威德福复合桥塞

FracGuard Composite Plugs

?

Faster Drill-Up

FracGuard? composite plugs provide quick, reliable drill-up, every time. Here's how.

3

? 2004. Weatherford. All rights reserved.

Configurations and Sizes for Every Well

Available for casing sizes from 2-7/8 to 9-5/8 in., the FracGuard? composite plug comes with your choice of bridge plug, integral-ball frac plug or a floating top-ball frac plug in most sizes. No other manufacturer offers all these choices. The top-ball design provides a larger flow area for higher return rates while the integral design keeps the ball in place inside the plug.

FracGuard composite frac plugs are available in the Series 300 standard version (for temperatures up to 300oF) or the Series 400 high-temperature, high-pressure version (for temperatures to 400oF).

Count on the technology leader in composite plugs: Weatherford

? 2004. Weatherford. All rights reserved. 4

? 2004. Weatherford. All rights reserved.

Weatherford offers a wider variety of frac and bridge plugs than any other manufacturer.

Series 300 FracGuard? Bridge

Plug

!!!Compact design and full circle

element backup system

Suitable for applications up to

300°F (149°C)

Available in frac plug versions in

most sizes Series 400 FracGuard Bridge Plug !!!High-strength composite body and superior element backup system Suitable for applications up to 400°F (204°C) and 12,000 PSI Available in frac plug versions in selected sizes FracGuard Top-Ball Frac Plug !!Hollow center uses a phenolic check valve ball to seal pressure above the plug, while allowing flow from below.Ball is dropped from surface and seats on top of the plug mandrel, which is useful when full flow area

through the plug is required.

5

Weatherford International Ltd.

515 Post Oak Blvd., Suite 600

Houston, Texas 77027

Phone: 713-693-4800

https://www.360docs.net/doc/ed16819050.html, ? 2004. Weatherford. All rights reserved. Brochure 744.00Weatherford products and services are subject to the Company’s standard terms and conditions, available on request or at https://www.360docs.net/doc/ed16819050.html,. For more information contact an authorized Weatherford representative. Unless noted otherwise, trademarks and service marks herein are the property of Weatherford. Specifications are subject to change without notice.

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

高压复合桥塞的设计和应用实践

高压复合桥塞的设计和应用实践 【摘要】利用高压复合材料制作桥塞代替金属桥塞,其独特的材料设计容易钻磨,磨掉的碎屑轻小,容易冲出,防止卡钻。特别适用于斜井、水平井的分层压裂、酸化、封堵水作业,克服了金属桥塞易卡钻、钻磨困难及钻磨时间长等缺点。 【关键词】高压复合材料;结构原理设计;桥塞;封堵High pressure composite bridge plug design and practical application Zhang Wen-an,Yang Ping,Qiao Jun-hua (Xian Fang Yuan Energy Engineering Co.,Ltd Xi'an Shanxi 710000) 【Abstract】Pick to take advantage of high voltage composite bridge plug instead of the metal bridge plug,its unique material design easy to drill grinding,grinding out light and small debris,easy to rush out,prevent sticking.Especially suitable for deviated well and horizontal well layered fracturing,acidizing,water plugging operation,overcome the goldBelongs to the bridge plug is sticking,drill grinding shortcomings such as difficult and drill grinding time is long.

桥塞

桥塞 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 目录 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项: 可取式桥塞的打捞 展开 (1)永久式桥塞封层工艺 简述 工作原理: 桥塞封层工艺 该桥塞具有以下特点: 主要技术指标: 施工方式: 施工步骤: 注意事项: (2)可取式桥塞封层工艺 简介 工作原理: 结构与特点: 该桥塞具有以下特点: 主要技术指标: 适用井条件: 施工方式: 施工步骤: 注意事项:

