医用聚醚醚酮复合材料改性方法研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医用聚醚醚酮复合材料改性方法研究进展
吕㊀美ꎬ王利涛
(济宁医学院药学院ꎬ山东日照276826)
摘要:综述了医用聚醚醚酮复合材料改性方法的研究进展ꎬ重点分析讨论了纤维改性㊁纳米粒子填充㊁表面涂层以及等离子体表面处理对聚醚醚酮复合材料的生物相容性㊁生物活性㊁力学性能以及生物摩擦学性能的影响ꎬ并对其未来的发展方向进行了展望ꎬ为今后设计制备生物环境适应性的聚合物复合材料提供一定的指导ꎮ关键词:医用材料ꎻ聚醚醚酮ꎻ生物摩擦学ꎻ生物相容性ꎻ改性
中图分类号:TQ325㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1009-7961(2019)03-0001-05
ResearchProgressonModificationMethodsforMedicalPEEKComposites
LVMeiꎬWANGLi-tao
(SchoolofPharmacyꎬJiningMedicalUniversityꎬRizhaoShandong276826ꎬChina)
Abstract:Researchprogressonmodificationmethodsformedicalpolyetheretherketone(PEEK)compositeswasreviewed.Theeffectsoffibermodificationꎬnanoparticlefillingꎬsurfacecoatingandplasmasurfacetreat ̄
mentonbiocompatibilityꎬbioactivityꎬmechanicalpropertiesandbiotribologicalpropertiesofPEEKcompositeswereemphaticallyanalyzedanddiscussed.Futuredevelopmentdirectionswerealsoprospected.Thesemaypro ̄videsomeguidanceforthedesignandpreparationofbio-environmentaladaptablepolymercomposites.Keywords:medicalmaterialsꎻPEEKꎻbiotribologyꎻbiocompatibilityꎻmodification
收稿日期:2019-04-01
基金项目:山东省自然科学基金(ZR2017MEE059)
作者简介:吕美(1980-)ꎬ女ꎬ山东蒙阴人ꎬ讲师ꎬ博士ꎬ主要从事聚合物复合材料的生物摩擦学研究ꎮ
0㊀引言
㊀㊀聚醚醚酮材料(PEEK)最早是由英国帝国化学工业公司(ICI)在1977年研发成功ꎬ并于80年代初期由英国Victrex公司实现工业化生产的一种具有超高性能的特种工程塑料ꎬ被称为塑料工业的金字塔尖ꎮPEEK是由一个酮键和两个醚键的重复单元所构成的ꎬ属于半晶态芳香族热塑性聚合物ꎮ一方面ꎬPEEK的大分子链结构规整ꎬ且分子链上含大量的刚性芳环及柔性醚键ꎻ另一方面ꎬ大分子中含有可促进分子间作用力的极性羰基ꎮ因此ꎬ其具有耐热等级高㊁耐化学药品腐蚀㊁耐蠕变㊁自润滑㊁优异的力学性能㊁自然透亮等特点ꎬ在航空航天㊁汽车工业㊁电子电气㊁食品加工工业㊁医疗器械等领域可以替代金属㊁陶瓷等传统材料ꎮ除此之外ꎬPEEK凭借其优异的耐磨性能㊁良好的磁穿透性能㊁抗氧化性能㊁生物相容性㊁易加工成
型㊁质轻及弹性模量接近皮质骨等优点ꎬ在生物医
