩缝,譬如说采用预加应力,掺入抗裂外加剂等等,而且作为超过70m 的结构,必须对温度及收缩裂缝采取定量的分析,并相应施加预应力,这在许多工程实例中应用的效果也是众目共睹的。如果对超长结构,不能有效的分析清楚受力情况,还应按规范要求设置伸缩缝。 四、防止由于地基沉降或不均匀沉降引起的构件开裂或破坏 预防或减少不均匀沉降的危害,可以从建筑措施、结构措施、地基和基础措施方面加以控制。诸如:避免采用建筑平面形状复杂、阴角多的平面布置;避免立面体形变化过大;将体形复杂、荷载和高低差异大的建筑物分成若干个单元;加强上部结构和基础的刚度;同一建筑物尽量采用同一类型基础并埋置于同一土层中等一系列措施。应该引起重视的是:对高层建筑来说,由于需要一定的埋置深度,从经济的角度考虑,基础一般采用桩箱或桩筏结合的形式,此时应保证箱体的整体刚度,群桩布置的形心应与上部结构重心相吻合。当土层有较大起伏时,应使用同一建筑结构下的桩端位于同一土层中,并应考虑可能产生的液化影响。 五、从结构计算和构造上满足规范要求 5.1 从结构计算角度,看结构计算应注意的问题 避免荷载计算的错误。诸如漏算或少算荷载、活荷载折减不当、建筑物用料与实际计算不符,基础底板上多算或少算土重。底框砌体结构验算时就应注意:底部剪力法仅适用于刚度比较均匀的多层结构,对具有薄弱层的底层框架混合结构,应考虑塑性变形集中的影响,通常对底层地震剪力乘以1.2-1.5的增大系数;底层框架混合结构的剪力分配不能简单地按框架抗震墙的方法。连续板计算不能简单地用单向板计算方法代替;双向板查表计算时,不能忽略材料泊松比的影响,否则,由于跨巾弯矩未进行调整,将使计算值偏小对电算结果的正确性进行正确评价。 5.2 从构造角度看应注意的问题 注意构件最大配筋率和最小配筋率的限值。尤其是在抗震设计中既要保证建筑结构在地震发生时具有一定的延性,又必须满足最小配筋的要求。严格按照规范要求,保证钢筋在各个部位所需满足的锚固、延伸和搭接长度,材料选用也必须满足强度要求。为了防止屋面温度应力引起的墙体开裂,必须采取有效的通风散热措施。按抗震构造要求设置的构造柱,应在整个建筑物高度内上下对准贯通,上至女儿

相关文档
最新文档