可取式桥塞的打捞 展开 桥塞-桥塞封层工艺 编辑本段(1)永久式桥塞封层工艺 简述 永久式桥塞形成于80年代初期,由于它施工工序少、周期短、卡封位 桥塞-桥塞封层工艺 置准确,所以一经问世就在油气井封层方面得到了广泛应用,基本上取代了以前打水泥塞封层的工艺技术,成为试油井封堵已试层,进行上返试油的主要封层工艺。 目前在中浅层试油施工中出现的干层、水层、气层及异常高压等特殊层位,为方便后续试油,封堵废弃层位,通常采用该类桥塞进行封层,同时对于部分短期无开发计划的试油结束井也采用永久式桥塞封井。此外,该桥塞也用于深层气井的已试层封堵,为上返测试、压裂改造等工艺技术的成功实施提供保障。 工作原理: 利用电缆或管柱将其输送到井筒预定位置,通过火药爆破、液压坐封或者机械坐封工具产生的压力作用于上卡瓦,拉力作用于张力棒,通过上下锥体对密封胶筒施以上压下拉两个力,当拉力达到一定值时,张力棒断裂,坐封工具与桥塞脱离。此时桥塞中心管上的锁紧装置发挥效能,上下卡瓦破碎并镶嵌在套管内壁上,胶筒膨胀并密封,完成坐封。 结构与特点: 永久式桥塞外观图见图1,结构有如图2所示几个部分组成: 桥塞封层工艺 1-销钉;2-锁环;3-上压外套;4卡瓦;5上坐封剪钉;6-保护伞;7- 桥塞-桥塞封层工艺 封隔件;8-中心管;9-锥体;10-下坐封剪钉 该桥塞具有以下特点:

5'复合压裂桥塞技术要求

‘复合压裂桥塞技术要求 ‘复合压裂桥塞技术要求一、主要技术参数 ‘复合压裂桥塞 桥塞长度: 27.36”;() 适用套管:"(127mm) 最小套管内径:99.54mm 最大套管内径:105.4mm 桥塞外径: 3.688”(93.68mm); 坐封范围:3.919”.276”(99.54mm-108.61mm) 桥塞承压:≥,000 () 桥塞承温:≥150℃ 桥塞内部通道直径:"(19mm); 座封工具:贝克坐封工具 销钉剪切力00-4700lbs个;最大剪切力(安装个销钉):32900 座封后正向承压压差:≥,000 () 座封后反向承压压差:≥,000 () 推筒连杆:推筒连杆 钻磨时间:<分钟 投球直径:”(42.9mm) 二、()桥塞的技术要求 .最高井温:150℃

.最大压差:正向压差:最大(000)反向压差:最大() .最大井斜:° . 适用套管:5”套管 .适用套管内径:108.6mm4.276”-99.54mm3.919” .桥塞本体复合材料,桥塞芯轴复合材料。卡瓦为铸铁材料。 .通井:要求有效长度1.2M,外径98mm以上的通井规通井合格 .刮削:如井筒有结垢结蜡,或者残留水泥环,要求刮削通井合格后方能进行桥塞作业 .操作要求:桥塞座封、打捞操作须遵循《桥塞封堵作业规程油管座封》、《桥塞使用注意事项》(参见附件)并在乙方工程师指导下操作。通过乙方培训后方可独立上井操作。 三、产品清单 四、为保证产品质量,需厂家提供的技术资料 、产品的检验合格证。 、产品的技术说明书 、原产地证明 、装货箱单 、提供配工具连接组件样品及图纸 五、交货要求。 、交付地点:按合同规定地点交付。乙方可协助运送到甲方指定地点,运费由甲方负担。、运输时用符合运输标准的木箱包装,内部包装要严密注意不得在运输过程中造成所有零部件的磕碰、划伤和损坏。如产品及配件发生任何损坏或损伤而造成无法检验通过的,相关费用由乙方负责。 六、验收、质量保证和售后服务

可取式桥塞使用说明

可取式桥塞QSA(B)C型使用说明一.可取式桥塞是一种油田用井下封堵工具。主要由座封机构,锚定机构,密封机构,解封机构等部分组成。采用独特的自锁定结构,具有可靠的双向承压功能,无需上覆灰面,即可实现可靠密封,可取式桥塞用液压座封工具送进坐封,座封后可解封回收,经更换易损件后仍可重复下井使用。它可以与其他井下工具配合使用,进行临时性封堵、永久性封堵、选择性封堵和不压井作业等。可取式桥塞在功能上完全可以替代丢手+封隔器可钻式桥塞和注灰封堵,是一种安全可靠、成本低廉、功能齐全,适用范围广泛的井下封堵工具。 二、工作原理(ABC三种) 座封:将可取式桥塞连接在液压座封工具的下端,将桥塞下至设计深度,校准深度,用泵车向管柱内打压,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,桥塞的张力棒拉断,桥塞牢牢卡封在井下预定位置。桥塞座封,