用材料领域表现出强有力的发展势头[1-2]ꎮ生物医用材料是指在医学上能够植入生物体内ꎬ具有诊断㊁治疗㊁修复和置换等功能的材料ꎮ生物医用材料与一般工业材料的最大区别在于它们的使用环境不同ꎬ生物医用材料是在生物环境内工作ꎬ这就要求其首先具备良好的生物相容性ꎬ从而提高医用材料在临床应用上的安全性和可靠性ꎮ随着经济的发展和医疗技术的进步ꎬ人类寿命延长ꎬ对生物医用材料的性能提出了更高的要求ꎮ结合聚醚醚酮材料在生物医用领域的主要应用ꎬ详细地阐述了不同改性方法对聚醚醚酮基医用复合材料相关性能的影响ꎬ并对其未来的发展方向进行了展望ꎬ为今后设计制备生物环境适应性的聚合物
复合材料提供一定的指导ꎮ
1㊀聚醚醚酮在医疗领域的主要应用
㊀㊀Kurtz等[3]对PEEK在创伤骨科㊁整形外科以
第28卷第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀淮阴工学院学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.28No.32019年6月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀JournalofHuaiyinInstituteofTechnology㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Jun.2019
及脊柱植入等方面做了详细的研究和总结ꎮ聚醚醚酮在高温高压环境下可承受上千次循环灭菌ꎬ而且在生理盐水中具有耐蠕变性能㊁耐水解性㊁耐腐蚀性㊁良好的耐磨性和力学性能ꎬ并保持其稳定的溶胀性ꎬ因此ꎬPEEK可制造各种手术器械ꎮ近年来ꎬ随着3D打印技术的发展ꎬPEEK在口腔修复领域的研究也越来越受到国内外科学家的关注ꎬ主要应用包括种植材料㊁愈合帽㊁愈合基台㊁牙桥㊁牙冠等ꎮ研究发现ꎬ与常用的金属㊁氧化锆和氧化铝等材料相比ꎬ陶瓷增强的PEEK口腔材料精确度高㊁密度低ꎬ能防止牙龈过敏ꎬ生物相容性好ꎬ而且质地柔和ꎬ在咬合过程中具有减震作用ꎮ此外ꎬ聚醚醚酮的另一个重要作用是替代金属制造人造骨ꎬ临床上常见的应用包括腰椎融合㊁缝线铆钉㊁颅骨植入体㊁人工置换关节等ꎮ1996年9月ꎬ美国
FDA正式批准脊柱椎体间融合器用于临床腰椎融合ꎮ科研工作者最先研究并且最早用于临床的是钛合金融合器ꎮ由于PEEK具有较低的弹性模量ꎬ可避免引起植入体融合的延迟ꎬ并且PEEK能够兼容X光拍照和核磁共振成像ꎬ因此ꎬ近年来钛合金融合器逐渐被PEEK融合器所取代ꎮ而且ꎬ与钛制颅骨板相比ꎬ聚醚醚酮制成的颅颌面植入体具有超低热导性质ꎬ避免了患者因环境温度的变化而带来的疼痛和不适ꎮ
虽然PEEK基生物医用材料在医疗领域具有深远的意义和价值ꎬ但是PEEK医用材料仍然存在许多问题ꎮ聚醚醚酮属于生物惰性材料ꎬ自身的生物活性欠佳ꎬ严重阻碍了其作为医用植入材料在临床上的广泛应用ꎬ因此在实际应用中ꎬ需要在
聚醚醚酮中引入生物活性材料ꎮ生物活性材料作
为植入材料植入人体之后ꎬ能够形成具有生物活
性的活性层ꎬ可以明显提高材料的细胞相容性和
生物活性[4-5]ꎮ由于植入材料长期处于人体复杂的生理环境中ꎬ外力和体液的共同侵蚀对PEEK的
耐腐蚀性㊁力学性能㊁耐磨性能等提出了更高的要
求ꎮ因此需要对聚醚醚酮的性能进行改进ꎬ以制
备具有生物环境适应性的聚醚醚酮复合材料ꎮ
2㊀改性方法对聚醚醚酮植入材料性能的影响
2.1㊀纤维增强改性
㊀㊀基于聚醚醚酮自身特点ꎬ通过引入增强改性剂可以有效提升聚醚醚酮材料的整体性质ꎮ国内外研究者通过纤维增强的方法已成功将生物惰性的碳纤维㊁玻璃纤维与聚醚醚酮共混制成人工植入材料ꎬ结果表明碳纤维增强的聚醚醚酮复合材料表现出极好的力学性能和减摩抗磨性能[6-7]ꎮ碳纤维作为一种高性能纤维ꎬ因其具有高比强度㊁高比模量㊁抗疲劳性㊁抗蠕变㊁良好的生物相容性㊁自润滑性㊁耐磨损㊁可设计性强㊁破损安全性好等特性ꎬ在生物医用领域得到了广泛的应用ꎮSong等[8]通过纳米压痕试验研究了碳纤维增强PEEK复合材料在生物医用领域的纳米机械和纳米摩擦学性能ꎬ发现碳纤维增强了PEEK的纳米硬度和弹性模量ꎬ降低了其摩擦系数和磨损率ꎮ
