【精品】数理方程例题解析
数理方程 习题答案
数理方程习题答案数理方程习题答案数理方程是数学中一门重要的学科,它研究的是各种各样的方程。
在学习数理方程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以加深对数理方程的理解,掌握解题的方法和技巧。
在这篇文章中,我将为大家提供一些数理方程习题的答案,希望能对大家的学习有所帮助。
1. 求解方程:2x + 5 = 17。
解:将方程化简,得到2x = 17 - 5,即2x = 12。
再将等式两边同时除以2,得到x = 6。
所以方程的解为x = 6。
2. 求解方程组:2x + y = 73x - 2y = 4解:可以使用消元法来求解这个方程组。
首先,将第一个方程乘以2,得到4x + 2y = 14。
然后将第二个方程与这个结果相加,得到7x = 18。
再将等式两边同时除以7,得到x = 18/7。
将x的值代入第一个方程,可以求得y的值为y = 7 - 2x = 7 - 2(18/7) = 7 - 36/7 = 7/7 - 36/7 = -29/7。
所以方程组的解为x = 18/7,y = -29/7。
3. 求解二次方程:x^2 - 5x + 6 = 0。
解:可以使用因式分解法来求解这个二次方程。
首先,将方程化简,得到(x - 2)(x - 3) = 0。
根据乘积为零的性质,可以得到x - 2 = 0或者x - 3 = 0。
解这两个方程,可以得到x = 2或者x = 3。
所以方程的解为x = 2或者x = 3。
4. 求解三次方程:x^3 - 3x^2 + 2x - 4 = 0。
解:可以使用综合除法来求解这个三次方程。
首先,将方程按照降幂排列,得到x^3 - 3x^2 + 2x - 4 = 0。
然后,尝试将方程的第一项x^3除以x的最高次数x^3,得到商为1。
将这个商乘以方程的所有项,得到x^3 - 3x^2 + 2x - 4 - (x^3 - 3x^2 + 2x - 4) = 0。
化简这个等式,可以得到0 = 0。
数理方程试题及解答二
数理方程试题二一、填空:(10×2分=20分)1.边界条件2.初始状态3.定解条件.4.边值问题5.拉普拉斯方程的连续解6.狄利克莱问题7.牛曼问题8.()⎰⎰⎰⎰⎰⎰⎰⎰ΩΓΩ⋅-∂∂=∇dV gradv gradu dS n vudV v u 2 9.()()()0001114M M M M u M u m u M dS n r r n πΓ⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰10.()()()()01!21220≥++Γ-=++∞=∑n m n m x x J m n mn mm n二、选择题:(5×4分,共20分)1.A; 2. B; 3. C; 4. C; . 5. D .三、(7分)解定解问题()()()()()⎪⎩⎪⎨⎧==≤≤='=><<=''-''=.0,,0,0;0,,0,;0,0,002t l u t u l x x g u x f x u t l x u c u t t xx tt解:令()()()()()()()2,0X x T t u x t X x T t X x c T t λ''''=≠⇒==-,()()()()20,0T t c T t X x X x λλ''''+=+=由方程()()()()000X x X x X X l λ''+=⎧⎪⎨==⎪⎩解出()()sin 1,2,3,n n n X x B x n l π== 由方程()()20T t c T t λ''+=解出:()()cos sin 1,2,3,.n nn n ct n ctT t C D n l lππ''=+= -----------4分 从而有:()(),cos sin sin 1,2,3,n n n n ct n ct n x u x t C D n l l l πππ⎛⎫=+= ⎪⎝⎭ 叠加起来:()()11,,cos sin sin ,n n n n n n ct n ct n x u x t u x t C D l l l πππ∞∞==⎛⎫==+ ⎪⎝⎭∑∑ 代入初始条件确定,n n C D 有:()()002sin 2sin l n l nn C x xdx l ln D x xdx