座封工具随管柱起出井筒。解封:用油管下入专门的解封工具,抓住桥塞解封套,上提管柱,解除桥塞自锁,胶筒收缩,卡瓦退回卡瓦筒中,桥塞解封,其总成随油管起至地面。注灰:(C型)将桥塞注灰工具连接于注灰管柱上,然后将桥塞注灰工具下入井内。桥塞注灰工具进入注灰桥塞主体内,推动铜滑套向下运动,当铜滑套的注灰孔与桥塞主体的注灰孔相连通时,即可开始注灰,注灰完毕后,上提桥塞注灰工具,桥塞铜滑套回到起始密封状态。 说明: 1) A、B、C型桥塞的区别:A型桥塞是实心的,尾部不能连接油管柱;B型桥塞坐封投放后抽掉芯轴具有通径(内径36mm),不接其他工具时要装母丝堵,尾部可连接油管柱。C型下插管注灰。 2)用途:A型桥塞用于油井暂堵或永久性封堵。B型桥塞可配置分采或卡堵水管柱,与Y341、Y241组合可同打压坐封;也可与单流阀或加丝堵组合单独适用。C型用于挤灰封堵。

电缆泵送复合桥塞

电缆泵送Magnum复合桥塞 以下所描述的工艺操作流程对于泵送与起出Magnum复合桥塞并不是固定不变的,每一步操作都需要根据井况进行调整。该通用流程只能辅助解决有可能遇到的问题。该操作流程不适用于Magnum永久式复合桥塞。 桥塞入井前,必须通过通井规、刮管器或者模拟桥塞通井。通井规,刮管器或者模拟桥塞的外径必须大于桥塞的外径。 直井 入井前: 记录套管接箍定位器到复合桥塞底部的距离等相关需要测量的数据。推荐起出防喷管中的钻具组合,如果不行的话,再使用推管车,但是推管车不能用于支撑钻具组合的重量。一旦钻具组合被悬挂起来,必须采取预防措施防止桥塞碰到会对桥塞或人员引起伤害的障碍物。校深时如不能将工具串置于地面,则用鼠洞或者井口。记录钻具组合管串的重量。 注意:对防喷管试压时,应缓慢增加和降低压力,否则会伤害复合桥塞。 在打开井眼前确保井眼压力与防喷器缓慢平衡。当通过井口装置下放钻具组合时,应格外小心,避免损坏复合桥塞。 入井: 当接近液面时,推荐100f/min(30m/min)或更小的速度,记录液面位置。注意:大于100f/min(30m/min)时,有可能引起桥塞提前坐封。钻具组合泵入速度控制在250f/min(75m/min)以下,泵入位置超出坐封深度后停泵。在起出工具之前测量井底钻具组合悬重。校深后,将工具串提到桥塞坐封位置。将一旦桥塞到位,点火坐封,在起出坐封工具前等待大概两分钟以确保桥塞与坐封工具已剪断、分离。在起出坐封工具时要监测管串重量。管串重量被提起后,如果下入的是死堵桥塞或单流阀式桥塞可进行试压对。不要返回下探桥塞!继续上提电缆,监测重量,校深到达射孔位置后射孔。各簇射孔全部完成后,上提起出电缆,射孔枪起到液面位置前,速度降至100f/min(30m/min)。超过液面位置后以合适且安全的速度将工具取出。