图1㊀恒定载荷下PEEK和CFR-PEEK在纳米划痕实验中的平均摩擦系数:(a)10mNꎬ(b)30mN和(c)60mN[8]2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀淮阴工学院学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年
㊀㊀Brown等[9]研究了反复蒸汽灭菌㊁生理盐水浸泡㊁热成型前后的反复弯曲处理对添加30%聚丙烯腈碳纤维的PEEK㊁PS和PBT复合材料的影响ꎬ研究发现碳纤维与PEEK的相容性更好ꎬ使得复合材料表现出更好的抗疲劳性能和热成型性能ꎮ王克军等[10]分别采用MTT法㊁溶血试验㊁急性全身毒性试验㊁热原试验㊁兔体内骨板植入实验以及应力测试研究了短碳纤维增强聚醚醚酮生物相容性ꎬ结果表明ꎬ短碳纤维增强聚醚醚酮材料无任何毒性ꎬ组织相容性好ꎻ而且应力测试显示短碳纤维增强聚醚醚酮材料符合人体髋关节的生物力学强度需要ꎮLee等[11]根据ISO14801:2003对玻璃纤维增强PEEK(GFR-PEEK)㊁碳纤维增强PEEK(CFR-PEEK)和现有牙种植体钛棒进行了疲劳试验ꎬ发现PEEK复合材料用作口腔种植体时可以减小应力遮挡效应ꎬGFR-PEEK和CFR-PEEK的抗压强度分别在前牙和后牙之间的咬合力范围内ꎬ而且GFR-PEEK植入物能够承受与前牙最大咬合力相当的静态和循环载荷ꎮKojic等[12]在临床上将CFR-PEEK作为一种新型髓内钉治疗肱骨干骨折ꎬ通过12个月随访的43例患者ꎬ未观察到与种植相关的并发症ꎬ并且其骨匹配弹性模量有助于临床疗效ꎬ而且与金属植入体相比ꎬ具有与现代成像技术的兼容性ꎮ
2.2㊀纳米粒子增强改性
㊀㊀纳米技术和纳米材料的发展为聚合物复合材料的设计提供了新的研究思路ꎮ纳米粒子的小尺寸效应㊁表面效应特殊性质常常赋予聚合物复合材料优异特性ꎬ使得聚合物纳米复合材料受到研究者的广泛关注ꎮ近年来ꎬ纳米粒子用于改善关节材料生物相容性的研究不断涌现ꎬ成为聚合物复合材料改性研究的一大热点ꎮ
羟基磷灰石与人体骨和牙齿中的无机成分相同ꎬ具有骨传导㊁骨诱导等性能ꎬ生物相容性好ꎬ所以成为目前研究最多的生物材料之一[13-14]ꎮ李凝等[15]考察了生理盐水润滑条件下ꎬ不同载荷及不同的滑动速度条件时ꎬ纳米CaCO3晶须含量对PEEK复合材料的生物摩擦学性能的影响ꎬ研究发现CaCO3晶须可有效改善PEEK复合材料的耐磨性能ꎮSong等[16]研究了纳米氧化锆含量对PEEK复合涂层的表面润湿性㊁硬度和摩擦磨损性能的影响ꎬ发现纳米ZrO2的加入能够改善复合涂层在25%牛血清中的润湿性ꎬ5wt.%ZrO2填充的PEEK复合涂层具有最佳的摩擦学性能ꎮRen等[17-18]通过MAPK和PI3K/Akt信号通路研究了10%HA/SPEKE/PEEK复合物对成骨细胞增殖分化的生物学活性及其作用机制ꎬ研究发现纳米HA的添加促进成骨细胞增殖并调节其分化ꎬ10%HA/SPEEK/PEEK对MG63细胞有良好的成骨作用ꎬ是一种有前途的骨植入材料ꎮKumar等[19]通过体外实验使用人骨肉瘤细胞对纯PEEK和TiO2共混PEEK复合材料进行细胞毒性试验ꎬ并进行碱性磷酸酶(ALP)活性评估和量化骨矿化过程ꎬ结果表明ꎬ在PEEK中共混引入纳米TiO2可以提高材料的生物活性ꎬ可以用作种植牙的首选生物材料ꎮ2.3㊀表面涂层处理
