平面及其方程习题解析

平面及其方程习题解析
平面及其方程习题解析

6.3

一、单选题

1、平面330x y z +--=的截距式方程为( ).

A 3(1)0x y z +--= B

133

x z y +-= C 33x y z +-= D 13y x z +-=

答案: B

解析: 根据截距式方程的标准形式,

可将平面的一般式方程330x y z +--=,化为

133x z y +-=.

2、过三点1(0,1,0)M -, 2(1,0,1)M , 3(1,1,1)M -的平面的一般式方程为( ).

A 32(1)0x y z -+-=

B 3220x y z --+=

C 3220x y z ---=

D 1232

x z y --= 答案: C

解析:

方法一 直接求平面的一般方程 .

设平面的一般方程为0Ax By Cz D +++= ①,将已知的三个点123,,M M M 坐标

分别代入方程①中, 即有方程组0

00B D A C D A B C D -+=??++=??+-+=?

, 运用中学学过的消元法解方程组, 用D

来表示,,A B C , 可得3212

B D

A D C D ??=??=-???=?? , 因此, 所求平面的一般方程为 310,22D x D y D z D -?+?+?+=方程两边同时除以2

D -化简得3220x y z ---=.

方法二 先求平面的点法式方程, 再化为一般方程 .

将三个点任意连成两个向量, 不妨作1213,,M M M M

则有1213(1,1,1),(1,2,1),M M M M ==-从1213,M M M M

的坐标可以看出这两个向量并不平行, 可以通过这两个向量

求出平面方程的法向量1213111121i j k

n M M M M =?=-

11111132.211112

i j k i j k =+=-++--- 再从123,,M M M 中任取一点, 不妨就取1(0,1,0)M -, 根据点法式, 可得所求的平面方程(3)(0)2(1)1(0)0,x y z -?-+?++?-=化为平面的一般方程即3220x y z ---=. (大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

3、过点1(1,1,2)M -, 2(2,0,4)M 且平行于x 轴的平面的一般式方程为( ).

A 240y z -+= B

124y z -= C 024

y z -= D 240y z --=

答案: A

解析: 首先,由于所求平面平行于x 轴,因此可设平面方程为0By Cz D ++= .

方法一 直接求平面的一般方程 .

将已知的两个个点12,M M 坐标分别代入平面方程0By Cz D ++=中,

即有方程组2+04+=0

B C D C D -+=???, 运用中学学过的消元法解方程组, 用D 来表示,B C , 可得1214

B D

C

D ?=????=-?? , 因此, 平面的一般方程为110,24D y D z D ?-?+= 方程两边同时除以2D 化简得240.y z -+=

方法二

根据所设平面方程0By Cz D ++=,可知平面的法向量为(0,,)n B C =. 由于点1(1,1,2)M -, 2(2,0,4)M 均在平面内,因此12n M M ⊥,其中12(1,1,2)M M =.

根据两向量垂直的充要条件:12120n M M n M M ⊥??=,因此有120B C ?+?=,可得2B C =-,代入所求平面方程有20Cy Cz D -++= ① .

再将点2(2,0,4)M 的坐标代入①中,有40C D +=, 可得14C D =-,再代回①中,有11024

Dy Dz D -+=,方程 两边同时除以D 化简得240.y z -+=

(大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

4、过y 轴及点(1,7,2)P 的平面的一般式方程为( ).

A 20x z -=

B 20x z +=

C 1x z -=

D 1x z +=

答案: A

解析: 首先,由于所求平面过y 轴,当然也就过原点,因此,

如右图所示,所求平面的法向量n OP j =?,其中(1,7,2)OP =, (0,1,0)j =,可得721217172100001010i j k

n i j k -==+2(2,0,1)i k =-+=-.

由于平面过原点,所以根据平面的点法式方程可得2(0)1(0)0x z -?-+?-=,即20x z -+=或20x z -=.

(大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

5、过点(2,6,4)P --且在x 轴和y 轴上的截距分别为2和3的平面的一般式方程为( ).