复合桥塞

复合桥塞技术要求 试油测试大队因生产需要,须购置复合桥塞若干。现将桥塞相关技术要求如下: 一、一体式复合桥塞: 1、能适用于51/2″套管井封堵底水,选层压裂。 2、送封工具与桥塞设计为一体式,封堵部分除卡瓦外,其余均采用复合材料。 3、设有抗阻机构,遇阻不坐封。 4、至预定位置后投球、液压坐封、双向卡瓦锚定。 5、下普通磨铣管柱钻除。单只桥塞钻除时间小于1小时,多级桥塞钻除时具有防转斜面。 6、具体技术参数有: a.最大外径:Φ112-114mm b.工作套管内径:Φ118-124mm c.工作温度:≤150 ℃ d.坐封压力:20.00-25.00MPa e.工作压力:耐压差70.00Mpa f.连接扣型:27/8 TBG母扣 二、分体式复合桥塞: 1、能适用于51/2″套管井封堵底水,选层压裂。 2、送封工具与桥塞设计为分体式,封堵部分除卡瓦外,其余均采用复合材料。 3、至预定位置后投球、液压坐封、双向卡瓦锚定。 4、下普通磨铣管柱钻除。单只桥塞钻除时间小于1小时,多级

桥塞钻除时具有防转斜面。 5、设有抗阻机构、遇阻或长时间油管传输不坐封更优。 6、复合桥塞具体技术参数有: a.最大外径:Φ110-114mm b.工作套管内径:Φ118-124mm c.工作温度:≤150 ℃ d.坐封压力:20.00-25.00MPa e.工作压力:耐压差70.00Mpa 7、送井工具具体技术参数有: a.最大外径:Φ89-102mm b.最高工作压力:大于30.00Mpa c.抗拉强度:大于300.0kN d.连接扣型:27/8 TBG母扣 井下作业公司 试油测试大队 2015年2月5日

可取式桥塞

可取式桥塞 (Retrievabl e bridge plug)说明书 专利号:00 2 20245.X 200320110198.6

目录 一、简介 2 二、基本原理 2 三、结构分类 3 四、技术指标 5 五、技术特点 5 六、适用范围 6

一、简介 可取式桥塞是一种油田用井下封堵工具。主要由座封机构、锚定机构、密封机构等部份组成。采用独特的自锁定结构,具有可靠的双向承压功能,无需上覆灰面,即可实现可靠密封。可取式桥塞用电缆座封工具或液压座封工具座封,需要时可解封回收、重复使用。它可以进行临时性封堵、永久性封堵、挤注作业等,还可与其它井下工具配合使用,进行选择性封堵和不压井作业等。可取式桥塞是一种安全可靠、成本低廉、功能齐全,适用范围广的井下封堵工具。 二、基本原理 座封: 用电缆座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。将电缆接通电源,引燃桥塞座封工具中的火药柱,使之产生高温高压气体,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随电缆起出井口,桥塞牢牢卡封在井下预定位置。 用液压座封工具座封:将可取式桥塞与座封工具正确连接并下至井下预定位置,校准深度。在地面用泵车向油管加内压,迫使座封工具的活塞与芯轴产生相对运动,推动桥塞卡瓦咬紧套管内壁,压缩桥塞胶筒密封套管环空。在此同时,桥塞内部结构自锁,拉断张力棒(环),座封工具随油管起出井口,桥塞牢牢卡封在井下预定位置。

解封:用油管和钻杆下入专门的解封工具,抓住桥塞解封套,上提管柱,解除桥塞自锁,胶筒收缩,卡瓦退回卡瓦筒内,桥塞解封,其总成随油管起至地面。 三、结构及分类 (一)桥塞分类 1、常规型桥塞(YJH-A型):常规型封堵工具,主要用于临时性封堵、 永久性封堵。 2、挂壁型桥塞(YJH-B型):选择性封堵工具,主要用于选择性封层以 及卡封套管破漏段等。 3、挤注型桥塞(YJH-C型):挤注型封堵工具,挤灰作业后,可根据 需要将桥塞解封取出。主要用于挤注作业、不压井作业、油气井测试等。