㊀㊀Stubinger等[20]通过动物实验研究了钛和羟基磷灰石等离子喷涂对PEEK和CFR-PEEK成骨能力的影响ꎬ发现与未涂覆PEEK和CFR-PEEK相比ꎬ所有被涂有钛或羟基磷灰石涂层的材料表面显示出非常有利的生物力学和生物学特性ꎬ这表明等离子喷涂钛及羟基磷灰石对PEEK或者CFR-PEEK骨结合有明显改善作用ꎮStawarczyk等[21]首先对比了未处理㊁硫酸腐蚀㊁空气磨蚀和二氧化硅涂层不同的表面处理对PEEK的接触角㊁表面粗糙度㊁剪切强度的影响ꎬ结果表明二氧化硅涂层的表面表现出最高的润湿性ꎬ硫酸酸蚀的样品达到最高的剪切结合强度ꎮ该研究进一步将PEEK加工成三单元固定桥修复体ꎬ发现其平均断裂载荷为1383Nꎬ塑性变形约为1200Nꎮ这说明PEEK是一种适合的假牙材料ꎬ而且当PEEK作为复合贴面材料时ꎬ应采用酸蚀处理ꎮKumar等[19]通过等离子体喷涂技术在纯PEEK材料表面包覆了一层纳米TiO2涂层ꎬ与纯PEEK相比ꎬN-TiO2-涂层PEEK是种植牙的首选生物材料ꎮ2.4㊀等离子体表面处理
㊀㊀激光束㊁电子束㊁γ射线㊁x射线㊁紫外辐照等技术已被广泛应用于材料表面改性ꎬ而离子辐照因具有定位准确㊁无污染㊁离子类型多样㊁辐照深度可控㊁辐照剂量可控等诸多优点ꎬ在改性制备新材料㊁医用杀菌㊁肿瘤治疗等领域备受关注[22]ꎮ带电的高速离子可以引发聚合物链断裂而产生自由基ꎬ而这些自由基相互结合ꎬ使得材料表面形成复杂的交联结构ꎬ能够改变材料表面的化学组成㊁亲/疏水性质和粘附力ꎬ从而改变材料在生理环境中的各种性能[23-24]ꎮ
Wakelin等[25]考察了紫外光辐射和氮等离子体注入(PIII)的协同作用对医用植入PEEK材料
第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吕美ꎬ王利涛:医用聚醚醚酮复合材料改性方法的研究进展㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀3
力学性能的影响ꎬ研究发现材料的杨氏模量和弹性恢复明显提高ꎬ而且处理后材料的生物活性也明显提高ꎮWang等[26]采用成骨细胞(MC3T3-
E1)和大鼠骨髓间充质干细胞(BMSC)ꎬ评价了水等离子体离子注入对PEEK材料细胞相容性的影响ꎬ发现与纯PEEK相比ꎬ经过处理的PEEK更有利于成骨细胞的黏附㊁铺展和增殖ꎬ同时ꎬBMSC的碱性磷酸酶活性明显提高ꎬ有助于早期成骨分化ꎮ近年来ꎬAwaja课题组[27]采用CH4/O2混合气体等离子体对医用植入PEEK材料表面进行了处理ꎬ以考察成骨细胞在PEEK表面的粘附性能和vinculin蛋白在这些细胞中的存在ꎬ结果表明经过混合气体等离子处理后材料表面形成一层富含氧的等离子体沉积膜ꎬ由于氧官能团具有强极性ꎬ提高了材料表面能ꎬ从而提高了材料表面的细胞粘附性ꎮ
图2㊀细胞对PIIID处理的PEEK表面的粘附作用与(a)水接触角和(b)表面能的极性成分的变化关系[27]
㊀㊀Powles等[28]采用氢离子等离子体浸没离子注入法对生物医用PEEK材料表面进行了处理ꎬ发现材料表面形成了一种氢化非晶碳膜ꎬ材料的表面硬度和弹性回复都增加ꎬ这有助于提高材料的耐磨性和抗冲击性能ꎮMcKenzie等[29]将PEEK样品暴露在氧㊁氩㊁氢和氘的等离子体中以改善其生物医学应用的性能ꎮ研究发现:与氢和氩等离子体处理相比ꎬ氧等离子体处理后材料表面表现出更好的润湿性㊁更高的电阻率和良好透光性ꎮ3㊀结语
㊀㊀在PEEK的生物应用方面ꎬ我国起步较晚ꎬ虽然有关厂家㊁研究机构等都已经作了大量的研究工作ꎬ但大多处于理论研究阶段ꎬ对PEEK生物材料的临床应用一直依靠进口ꎮ目前ꎬ大多数对PEEK的研究都是集中在单一改性技术ꎬ而很少考虑多种改性方法的协同效应ꎮ因此ꎬ在未来PEEK生物医用材料体系研究开发中ꎬ应充分利用多重改性技术ꎬ赋予PEEK材料更好的力学性能㊁生物相容性和耐磨性能ꎬ突破传统医用材料在实际应用中的不足ꎬ促进新型医用材料的发展ꎮ
参考文献:
[1]WyattHꎬElliottMꎬRevillPꎬetal.Theeffectofengi ̄
neeredsurfacetopographyonthetribologyofCFR-PEEKfornovelhipimplantmaterials[J].Biotribologyꎬ2016(7):22-30.