A 123x y z ++=-

B 023

x y z ++= C 3210x y z +++= D 32660x y z ++-=

答案: D

解析: 首先,由于已知所求平面在x 轴和y 轴上的截距分别为2和3,因此可设平面的截距式方程为123x y z c

++=. 又由于所求平面过点(2,6,4)P --,因此可将坐标代入方程,有

264123c --++=,可求得1c =.

因此,所求平面的截距式方程为1231

x y z ++=,可化为它的一般式方程32660x y z ++-=.

(大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

6、过点(1,1,0)P -且与两向量(2,2,1)a =--,(1,0,2)b =-平行的平面一般式方程为

( ). A 43270x y z --+-= B 43270x y z ++-=

C 43270x y z -+-=

D 43270x y z -++=

答案: C

解析: 如右图所示,由于所求平面与两向量a ,b 平行,可知

所求平面的法向量212122221021210102i j k

n a b i j k ----=?=---=+---,即 ,因此,所求平面的点法式方程为4(1)3(1)20x y z --++-=,可化为它

的一般式方程43270x y z -+-+=.

(大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

7、过点(1,0,1)-且与平面3570x y z ++-=平行的平面一般式方程为( ).

A 3540x y z -++=

B 3540x y z +-+=

C 3540x y z +++=

D 3540x y z ++-=

答案: C

解析:

根据两平面平行的充要条件可设135

A B C k ===, 因此有,3,5A k B k C k ===, 代入所求平面方程有350kx ky kz D +++=①, 再将点(1,0,1)-代入方程① , 可得 1305(1)0k k k D ?+?+?-+=, 即有4D k =, 又代回方程①有3540kx ky kz k +++= , 两边同除以k 即得所求平面方程3540.x y z +++=

(大家还可以想想其他方法.)

(做选择题也可以用代入法,将平面上点的坐标逐个代入四个选项检验。)

8、三平面210x y z ++-=,220x y z ++-=,240x y z ++-=的交点为( ).

A 319(,,)444-

B 319(,,)444

--- C (3,1,9)- D (3,1,9)---

(4,3,2)n =--

答案: A

解析: 方法一 用中学消元法解三元线性方程组422122x y z x y z x y z ++=??++=??++=?

.

方法二 用预备知识《二、三阶行列式》里的方法解上述三元线性方程组: 设211121112D =,1121121124D =,221112

2411D =,32111

42121D =,则

134D x D -==,214D y D ==,394

D z D == .

方法三 做选择题也可以用代入法,将四个选项中点的坐标逐个代入平面方程检验。

(大家还可以想想其他方法.)

二、填空题

1、将正确选项填入以下各空:

方程20x y z +-=表示的平面为 ;

方程10y z -+=表示的平面为 ;

方程0x z +=表示的平面为 ;

方程0y =表示的平面为 ;

方程10z +=表示的平面为 .

A 过原点的平面

B 平行于x 轴的平面

C 过y 轴的平面

D 平行于xoy 面的平面

E xoz 面

答案: 第一空A 第二空B 第三空C 第四空E 第五空D

解析:

2、请选择正确的项填入以下各空(答案可以重复):

平面10x y --=与xoy 面的夹角为 , 与yoz 面的夹角为 , 与zox 面的夹角为 .

A 4π

B 3

π

答案: 第一空 A 第二空 B 第三空 B

解析: 试用以下公式求解——

3、点(3,7,4)P 到平面2210x y z -+-=的距离为 .

答案: 2

解析: 试用以下公式求解——

直线与方程测试题含答案

第三章 直线与方程测试题 一.选择题1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y = 33x +4 C . y =33x -4 D. y =3 3x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。 A. -6 B. -7 C. -8 D. -9 3. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ). A. 2 B. 3 C. 4 D. 5 4. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。 A.2 B. 3 C. -3 D. -2 5.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关 *6.到直线2x +y +1=0的距离为55 的点的集合是( ) A.直线2x+y -2=0 B.直线2x+y=0 C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=0 7直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞?-∞-,22, C.[)(]2,00,2?- D.()+∞∞-,