泵送桥塞分段压裂在大港油田的应有

泵送桥塞分段压裂技术在大港油田的应用(渤海钻探井下技术服务公司压裂酸化作业部,季金山) 摘要:水力泵送桥塞分段压裂技术是实现致密油藏资源的大规模开发、大液量、大排量的混合水体积压裂的主要途径。现场试验表明,自主研发的复合桥塞性能完全达到设计要求,多簇射孔和带压钻磨桥塞配套工具性能可靠、工艺可行,标志着生产井复合桥塞+多簇射孔联作分段压裂技术成功实现国产化,为下步致密油藏水平井应用国产化复合桥塞工具进行低成本、大规模体积压裂提供有力技术支撑。本文运用该工艺对官东14H井进行了现场施工,其成功应用为泵送桥塞分段压裂工艺在大港油田的推广积累了经验。 关键词:大港油田泵送桥塞分段压裂 The Application of Pumping Bridge Plug Staged Fracturing Technology In Dagang Oilfield The hydraulic pumping bridge plug staged fracturing technology is the main way to realize the mixed water fracturing of large-scale development、Large amount of liquid volume, large displacement。The field test shows that the composite bridge plug performance of Independent research and development can fully meet the design requirements, and the Multiple clusters perforating and bring pressure drilling and milling bridge plug necessary tools own reliable performance, the technology is feasible, which marks the producing well composite bridge plug + cluster more perforation as piecewise fracturing technology have achieved localization and provides strong technical support for the dense oil reservoir horizontal well next application localization of composite bridge plug tool with low cost, large volume fracturing. This paper uses the technology to carried out the construction in site of GuanDong14H and make success, which accumulates experience for the pumping bridge plug staged fracturing technology in Dagang oil field。 Key words: Dagang oil field pumping bridge plug staged fracturing 我国20世纪60年代以来在渤海湾、松辽、柴达木、江汉、吐哈及四川盆地均发现了非常规抽气,而在常规储层的油气储量逐年减少的情况下,把非常规油气藏作为未来勘探开发的重点已是大势所趋,泵送桥塞分段压裂通过大排量对地层进行体积压裂,使地层形成复杂的裂缝网络,减小储层流体的渗流阻力,从而使非常规储层的商业开发成为可能。实现储层分段改造、体积压裂的核心技术就是泵

桥塞

桥塞: 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。在中浅层试油施工中,对于封隔异常高压、高产、跨距大或者斜井等特殊层位,实现上返试油,双封封隔器施工的成功率较低,为方便后续试油,提高试油一次成功率,通常采用该类桥塞进行封层。该桥塞下井时通过拉断棒及拉断环与坐封工具连结,利用电缆或者管柱将其输送到井筒预定位置后,通过地面点火引爆或者从油管内打压实现桥塞坐封和丢手,既安全又可靠。⑤若打捞器抓住桥塞后反复上提管柱不解封时,可将钻具悬重提起,正向转动油管,使桥塞上部安全帽自行脱开,起出管柱和打捞器,然后套铣桥塞本体。 一、用途: 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 永久式桥塞主要用于套变、带喷、结蜡及井况正常的油、气、水井,代替分层填砂及打水泥塞工艺。 可取式桥塞是一种油田用井下封堵工具,它可与其它井下工具配套使用,进行临时性封堵、选择性封堵等。可取式桥塞可广泛用于试油、修井、测试、油气层改造等施工,是一种安全可靠、成本低廉、功能齐全井下封堵工具。

二、工作原理: 永久式桥塞工作原理:利用油管把永久式桥塞下到设计位置、投球,打压,当压力升至3.0~4.0MPa时,液压工具开始工作,下连接套推动永久式封堵器下行,把锚定及密封装置撑开, 当压力升至18~20MPa时,完成封堵器的封堵和锁紧,实现管柱的丢手,达到永久封堵的目的。 可取式桥塞工作原理:将可取式桥塞连接在液压送井工具的下端,将桥塞下至设计深度,用泵车向管柱内打压,桥塞的张力棒拉断,桥塞坐封,送井工具随管柱起出井筒。需要时,用专用的桥塞打捞工具下井即可解封起出桥塞。 三、技术参数: 1)永久式桥塞技术参数: 1、最大外径:Ф110 2、耐压差:40MPa 3、耐温: 120℃