n c l πϕπψπ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰ ------------------------------------3分四、(7分)证明: ()[]()x xJ x xJ x01d d= 证明: ()()()()(),!21!32!2221222266244220 +-++-+-=k x x x x x J k k k()()().!1!21!4!32!3!22!22212127755331 ++-++⋅⋅-⋅⋅+⋅-=++k k x x x x x x J k k k---------------------4分将()x J 1乘以x 并求导数,得()[]()()⎥⎦⎤⎢⎣⎡++-++⋅-=++ !1!21!222d d d d 12223421k k x x x x x xJ x k k k()()+-++-=+221233!212k x x x k k k()()()(),!21!32!222122226624422⎥⎦⎤⎢⎣⎡+-++-+-= k x x x x x k k k即()[]()x xJ x xJ x01d d=---------------------------------------------------------------3分 五、(7分)由定解问题 ()()⎪⎩⎪⎨⎧+∞<<-∞='+∞<<-∞=''=''==x x u x x u u a u t t t xx tt ,,;002ψϕ导出达朗贝尔公式。
数理方程习题解答
+
α
2 2
=
α32
+
α
2 4
,取单位特征方向,
α12
+
α
2 2
+ α32
+
α
2 4
= 1。所以,α12
+
α
2 2
= α32
+
α
2 4
=
1 2
。记
α1
=
1 2
cosθ ,
α2
=
1 2
sinθ ,α3
=
1 2
cosϑ,
α4
=
1 2
sinϑ
,则
α
=
⎛ ⎜⎝
1 2
cosθ ,
1 sinθ , 2
1 2
cosϑ,
则杆上各点 在时刻 的位移是
。
在杆上任取一段,其两端点静止时的坐标为
,此小杆段在时刻 的相对伸长
为: 律知张力为
,令
得 点在时刻 的相对伸长为ux (x, t) ,由 Hooke 定
,再此小杆段上用 Newton 第二定律得
两边同除 并令
得:
若杨氏模量为 为常数则得:
。
1 牛顿(Newton)第二定律与动量守恒定律等价,也可以用动量守恒定律来见方程,见《数学物理方程 讲义》 (姜礼尚、陈亚浙)P1
=
1 2
sinθ ,α3
=
±
1 sinθ ,则 2
α
=
⎛ ⎜⎝
cosθ
,
1 sinθ , ± 2
1 2
sin
θ
⎞ ⎟⎠
。
( ) 2 对波动方程utt − a2 uxx + uyy = 0 过直线l : t = 0, y = 2x 的特征平面。
数理方程(PDF)
un( x, t )
=
( An
cos
naπt
l
+
Bn
sin
naπt
l
)
sin
nπx
l
=
Nn
sin(ωnt
+
Sn )sin
nπx
l
其中
Nn
=
( An2
+
Bn2
)
1 2
,
Sn
=
arctg
An Bn
,
ωn
=
nπ a l
特点
最大振幅
初位相
频率
⑴ 弦上各点的频率 ωn 和初位相 Sn 都相同,因而没 有波形的传播现象。
+
Sn )sin
nπx
l
u其有⑴ 特(x中弦点,t 上)N是各n最由=点大无(u振的A穷(幅nx2频多,+t率)个B=nω2振∑)n12 幅,∞n=S和、1n初u初频=n位(位率a相xr,、相ctSt)gn初BAnn位, 相ω都频n各率相=不同nπ相l,a 同因的而驻没
波波⑵叠形弦加的上而传各成播点。现振象幅。| N
⑵ 弦上各点振幅
|
Nn
sin
nπx
l
|
,因点而异 节点
在
x
=
0
,
l n
,
2l n
,...
(n−1)l n
,l
处,振幅永远为0
腹点
在
x
=
l 2n
,
3l 2n
,...
(2
n−1)l 2n
处,振幅最大,为
Nn
un( x, t )
=
数理方程习题解答
d dx
k
(x)
dy dx
q(x)
y
(x)
y
0
在第一类齐次边界条件及自然条件下
特征函数系
Pm (r)
J
n
(
(n m R
)
r)
m 1, 2,...