*8.若直线l与两直线y=1,x-y-7=0分别交于M,N两点,且MN的中点是P(1,-1),则直线l的斜率是() A.-2 3 B. 2 3 C.- 3 2 D. 3 2 9.两平行线3x-2y-1=0,6x+ay+c=0之间的距离为213 13 ,则 c+2 a的 值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x-2y+1=0关于直线x=1对称的直线方程是() A.x+2y-1=0 B.2x+y-1=0 C.2x+y-3=0 D.x+2y-3=0 **11.点P到点A′(1,0)和直线x=-1的距离相等,且P到直线y=x的距 离等于 2 2 ,这样的点P共有() A.1个B.2个C.3个D.4个 *12.若y=a|x|的图象与直线y=x+a(a>0) 有两个不同交点,则a的取值范围是() A.0<a<1 B.a>1 C.a>0且a≠1 D.a=1 二.填空题(每小题5分,共4小题,共20分) 13. 经过点(-2,-3) , 在x轴、y轴上截距相等的直线方程是;或。

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

数理方程练习题(1)

一、填空题 1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。 2.在实际中广泛应用的三个典型的数学物理方程: 第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0 x x y y u u +=, (,)xx yy u u x y ρ+=-),属于(椭圆)型; 二、选择题 1.下列泛定方程中,属于非线性方程的是[ B ] (A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ( )22 0y xx xxy u x y u u +++=; (D) 340t x xx u u u ++=; 2. 下列泛定方程中,肯定属于椭圆型的是[ D ] (A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=; (C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题 ()()( )()()()2,0,00,,0 ,0,,0tt xx x x t u a u t x l u t u l t u x x u x x ?φ?=><

武大期末复习-数理方程教学指导纲要

第九章定解问题的物理意义 基本要求与教学内容: 1、理解波动方程、热传导方程、Poison方程和Laplace方程的物理意 义, 根据物理问题写出其相应的方程(不需要推导方程)。 2、第一、第二类边界条件的物理意义。根据具体物理问题,掌握确 定这两类边界条件的方法。 3、初始条件的意义及确定。 本章重点: 掌握由具体的物理问题写出其相应的定解问题方法,即泛定方程和定解条件。

第十章利用积分变换解无界问题 基本要求与教学内容: 1、熟练掌握利用d'Alembert公式计算一维无界的齐次波动方程,理 解其解的物理意义。 2、了解一维无界非齐次波动方程的通解形式及计算。 本章重点: 利用d'Alembert公式计算一维无界的齐次波动方程

第十一章一维有界问题的分离变量 基本要求与教学内容: 1、理解分离变量法的基本概念:方法、条件、不同定解问题的通解 形式。 2、熟练准确写出第一、第二类齐次边界条件的本征值和本征函数。 3、熟练掌握用分离变量法求解一维有界问题的解:1)分离变量得到 的两个方程;2)由本征值问题确定相应的本征值和本征函数;3)确定关于)(t T方程的解(或者与其对应变量方程的解);4)定解问题的通解;5)由定解条件确定待定系数(通过系数比较方法确定系数是一种重要的方法)。 4、熟练掌握利用本征函数展开解一维有界非齐次方程:1)对应齐次 方程和齐次边界条件的本征函数的确定;2)非齐次项和初始条件按本征函数的展开, 方程的解按本征函数的展开;3)求解关于)(t T 方程的解;4)定解问题的解。 5、掌握非齐次边界条件的齐次化。 本章重点: ?第二类齐次边界条件的本征值和本征函数 ?用分离变量法求解一维有界问题的解 ?利用本征函数展开解一维有界非齐次方程 ?非齐次边界条件的齐次化

最新直线与方程单元测试题

江苏省赣榆高级中学 直线与方程单元测试题 一、填空题(5分×18=90分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ; 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ; 3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ; 4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ; 5. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 6.已知直线0323=-+y x 和0 16=++my x 互相平行,则它们之间的距离是: 7、过点A(1,2)且与原点距离最大的直线方程是: 8.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是: 9.已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是: 10.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为: 11.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条. 12.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 . 13.当10k 2 <<时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 14.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ; 15.直线y=2 1x 关于直线x =1对称的直线方程是 ; 16.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________. 17.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程 18.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:

高一直线与方程练习题及答案详解

直线与方程练习题 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足() A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为() A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过() A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是() A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足() A .0≠m B .2 3-≠m C .1≠m D .1≠m ,2 3-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是() A .524=+y x B .524=-y x C .52=+y x D .52=-y x 8.若1(2,3),(3,2),(,)2 A B C m --三点共线 则m 的值为( ) A.21 B.2 1- C.2- D.2

9.直线x a y b 22 1-=在y 轴上的截距是() A .b B .2b - C .b 2 D .±b 4.直线13kx y k -+=,当k 变动时,所有直线都通过定点() A .(0,0) B .(0,1) C .(3,1) D .(2,1) 10.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关() A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 二、填空题 1.点(1,1)P -到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 4.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。 三、解答题 1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。 2.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

完整高中数学直线与方程习题及解析

点的P反射后通过点B(3,1),求射向(-1,3)x轴,经过x轴上的点P1.一条光线从点A坐标.0013--13 k=-=,,依题意,=,则k=0)设解P(x,PBAP x--1x3x-+3-1x由光的反射定律得k=-k,PBAP31即=,解得x=2,即P(2,0).x+13-x2.△ABC为正三角形,顶点A在x 轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜 率. 解如右图,由题意知∠BAO=∠OAC=30°, ∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°, 3,=-tan 150°∴k=AB33. ==tan 30°k AC3f?a?f?b?f?c?3.已知函数f(x)=log(x+1),a>b>c>0,试比较,,的大小.2abcf?x? 可视为过原点直线的斜率.画出函数的草图如图,解xf?c?f?b?f?a?由图象可知:>>. cba 4.(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11),求证:AB⊥CD. 32+1)且l,a⊥l,求实数(3,直线l经过点Aa,-2),B(0k(2)已知直线l的斜率=211124a的值.(1)证明由斜率公式得: 6-33 =,=k AB55-1011-?-4?5=-,=k CD3-6-3则k·k=-1,∴AB⊥CD. CDAB(2)解∵l ⊥l,∴k·k=-1,2121+1-?-2?2a3即=-1,解得a=1或a=3. ×40-3a 5. 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0)、的形状.OPQR试判断四边形>0.t,其中2)t,2-(R、)t+2t,2-(1Q、)t,(1P. 0t-,t==由斜率公式得k解OP01-t-0-2-?2+t?21==t,k=-,==k ORQR t-2t-?1-2t?-1-2t-02+t-t12=-=. =k PQ tt-212t-1-. PQ,OR∥OP∴k=k,k=k,从而∥QR PQQROPOR为平行四边形.∴四边形

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

(完整word版)高中直线与方程练习题--有答案.doc

一、选择题: 1.直线 x- 3 y+6=0 的倾斜角是( ) A 60 B 120 C 30 0 D 150 2. 经过点 A(-1,4), 且在 x 轴上的截距为 3 的直线方程是( ) A x+y+3=0 B x-y+3=0 C x+y-3=0 D x+y-5=0 3.直线 (2m 2+m-3)x+(m 2 -m)y=4m-1 与直线 2x-3y=5 平行,则的值为( ) A- 3 或1 B1 C- 9 D - 9 或 1 2 8 8 4.直线 ax+(1-a)y=3 与直线 (a-1)x+(2a+3)y=2 互相垂直,则 a 的值为( ) A -3 B 1 C 0 3 D 1 或-3 或- 2 5.圆( x-3 ) 2+(y+4) 2 =2 关于直线 x+y=0 对称的圆的方程是( ) A. (x+3) 2 +(y-4) 2 =2 B. (x-4) 2 +(y+3) 2=2 C .(x+4) 2 +(y-3) 2=2 D. (x-3) 2 +(y-4) 2=2 6、若实数 x 、y 满足 ( x 2) 2 y 2 3,则 y 的最大值为( ) x A. 3 B. 3 C. 3 3 D. 3 3 7.圆 (x 1) 2 ( y 3) 2 1 的切线方程中有一个是 A . x -y =0 B .x + y =0 C .x =0 D . y =0 8.若直线 ax 2 y 1 0 与直线 x y 2 0 互相垂直,那么 a 的值等于 A . 1 B . 1 C 2 D . 2 3 . 3 9.设直线过点 (0, a), 其斜率为 1,且与圆 x 2 y 2 2 相切,则 a 的值为 ( ) A. 4 B. 2 2 C. 2 D. 2 10. 如果直线 l 1 ,l 2 的斜率分别为二次方程 x 2 4x 1 0 的两个根,那么 l 1 与 l 2 的夹角为( A . B . 4 C . D . 3 6 8 11.已知 M {( x, y) | y 9 x 2 , y 0}, N {( x, y) | y x b} ,若 M I N b A .[ 3 2,3 2] B . ( 3 2,3 2) ( ) ( ) ) ,则 ( ) C . ( 3,3 2] D . [ 3,3 2]