桥塞知识

桥塞知识 一、简介 桥塞的作用是油气井封层,具有施工工序少、周期短、卡封位置准确的特点,分为永久式桥塞和可取式桥塞两种。 二、常用桥塞 1、永久式桥塞 简介: 永久式桥塞形成于80年代初期,由于它施工工序少、周期短、卡封位置准确,所以一经问世就在油气井封层方面得到了广泛应用,基本上取代了以前打水泥塞封层的工艺技术,成为试油井封堵已试层,进行上返试油的主要封层工艺。 在中浅层试油施工中出现的干层、水层、气层及异常高压等特殊层位,为方便后续试油,封堵废弃层位,通常采用该类桥塞进行封层,同时对于部分短期无开发计划的试油结束井也采用永久式桥塞封井。此外,该桥塞也用于深层气井的已试层封堵,为上返测试、压裂改造等工艺技术的成功实施提供保障。

工作原理: 利用电缆或管柱将其输送到井筒预定位置,通过火药爆破、液压坐封或者机械坐封工具产生的压力作用于上卡瓦,拉力作用于张力棒,通过上下锥体对密封胶筒施以上压下拉两个力,当拉力达到一定值时,张力棒断裂,坐封工具与桥塞脱离。此时桥塞中心管上的锁紧装置发挥效能,上下卡瓦破碎并镶嵌在套管内壁上,胶筒膨胀并密封,完成坐封。 结构特点: ①结构简单,下放速度快,可用于电缆、机械或者液压坐封。 ②可坐封于各种规格之套管。 ③整体式卡瓦可避免中途坐封。 ④采用双卡瓦结构,齿向相反,实现桥塞的双向锁定,从而保持坐封负荷,压力变化亦可保证密封良好。 ⑤球墨铸件结构易钻除。 ⑥施工工序少、周期短、卡封位置准确、深度误差小于1m,特别是封堵段较深、夹层很薄时更具有明显的优越性。

主要技术指标: ①工作温度:120℃-170℃。 ②工作压力:35Mpa,50Mpa,70Mpa。 ③坐封力:140~270kN。 ④适用套管:127mm~244.5mm 2、可取式桥塞 可取式桥塞封层工艺 简介 可取式桥塞是随着永久式桥塞的出现而产生的,形成于80年代,作为一种油田用井下封堵工具,在油田勘探和开发中广泛用于对油水井分层压裂、分层酸化、分层试油施工时封堵下部井段。它较好地解决了坐封、打捞、解封操作复杂,使用成功率低的问题。功能上部分可以替代丢手+封隔器、永久式桥塞和注灰封堵,是一种安全可靠、成本低廉、功能齐全的井下封堵工具。 在中浅层试油施工中,对于封隔异常高压、高产、跨距大或者斜井等特殊层位,实现上返试油,双封封隔器施工的成功率较低,为方便后续试油,提高试油一次成功率,通常采用该类桥塞进行封层。

第十五章-复合材料的界面及界面优化设计

复合材料
第三部分 复合材料的增强材料
第十五章 复合材料的界面及界面优化设计
教学目的:通过本章的学习,掌握复合材料的界面及 作用,聚合物基复合材料的界面及改性方法,几种聚 合物基复合材料的形成和改善界面的途径,界面表征 的方式。 重点内容: 1、复合材料的界面及界面改性方法。 2、复合材料改善界面的途径。 难点:复合材料界面与性能的关系。 熟悉内容:复合材料界面的研究内容及方法。
1
2
主要英文词汇:
Composite material---复合材料 Composite interface---复合材料界面 Residual stress of composite interface---复合材料界面 残余应力 Reaction of composite interface---复合材料界面反应 Modification of composite interface---复合材料的界 面改性 Mechanics of composite interface---复合材料界面力学
3
Bonding strength of composite interface---复合材料界面 黏结强度 Optimum design of composite interface---复合材料界面 优化设计 Compatibility of composite interface---复合材料界面相 容性 Mechanics of composite---复合材料力学 Micromechanics of composite---复合材料细观力学
4
参考教材或资料:
1、复合材料学----周祖福 (武汉理工大学出版社,2004年) 2、现代复合材料----陈华辉 邓海金 李 明 (中国物质出版社,1998) 3、复合材料概论----王荣国 武卫莉 (哈尔滨工业大学出版社,1999) 4、复合材料--------吴人洁(天津大学出版社,2000) 5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002) 6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003) 7、高性能复合材料学---郝元恺,肖加余 (化学工业出版社,2004) 8、新材料概论--- 谭毅, 李敬锋(冶金工业出版社,2004) 9、先进复合材料----鲁 云 朱世杰 马鸣图 (机械工业已出版社,2004) 10、复合材料--------周曦亚(化学工业出版社,2005)
5
15、复合材料的界面及界面优化设计
21世纪对材料要求多样化,复合材料开发有很大发 展,复合材料整体性能的优劣与界面结构和性能关系密 切。
15.1复合材料的界面概念
复合材料的界面是指基体与增强相之间化学成分有显 著变化的、构成彼此结合的、能起载荷传递作用的微小区 域。 复合材料的界面是一个多层结构的过渡区域,约几个 纳米到几个微米。大量事实证明,复合材料的界面 复合材料的界面实质上 界面相 是纳米级以上厚度的界面层(Interlayer)或称界面相 (Interphase)。
6
1

