LES-DNS-RANS三种模拟模型计算量比较及其原因

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LES,DNS,RANS模型计算量比较

摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟(Direct Numerical Simulation: DNS),Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。RANS方程通过对Navier-Stokes方程进行系综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stokes方程进行低通滤波得到描述湍流大尺度运动的方程,RANS和LES方法的计算量远小于DNS,目前的计算能力均可实现。

关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型

1 引言

湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态,是流体力学中有名的难题,其

性。传统计算复杂性主要表现在湍流流动的随机性、有旋性、统计[]1

流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S 方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场紊动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。

2 直接数值模拟(DNS)

湍流直接数值模拟(DNS)就是不用任何湍流模型,直接求解完整的三维非定常的N - S 方程组,计算包括脉动在内的湍流所有瞬时运动量在三维流场中的时间演变。

2.1控制方程

用非稳态的N - S 方程对紊流进行直接计算, 控制方程以张量形式给出: 21i i i j i j i j i u u u p u f v t x x x x ρ∂∂∂∂+=-+∂∂∂∂∂ (1)

=0i j

u x ∂∂ (2) 2.2主要数值方法

由于最小尺度的涡在时间与空间上都变化很快,为能模拟湍流中的小尺度结构,具有非常高精度的数值方法是必不可少的。

2.2.1谱方法或伪谱方法

所谓谱方法或伪谱方法是目前直接数值模拟用得最多的方法,简单来说,就是将所有未知函数在空间上用特征函数展开,成为以下形式:

()()()()123

(,)mnp m n p m n p

V x t a t x x x ψϕχ=∑∑∑ (3) 其中m ψ,n ϕ与p χ,都是已知的正交完备的特征函数族。在具有周期性或统计均匀性的空间方向一般都采用Fourier 级数展开,这是精度与效率最高的特征函数族。在其它情形,较多选用Chebyshev 多项式展开,它实质上是在非均匀网格上的Fourier 展开。此外,也有用Legendre, Jacobi, Hermite 或Laguerre 等函数展开,但它们无快速变换算法可用。如将上述展开式代入N-S 方程组,就得到一组()mnp a t 所满足的常微分方程组,对时间的微分可用通常的有限差分法求解。

在用谱方法计算非线性项例如V ϖ⨯

的Fourier 系数时,常用伪谱法代替直接求卷积。伪谱法实质上是谱方法与配置法的结合,具体做法是先将两量用Fourier 反变换回到物理空间,再在物理空间离散的配置点上计算两量的乘积,最后又通过离散Fourier 变换回到谱空间。在有了快速Fourier 变换(FFT)算法以后,伪谱法的计算速度高于直接求两Fourier 级数

的卷积。但出现的新间题是存在所谓“混淆误差”,即在做两个量的卷积计算时会将本应落在截断范围以外的高波数分量混进来,引起数值误差。严重时可使整个计算不正确甚至不稳定,但在多数情形下并不严重,且有一些标准的办法可用来减少混淆误差,但这将使计算工作量增[]2加。

2.2.2高阶有限差分法

高阶有限差分法的基本思想是利用离散点上函数值

i f 的线性组合来逼近离散点上的导数值。设i F 为函数()j f x ∂∂的差分逼近式,则

j j j

F f α=∑ (4) 式中系数j α 由差分逼近式的精度确定,将导数的逼近式代入控制流动的N - S 方程,就得到流动数值模拟的差分方程。差分离散方程必须满足相容性和稳定性。

2.3 优点

(1)直接数值求解N-S 方程组,不需要任何湍流模型,因此不包含任何人为假设或经验常数。

(2)由于直接对N - S 方程模拟,故不存在封闭性问题,原则上可以求解所有湍流问题。

(3)能提供每一瞬时三维流场内任何物理量(如速度和压力)的时间和空间演变过程,其中包括许多迄今还无法用实验测量的量。

(4)采用数量巨大的计算网格和高精度流体力学计算方法,完全模拟湍流流场中从最大尺度到最小尺度的流动结构,描写湍流中各种尺度的涡结构的时间演变,辅以计算机图形显示,可获得湍流结构的清晰与生动的流动显示。

2.4 缺点

DNS 的主要缺点是要求用非常大的计算机内存容量与机时耗费。据Kim ,Moin &Moser 研[]3

究 ,即使模拟Re 仅为3300 的槽流,所用的网点数N 就约达到了6210⨯ ,在向量计算机上进行了250 h 。

3 雷诺平均模拟(RANS)

雷诺平均模拟(RANS )即应用湍流统计理论, 将非稳态的N - S 方程对时间作平均,求解工程中需要的时均[]4

量。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds 应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds 方程封闭。

3. 1 控制方程

对非稳态的N - S 方程作时间演算, 并采用Boussinesp 假设,得到Reynolds 方程

''

21i j i i i j i j j j j j u u u u u p u f v t x x x x x ρ∂∂∂∂∂+=-+-∂∂∂∂∂∂ (5)

=0i i u x ∂∂ (6)

式中,附加应力可记为''ij i j pu u τ=-,并称为雷诺应力。

这种方法只计算大尺度平均流动,而所有湍流脉动对平均流动的影响,体现到雷诺应力ij τ中。正因为雷诺应力在控制方程中的出现,造成了方程不封闭,为使方程组封闭,必须建立模型。

3. 2 主要方法

目前工程计算中常用的湍流模型从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类引入二阶脉动项的控制方程而形成二阶矩封闭模型,或称为雷诺应力模型,另一类是基于Boussinesq 的涡粘性假设的涡粘性封闭模式,如零方程模型,一方程模型和二方程模型。

3.2.1雷诺应力模型

雷诺应力模型(RSM)从Reynolds 应力满足的方程出发,直接建立以''i j u u 为因变量的偏

微分方程, 将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来,并通过模化封闭。封闭目标是雷诺应力输运方程:

相关文档
最新文档