[2]WangLꎬWengLꎬSongSꎬetal.Characterizationofpolyetheretherketone-hydroxyapatitenanocompositema ̄terials[J].MaterialsScienceandEngineering:Aꎬ2011(10-11):3689-3696.
[3]KurtzSMꎬDevineJN.PEEKbiomaterialsintraumaꎬorthopedicꎬandspinalimplants[J].Biomaterialsꎬ2007(32):4845-4869.
[4]CzikóMꎬBogyaESꎬBarabásRꎬetal.Invitrobiologi ̄calactivitycomparisonofsomehydroxyapatite-basedcompositematerialsusingsimulatedbodyfluid[J].Cen ̄tralEuropeanJournalofChemistryꎬ2013(10):1583-1598.
[5]MaMG.Hierarchicallynanostructuredhydroxyapatite:hydrothermalsynthesisꎬmorphologycontrolꎬgrowthmechanismꎬandbiologicalactivity[J].Internationaljour ̄nalofnanomedicineꎬ2012(7):1781-1791. [6]GruppTMꎬMeiselHJꎬCottonJAꎬetal.Alternativebearingmaterialsforintervertebraldiscarthroplasty[J].Biomaterialsꎬ2010(3):523-531.
[7]SongJꎬLiaoZꎬWangSꎬetal.StudyontheTribologicalbehaviorsofdifferentPEEKcompositecoatingsforuseasartificialcervicaldiskmaterials[J].JournalofMaterialsEngineeringandPerformanceꎬ2016(1):116-129. [8]SongJꎬShiHꎬLiaoZꎬetal.Studyonthenanomechani ̄
4㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀淮阴工学院学报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年
calandnanotribologicalbehaviorsofPEEKandCFR ̄PEEKforbiomedicalapplications[J].Polymersꎬ2018(2):142-157.
[9]BrownSAꎬHastingsRSꎬMasonJJꎬetal.Character ̄izationofshort-fiberreinforcedthermoplasticsforfrac ̄turefixationdevices[J].Biomaterialsꎬ1990(8):541-547.
[10]王克军ꎬ郭伟春ꎬ唐谨ꎬ等.短碳纤维增强聚醚醚酮为全髋假体材料的生物相容性及力学性能[J].中国组
织工程研究与临床康复ꎬ2011(34):6351-6354. [11]LeeWTꎬKoakJYꎬLimYJꎬetal.Stressshieldingandfatiguelimitsofpoly-ether-ether-ketonedental
implants[J].JournalofBiomedicalMaterialsResearch
PartB-AppliedBiomaterialsꎬ2012(4):1044-1052. [12]KojicNꎬRanggerCꎬözgünCꎬetal.Carbon-fibre-reinforcedPEEKradiolucentintramedullarynailforhu ̄
meralshaftfracturefixation:technicalfeaturesandapi ̄
lotclinicalstudy[J].Injuryꎬ2017(48):S8-S11. [13]YangCRꎬWangYJꎬChenXF.Preparationandeval ̄uationofbiomimetricnano-hydroxyapatite-based
compositescaffoldsforbone-tissueengineering[J].
Chinesesciencebulletinꎬ2012(21):2787-2792. [14]KrishnamurithyGꎬMuraliMRꎬHamdiMꎬetal.Char ̄acterizationofbovine-derivedporoushydroxyapatite
scaffoldanditspotentialtosupportosteogenicdifferenti ̄
ationofhumanbonemarrowderivedmesenchymalstem
cells[J].CeramicsInternationalꎬ2014(1):771-777. [15]李凝ꎬ黄健萌ꎬ陈卫增.生理盐水润滑下PEEK/WK复合材料的摩擦学性能[J].中国表面工程ꎬ2015(6):133-137.
