低烟无卤电缆和普通区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆-阻燃电缆的定义、分类及选用
耐高温(阻燃)电力电缆
阻燃电缆:指在规定试验条件下,试样被燃烧,在撤去试验火源后,火焰的蔓延仅在限定范围内,残焰或残灼在限定时间内能自行熄灭的电缆。它的根本特性是:在火灾情况下有可能被烧坏而不能运行,但可阻止火势的蔓延。通俗地讲,电缆万一失火,能够把燃烧限制在局部范围内,不产生蔓延,保住其他的各种设备,避免造成更大的损失。
根据电缆阻燃材料的不同,阻燃电缆分为含卤阻燃电缆及无卤低烟阻燃电缆两大类。
其中含卤阻燃电缆的绝缘层、护套、外护层以及辅助材料(包带及填充)全部或部分采用含卤的聚乙烯(PVC)阻燃材料,因而具有良好的阻燃特性。但是在电缆燃烧时会释放大量的浓烟和卤酸气体,卤酸气体对周围的电气设备有腐蚀性危害,救援人员需要带上才能接近现场进行灭火。电缆燃烧时给周围电气设备以及救援人员造成危害,不利于灭火救援工作,从而导致严重的“二次危害”。而无卤低烟阻燃电缆的绝缘层、护套、外护层以及辅助材料(包带及填充)全部或部分采用的是不含卤的交联聚乙烯(XLPE)阻燃材料,不仅具有更好的阻燃特性,而且在电缆燃烧时没有卤酸气体放出,电缆的发烟量也小,发烟量也接近于公认的“低烟”水平。
按国家标准GB12666.5-90《成束电线电缆燃烧试验方法》中规定——从成品电线电缆上截取试样,每根试样的长度为 3.5m,试样的根数按成束电线电缆每米长度所含非金属材料的不同体积分为三种类别:
A类:试样根数应使每米所含的非材料的总体积为7L(升)。
B类:试样根数应使每米所含的非金属材料的总体积为3.5L。
C类:试样根数应使每米所含的非金属材料的总体积为1.5L。
用喷灯火焰燃烧试样,A类和B类试样供火时间40min(分),C类试样供火时间20min,如试样炭化部分所达到的高度不超过2.5m,则判定试验结果为合格。
A类阻燃最为严格,B类阻燃要求较高,均适用于对阻燃要求较为严格的场合,C类阻燃为一般阻燃,适用于大多数要求阻燃的场合。用户在订购阻燃电缆时应根据需要在7.2条规定的型号“ZR”后注明类别代号“(A)”或“(B)”。
选用时注意事项:
(1)由于含卤阻燃电缆(包括阻燃电缆、低卤低烟阻燃电缆)在燃烧时会释放具有腐蚀性的卤酸气体,大大阻碍消防工作从而耽误救火时间并加剧火势蔓延,因此在人口密度较高的公众场所应尽量设计选用无卤低烟阻燃电缆。
(2)在人口密度较小的作业区可以选用任意一种阻燃电缆。
(3)阻燃电缆分为A、B、C3类,其中A类阻燃电缆性能较B、C类更优,价格也最贵。设计人员提供订货清册时应标明阻燃电缆的类别。
(4)从外观上无法区分阻燃电缆的A、B、C类别,只有靠制造厂家进行供货保证,因此在设计选用时应慎重选择电缆制造厂家。
(5)无卤低烟阻燃电缆与含卤阻燃电缆相比,有低腐蚀、低烟的优点,但电性能及性能明显降低,所以在进行电缆敷设时,无卤低烟阻燃电缆应较含卤阻燃电缆有更大的弯曲半径。(6)在进行电缆敷设设计时,不宜将非阻燃电缆和阻燃电缆并列敷设,不宜将不同阻燃类别的阻燃电缆并列敷设。
万兆以太网络
随着以太网技术的发展、局域网的速率升级,10GbE使用的光纤必须具有更高的传输带宽和更长的传输距离。其主要特点如下:一、工作波长为850nm的新型50/125μm渐变型(GI);
二、不同于传统50/125μm光纤纤芯的梯度折射率分布,它将带宽的正态分布曲线峰值从980nm转移到850nm处[3]。带宽曲线峰值居中是为了它能够覆盖850nm和1300nm两个窗口,因为所有的电子器件已习惯使用850nm或1300nm的光源。三、配用850nm的垂直腔面发射激光器(VCSEL)光源,新型50/125μm光纤的“激光带宽”为2000MHz·km,可以支持10Gbit/s 以太网单通道传输300m。四、由于用“激光带宽”代替了传统的“模带宽”,对相应参数的测量也从传统的“满注入法(OFL,OverfilledLaunch)”改成了“限模注入(RML,RestrictedModeLaunch)”新方法。
3、Maxband-万兆以太网多模光纤普通50/125mm多模光纤无法满足上述要求,其主要原因在于:一、纤芯折射率分布的不完美。普通多模光纤由于预期使用于LED光源的网络,在满注入条件下,脉冲能量主要分布在中间模式群,高阶模式群和低阶模式群的影响相对不明显。但在DMD测试中,在不同的入射位置,这些高阶模式群和低阶模式群的影响将导致光脉冲变形和分裂。二、光纤的中心凹陷。光纤的中心凹陷是指在纤芯中心的折射率明显下降的现象。这种凹陷和光纤的制造过程有关。这种中心凹陷将极大地影响光纤的传输特性,降低光纤的性能[4]。
因此精确控制光纤的折射率分布和消除中心凹陷是超贝光纤——即10Gigabit以太网多模光纤——研发的主要任务。长飞公司使用PCVD方法生产光纤预制棒。PCVD是制造多模光纤的最优方法,具有沉积层数多,剖面控制精确的特点,其几千层的沉积过程能够有效的控制沉积层的搀杂量以获得与理论要求完全符合的折射率分布。同时在融缩过程中,通过控制可以避免中心凹陷现象的出现使得其实际折射率分布和理论值吻合的非常好。
有了对折射率分布曲线的精确控制,多模光纤的性能就能得到极大的提高,图1是部分激光器优化多模光纤850nm波长带宽的统计结果。通过优化工艺过程,仔细控制波导结构,消除中心缺陷,测试表明光纤850nm的满注入带宽97%以上大于750MHz.km,带宽大于3000MHz.km的光纤比例也达到47%以上。图2是一典型的差分模迟延测试结果。可以发现,所拉制光纤的满注入带宽和DMD测试结果完全符合TIA/EIA-492AAAC标准[5]。长飞公司提
?0Gbit/s以太网中的传输距离可以达到150米,300米,甚至500米以上。
4、结论万兆以太网标准IEEE802.3ae的通过,使得开发符合万兆以太网标准的通讯产品已是当务之急。长飞光纤光缆有限公司应用PCVD方法,通过精确控制芯层折射率分布,有效消除中心凹陷,已经成功的开发出了符合TIA/EIA-492AAAC标准,激光优化的50/125mm 梯度折射率分布多模光纤产品。满注入带宽和DMD测试结果表明,在850nm波长,该光纤可以支持10Gigabit网络系统500米以上的传输距离。