必修二《直线与方程》单元测试题(含详细答案)之欧阳学创编

第三章《直线与方程》单元检测 试题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.已知点A(1,3),B(-1,33),则直线AB的倾斜角是() A.60°B.30° C.120°D.150° [答案]C 2.直线l过点P(-1,2),倾斜角为45°,则直线l的方程为() A.x-y+1=0 B.x-y-1=0 C.x-y-3=0 D.x-y+3=0 [答案]D 3.如果直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为() A.-3 B.-6

C.3 2D.2 3 [答案]B 4.直线x a2- y b2=1在y轴上的截距为() A.|b| B.-b2 C.b2D.±b [答案]B 5.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是() A.0 B.-4 C.-8 D.4 [答案]C 6.如果AB<0,BC<0,那么直线Ax+By+C=0不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]D 7.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是() A.-2 B.-7 C.3 D.1 [答案]C 8.经过直线l1:x-3y+4=0和l2:2x+y=5=0的

交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0 D .19x -3y =0 [答案] C 9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27) C .(27,17) D .(17,114) [答案] C 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D 11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2 [答案] B 12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )

数理方程习题集综合

例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。 解 原方程可以写成 e/ex(ev/ey) =xy 两边对x 积分,得 v y =¢(y )+1/2 x 2 Y, 其中¢(y )是任意一阶可微函数。进一步地,两边对y 积分,得方程得通解为 v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2 =f (x )+g (y )+1/4 x 2y 2 其中f (x ),g (y )是任意两个二阶可微函数。 例1.1.2 即 u(ξ,η) = F(ξ) + G(η), 其中F(ξ),G(η)是任意两个可微函数。 例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。试确定该弦的运动方程。 取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。下面用微元法建立u 所满足的偏微分方程。 在弦上任取一段弧'MM ,考虑作用在这段弧上的力。作用在这段弧上的力有力和外力。可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。 事实上,因为弧振动微小,则弧段'MM 的弧长 dx u x x x x ? ?++=?2 1s ≈x ?。 这说明该段弧在整个振动过程中始终未发生伸长变化。于是由Hooke 定律,力T 与时间 t 无关。 因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即 T(x+x ?)cos α’-T(x)cos α=0. 由于co's α’≈1,cos α≈1,所以T(X+?x)=T(x),故力T 与x 无关。于是,力是一个

高中数学直线与方程习题及解析

1.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意, 由光的反射定律得k P A =-k PB , 即3x +1=13-x ,解得x =2,即P (2,0). 2.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上, 求边AB 与AC 所在直线的斜率. 解 如右图,由题意知∠BAO =∠OAC =30°, ∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°, ∴k AB =tan 150°=-33 , k AC =tan 30°=33 . 3.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c 的大小. 解 画出函数的草图如图,f (x )x 可视为过原点直线的斜率. 由图象可知:f (c )c >f (b )b >f (a )a . 4.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD . (2)已知直线l 1的斜率k 1=34 ,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值. (1)证明 由斜率公式得: k AB =6-310-5=35 , k CD =11-(-4)-6-3=-53, 则k AB ·k CD =-1,∴AB ⊥CD . (2)解 ∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1,解得a =1或a =3. 5. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状. 解 由斜率公式得k OP =t -01-0 =t ,

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

相关文档
最新文档