复合材料的复合原则及界面

复合材料的复合原则及界面 第一节复合原则 要想制备一种好的复合材料,首先应根据所要求的性能进行设计,这样才能成功地制备出性能理想的复合材料。 复合材料的设计应遵循的原则如下: 一、材料组元的选择 挑选最合适的材料组元尤为重要。 在选择材料组元时,首先应明确各组元在使用中所应承担的功能,也就是说,必须明确对材料性能的要求。 对材料组元进行复合,即要求复合后材料达到如下性能,如高强度、高刚度、高耐蚀、耐磨、耐热或其它的导电、传热等性能或者某些综合性能如既高强又耐蚀、耐热。 因此,必须根据复合材料所需的性能来选择组成复合材料的基体材料和增强材料。 例如,若所设计的复合材料是用作结构件,则复合的目的就是要使复合后材料具有最佳的强度、刚度和韧性等. 因此,设计结构件复合材料时,首先必须明确其中一种组元主要起承受载荷的作用,它必须具有高强度和高模量。这种组元就是所要选择的增强材料; 而其它组元应起传递载荷及协同的作用,而且要把增强材料粘结在一起,这类组元就是要选的基体材料。 其次,除考虑性能要求外,还应考虑组成复合材料的各组元之间的相容性,这包括物理、化学、力学等性能的相容,使材料各组元彼此和谐地共同发挥作用。 在任何使用环境中,复合材料的各组元之间的伸长、弯曲、应变等都应相互或彼此协调一致。 第三,要考虑复合材料各组元之间的浸润性,使增强材料与基体之间达到比较理想的具有一定结合强度的界面。 适当的界面结合强度不仅有利于提高材料的整体强度,更重要的是便于将基体所承受的载荷通过界面传递给增强材料,以充分发挥其增强作用。 若结合强度太低,界面很难传递载荷,不能起潜在材料的作用,影响复合材料的整体强度; 但结合强度太高也不利,它遏制复合材料断裂对能量的吸收,易发生脆性断裂。 除此之外,还应联系到整个复合材料的结构来考虑。 具体到颗粒和纤维增强复合材料来说,增强效果与颗粒或纤维的体积含量、直径、分布间距及分布状态有关。 颗粒和纤维增强复合材料的设计原则如下: 1. 颗粒增强复合材料的原则 (1)颗粒应高度弥散均匀地分散在基体中,使其阻碍导致塑性变形的位错运动(金属、陶瓷基体)或分子链的运动(聚合物基体)。 (2)颗粒直径的大小要合适。 因为颗粒直径过大,会引起应力集中或本身破碎,从而导致材料强度降低; 颗粒直径太小,则起不到大的强化作用。因此,一般粒径为几微米到几十微米。 (3)颗粒的数量一般大于20%。数量太少,达不到最佳的强化效果。 (4)颗粒与基体之间应有一定的粘结作用。 2.纤维增强复合材料的原则 (1)纤维的强度和模量都要高于基体,即纤维应具有高模量和高强度,因为除个别情况外,在多数情况下承载主要是靠增强纤维。

相关文档
最新文档