R 0
rJ
n
(
(n) m R
r
)J
n
(
(n) k R
r)dr
0 mk
R2 2
J
2 n1
(m(n)
)
R2 2
J
2 n1
(
(n m
)
)
mk
设
① ② ①-②
J0 ( x)
贝塞尔函数的图象
J1(x)
J 2 ( x)
J3 ( x)
贝塞尔方程在第一 类边界条件下的 特征值和特征函数
r2P(r) rP(r) (r2 n2 )P(r) 0
P(r) rR 0
P(r) r0
Jn ( R) 0
R
(n) m
(m 1, 2,...)
(n) m
(
(n) m
贝塞尔函数的性质(4)
二维热传导物理问题
u
t
a2
2u x2
2u y 2
u t0 (x, y)
,
x2 y2 R2
u 0 x2 y2 R2
u(x, y,t) V (x, y)T (t)
T (t) a2T (y 2
V
0
V 0 x2 y2 R2
贝塞尔函数的性质(1)
第一类贝赛尔函数:
在整个数轴上收敛,在每个指定的点都
取有限值 第二类贝赛尔函数:
专题 一元一次方程的同解、错解、参数等问题(解析版)
七年级上册数学《第三章一元一次方程》专题一元一次方程的同解、错解、参数等问题【例题1】(2022•江阴市模拟)已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1B.0C.1D.2【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a 的值.【解答】解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.【变式1-1】(2022秋•秀山县期末)已知x=1是关于x的方程6﹣(m﹣x)=5x的解,则代数式m2﹣6m+2=.【分析】根据一元一次方程的解的定义可知m的值,然后代入求值即可.【解答】解:把x=1代入6﹣(m﹣x)=5x,得6﹣(m﹣1)=5×1.解得m=2.所以m2﹣6m+2=22﹣6×2+2=﹣6.故答案为:﹣6.【点评】本题主要考查了一元一次方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式1-2】(2022秋•张家港市期中)已知x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,则3a3﹣2a2+a ﹣4的值是()A.1B.﹣1C.16D.14【分析】把x=1代入关于x的方程3x3﹣2x2+x﹣4+a=0可以求得a的值,然后把x=2代入所求的代数式进行求值.【解答】解:∵x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,∴3﹣2+1﹣4+a=0,解得,a=2,∴3a3﹣2a2+a﹣4=3×23﹣2×22+2﹣4=14.故选:D.【点评】本题主要考查了方程解的定义,解决本题的关键在于根据方程的解的定义将x=1代入,从而转化为关于a的一元一次方程.【变式1-3】若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m=3r22,当x=32时,m=134,当x=−12时,m=14.所以m的值为:134或14.故选:A.【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.【变式1-4】(2022秋•奎屯市校级月考)已知x=4是关于x的一元一次方程﹣3m﹣x=2+3m的解,则m2020+1的值是.【分析】根据一元一元一次方程的解的定义求得m,再解决此题.【解答】解:由题意得,﹣3m﹣4=42+3.∴﹣3m﹣4=2+3m.∴﹣6m=6.∴m=﹣1.∴m2020+1=(﹣1)2020+1=1+1=2.故答案为:2.【点评】本题主要考查一元一次方程的解、有理数的乘方,熟练掌握一元一次方程的解的定义、有理数的乘方是解决本题的关键.【变式1-5】(2022秋•烟台期末)已知x=﹣1是关于x的方程2a+2=﹣1﹣bx的解.求代数式5(2a﹣b)﹣2a+b+2的值.【分析】根据方程解的定义,把x=﹣1代入关于x的方程2a+2=﹣1﹣bx,即可得出代数式5(2a﹣b)﹣2a+b+2的值.【解答】解:当x=﹣1时,2a+2=﹣1+b,即2a﹣b=﹣3,∴5(2a﹣b)﹣2a+b+2=5(2a﹣b)﹣(2a﹣b)+2=﹣15+3+2=﹣10.【点评】本题考查了一元一次方程的解,以及整式的加减,把2a﹣b作为整体,是数学中常用的整体思想.(2023春•长春期中)已知关于x的方程4x+2m=3x+1的解是x=0,试求(−2p2021−(−32)2020【变式1-6】的值.【分析】将x=0代入原方程,可求出m的值,再将m的值代入原式,即可求出结论.【解答】解:将x=0代入原方程得:2m=1,解得:m=12,∴原式=(﹣2×12)2021﹣(12−32)2020,=(﹣1)2021﹣(﹣1)2020=﹣1﹣1=﹣2.