[16]SongJꎬLiuYꎬLiaoZꎬetal.WearstudiesonZrO2-filledPEEKascoatingbearingmaterialsforartificial
cervicaldiscsofTi6Al4V[J].MaterialsScienceandEn ̄
gineering:Cꎬ2016(69):985-994.
[17]RenYꎬNiZꎬWangYꎬetal.10%HA/SPEEK/PEEKcompositepromotesproliferationanddifferentiationofos ̄
teoblastcellsthroughtheMAPKandPI3K/AKTsigna ̄
lingpathways[J].IntJClinExpMedꎬ2017(2):2127
-2136.
[18]任英华ꎬ刘学ꎬ倪卓ꎬetal.10%纳米羟基磷灰石聚醚醚酮浸提液培养成骨细胞(MG63)Wnt3a/β-cate ̄
nin信号通路的表达[J].临床口腔医学杂志ꎬ2016
(10):582-586.
[19]KumarTAꎬJeiJBꎬMuthukumarB.Comparisonofos ̄teogenicpotentialofpoly-ether-ether-ketonewithti ̄
tanium-coatedpoly-ether-ether-ketoneandtitani ̄
um-blendedpoly-ether-ether-ketone:Aninvitro
study[J].JournalofIndianProsthodonticSocietyꎬ2017
(2):167-174.
[20]StübingerSꎬDrechslerAꎬBürkiAꎬetal.Titaniumandhydroxyapatitecoatingofpolyetheretherketoneandcar ̄
bonfiber‐reinforcedpolyetheretherketone:Apilot
studyinsheep[J].JournalofBiomedicalMaterialsRe ̄
searchPartB:AppliedBiomaterialsꎬ2016(6):1182-
1191.
[21]StawarczykBꎬBeuerFꎬWimmerTꎬetal.Polyethere ̄therketone-Asuitablematerialforfixeddentalprosthe ̄
ses?[J].JournalofBiomedicalMaterialsResearch
PartB-AppliedBiomaterialsꎬ2013(7):1209-1216. [22]HuszankRꎬSzikraDꎬSimonAꎬetal.4He+Ionbeamirradiationinducedmodificationofpoly(dimethylsilox ̄
ane).characterizationbyinfraredspectroscopyandion
beamanalyticaltechniques[J].Langmuirꎬ2011(7):3842-3848.
[23]HuszankRꎬSzilasiSZꎬSzikraD.Ion-Energyde ̄pendencyinprotonirradiationinducedchemicalproces ̄
sesofpoly(dimethylsiloxane)[J].TheJournalofPhysi ̄
calChemistryCꎬ2013(49):25884-25889. [24]KimSꎬLeeKJꎬSeoY.Polyetheretherketone(PEEK)surfacefunctionalizationbylow-energyion-beamirra ̄
diationunderareactiveO2environmentanditseffecton
thePEEK/copperadhesives[J].Langmuirꎬ2004(1):157-163.
[25]WakelinEAꎬFathiAꎬKracicaMꎬetal.MechanicalpropertiesofplasmaimmersionionimplantedPEEKfor
bioactivationofmedicaldevices[J].ACSappliedmateri ̄
als&interfacesꎬ2015(41):23029-23040. [26]WangHꎬLuTꎬMengFꎬetal.Enhancedosteoblastre ̄sponsestopolyetheretherketonesurfacemodifiedby
waterplasmaimmersionionimplantation[J].Colloids
andSurfacesB:Biointerfacesꎬ2014(117):89-97. [27]AwajaFꎬBaxDVꎬZhangSꎬetal.CelladhesiontoPEEKtreatedbyplasmaimmersionionimplantationand
depositionforactivemedicalimplants[J].Plasma
ProcessesandPolymersꎬ2012(4):355-362. [28]PowlesRCꎬMcKenzieDRꎬFujisawaNꎬetal.Produc ̄tionofamorphouscarbonbyplasmaimmersionionim ̄
plantationofpolymers[J].Diamondandrelatedmateri ̄
alsꎬ2005(10):1577-1582.
[29]McKenzieDRꎬNewton-McGeeKꎬRuchPꎬetal.
Modificationofpolymersbyplasma-basedionimplan ̄
tationforbiomedicalapplications[J].SurfaceandCoat ̄
ingsTechnologyꎬ2004(1-2):239-244.
(责任编辑:郑㊀菲)
第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吕美ꎬ王利涛:医用聚醚醚酮复合材料改性方法的研究进展㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀5。

相关文档
最新文档