【点评】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.【例题2】(2023秋•东台市期中)如果关于x的方程K43=8−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求a的值.【分析】先求出第一个方程的解,然后代入第二个方程得到关于a的一元一次方程,再根据一元一次方程的解法进行求解即可.【解答】解:解方程K43=8−r22得:x=10,由题意:4x﹣(3a+1)=6x+2a﹣1的解为x=10,代入得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4.【点评】本题考查了同解方程,同解方程就是解相同的方程,本题先求出第一个方程的解是解题的关键.【变式2-1】(2022秋•长沙期末)若关于x的方程r32−=2的解与方程x+1=m的解相同,求m的值.【分析】先解方程r32−=2可得x=4﹣m,再根据方程同解的含义可得4﹣m+1=m,再解关于m 的方程即可.【解答】解:r32−=2,去分母可得:m+3x﹣2x=4,即x=4﹣m,∵关于x的方程r32−=2的解与方程x+1=m的解相同,∴4﹣m+1=m,解得:=52.【点评】本题考查的是同解方程的含义,选择合适的方程进行变形是解本题的关键.【变式2-2】(2022秋•仙游县校级期末)如果方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,求(a ﹣3)2的值.【分析】通过解关于x的方程2K35=23x﹣2求得x的值,然后将x的值代入3a−14=3(x+a)﹣2a列出关于a的新方程,通过解该新方程即可求得a的值,再代入计算即可求解.【解答】解:由关于x的方程2K35=23x﹣2,解得x=5.25∵关于x的方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,∴3a−14=3(5.25+a)﹣2a,解得a=8.∴(a﹣3)2=(8﹣3)2=25.【点评】本题考查了同解方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式2-3】(2023春•安岳县校级期中)已知关于x的一元一次方程2r13−5K16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)根据题意可知x=﹣3是方程3(x+m)=﹣(x﹣1)的解,把x=﹣3代入方程3(x+m)=﹣(x ﹣1)中得到关于m的方程,解方程即可.【解答】解:(1)2r13−5K16=1去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2)由题意得x=﹣3是方程3(x+m)=﹣(x﹣1)的解,∴3(﹣3+m)=﹣(﹣3﹣1),∴3m﹣9=4,解得=133.【点评】本题主要考查了解一元一次方程,一元一次方程的解,熟知解一元一次方程的步骤是解题的关键.【变式2-4】如果方程K43−8=−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.【分析】先求得方程方程K43−8=−r22的解,然后将所求的x的值代入方程4x﹣(3a+1)=6x+2a﹣1求得a的值,最后在求代数式的值即可.【解答】解:K43−8=−r22去分母得:2(x﹣4)﹣48=﹣3(x+2)去括号得:2x﹣8﹣48=﹣3x﹣6,移项得:2x+3x=﹣6+8+48,合并同类项得:5x=50,系数化为1得:x=10.将x=10代入方程4x﹣(3a+1)=6x+2a﹣1得:40﹣(3a+1)=60+2a﹣1,去括号得:40﹣3a﹣1=60+2a﹣1,移项得:﹣3a﹣2a=60﹣1﹣40+1,合并同类项得:﹣5a=20,系数化为1得:a=﹣4.a﹣a2=﹣4﹣(﹣4)2=﹣4﹣16=﹣20.【点评】本题主要考查的是同解方程的定义、解一元一次方程、求代数式的值,求得a的值是解题的关键.【变式2-5】(2022秋•巴南区期末)已知方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),求m的值.【分析】根据方程的解相同,可得关于m的方程,根据解方程,可得答案.【解答】解:解方程3K52=5K83,3(3x﹣5)=2(5x﹣8),9x﹣15=10x﹣16,9x﹣10x=﹣16+15,x=1,∵方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),∴10−3(1−p2=3−4−25×(3+p,2m﹣30(1﹣m)﹣5(3﹣m)﹣8(3+m),2m﹣30+30m=15﹣5m﹣24﹣8m,2m+30m+8m+5m=30+15﹣24,45m=21,解得m=715.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.【变式2-6】(2022秋•利州区校级期末)已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.(1)求m的值;(2)求代数式(﹣2m)2022−(−32)2021的值.【分析】(1)分别解出两个方程的解,根据解相同列出方程,解方程即可;(2)代入求值即可.【解答】解:(1)由4x+2m=3x+1解得:x=1﹣2m,由3x+2m=6x+1解得:x=2K13,由题知:1﹣2m=2K13,解得:m=12;(2)当m=12时,(﹣2m)2022﹣(m−32)2021=(﹣2×12)2022﹣(12−32)2021=1+1=2.【点评】本题考查了同解方程,解一元一次方程,列出关于m的方程是解题的关键.【例题3】(202秋•沂源县期末)方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,求k的值【分析】直接解方程得出x=−13,进而得出关于x的方程r2−3k﹣2=2x的解,求出答案即可.【解答】解:∵2﹣3(x+1)=0,∴解得:x=−13,∵方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,∴关于x的方程r2−3k﹣2=2x的解x=13,∴r132−3k﹣2=23,解得:k=﹣1.【点评】此题主要考查了一元一次方程的解,正确得出x的值是解题关键.【变式3-1】(2022秋•高港区校级月考)已知关于x的方程①:x+1﹣2m=﹣m的解比方程②:32(−p−2=54的解大2.求m的值以及方程②的解.【分析】用含m的式子分别表示出方程①和方程②的解,根据方程①的解比方程②的解大2列出关于m的方程,求解可得m的值,将m的值代入方程②中即可解得x的值.【解答】解:解x+1﹣2m=﹣m得:x=m﹣1,解32(−p−2=54得:=611−811,∵方程①的解比方程②的解大2,∴−1−(611−811)=2,解得:m=5,将m=5代入方程②中得:32(5−p−2=54,解得:x=2.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.【变式3-2】(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【变式3-3】(2022秋•太仓市期末)已知关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,求代数式92m﹣4n﹣1的值.【分析】分别解方程,进而用m,n分别表示出x,再结合相反数的定义得出等式,将原式变形求出答案.【解答】解:2x+10﹣3m=0,则2x=3m﹣10,解得:x=3K102,r12+2(r1)3=1,则3(x+1)+4(n+1)=6,故3x+3+4n+4=6,3x=﹣1﹣4n,解得:x=−1+43,∵关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,∴3K102−1+43=0,去分母得:3(3m﹣10)﹣2(1+4n)=0,则9m﹣30﹣2﹣8n=0,故9m﹣8n=32,则92m﹣4n﹣1=12(9m﹣8n)﹣1=12×32﹣1=16﹣1=15.【点评】此题主要考查了一元一次方程的解,正确解方程是解题关键.【变式3-4】(2022秋•亭湖区校级月考)已知关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,求2a﹣3的值.【分析】先分别求出两个方程的解,根据题意得出关于a的一元一次方程,再求出方程的解,最后求出答案即可.【解答】解:解方程3(x﹣2)=x﹣a得:x=6−2,解方程r2=2K3得:x=5a,∵关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,∴6−2=5a−52,解得:a=1,∴2a﹣3=2×1﹣3=﹣1.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.【变式3-5】(2022秋•常州期中)已知关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,求m的值.【分析】先求出两方程的解,再由倒数的定义即可得出结论.【解答】解:解方程r12=3x﹣2得,x=1,解方程K2=x+3得,x=−53,∵关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,−53×1=1,解得m=−35.【点评】本题考查的是一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.【变式3-6】(2022秋•武城县期末)已知(|a|﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解是方程5x﹣2k=2x解的2倍,求k的值.【分析】(1)根据一元一次方程的定义和解一元一次方程的一般步骤准确计算即可;(2)根据解析(1)得出的方程解,得出方程5x﹣2k=2x解为x=2,然后代入求出k的值即可.【解答】解:(1)由题意得:|a|﹣1=0,﹣(a+1)≠0,∴a=±1且a≠﹣1,∴a=1,将a=1代入方程得:﹣2x+8=0,解得:x=4.答:a的值是1,方程的解是x=4.(2)由题意得:x=4÷2=2,将x=2代入方程得:5×2﹣2k﹣2×2,解得:k=3.答:k的值是3.【点评】本题主要考查了解一元一次方程,方程解的定义,一元一次方程的定义,解题的关键熟练掌握解一元一次方程的方法.【例题4】(2023•平桥区校级开学)王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2【分析】把x=﹣4代入方程7a﹣x=18,得出方程7a+4=18,求出a的值,再代入方程,求出方程的解即可.【解答】解:把x=﹣4代入方程7a﹣x=18得:7a+4=18,解得:a=2,即原方程为14+x=18,解得:x=4.故选:A.【点评】本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.【变式4-1】(2022秋•椒江区校级期中)小明解方程2K15+1=r2,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并求出方程的正确解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:2K15+1=K12,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【变式4-2】(2022秋•前郭县期末)某同学在解关于y的方程3K4−5K76=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y=10.(1)求a的值;(2)求方程正确的解.【分析】(1)根据题意得3(3y﹣a)﹣2(5y﹣7a)=1,将y=10代入方程即可求a的值;(2)当a=1代入原方程再求解即可.【解答】解:(1)该同学去分母时方程右边的1忘记乘12,则原方程变为3(3y﹣a)﹣2(5y﹣7a)=1,∵方程的解为y=10,代入得3(30﹣a)﹣2(50﹣7a)=1.解得a=1.(2)将a=1代入方程3K4−5K76=1,得3K14−5K76=1,解得y=﹣1,即原方程的解为y=﹣1.【点评】本题考查一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.【变式4-3】(2023•秦皇岛一模)米老鼠在解方程2K13=r2−1的过程中,去分母时方程右边的﹣1忘记乘6,因而求得的解为x=2.(1)请你帮助米老鼠求出a的值;(2)正确地解这个方程.【分析】(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得出2×(2×2﹣1)=3(2+a)﹣1,再求出方程的解即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得:2×(2×2﹣1)=3(2+a)﹣1,解得:a=13;(2)方程为2K13=r132−1,2(2x﹣1)=3(x+13)﹣6,4x﹣2=3x+1﹣6,4x﹣3x=1﹣6+2,x=﹣3.【点评】本题考查了一元一次方程的解和解一元一次方程,注意:使方程左右两边相等的未知数的值,叫方程的解.【变式4-4】(2022秋•道里区校级月考)小明同学在解方程2K13=r3−2,去分母时,方程右边的﹣2没有乘3,因而求得方程的解为x=3.试求a的值,并正确地解出方程.【分析】先根据题意,得x=3是方程2x﹣1=x+a﹣2的解,然后根据方程解的定义将x=2代入这个方程,从而求出a的值;再把所求得的a的值代入原方程,最后解一元一次方程即可.【解答】解:依题意,x=3是方程2x﹣1=x+a﹣2的解,∴2×3﹣1=3+a﹣2,∴a=4.∴原方程为2K13=r43−2,解方程,得2x﹣1=x+4﹣6,解得x=﹣1.故a=4,原方程的正确的解是x=﹣1.【点评】本题考查了一元一次方程的解和解一元一次方程的知识,解题的关键是掌握相关的定义和解一元一次方程的一般步骤.【变式4-5】小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【变式4-6】(2022秋•大余县期末)聪聪在对方程r33−B−16=5−2①去分母时,错误地得到了方程:2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是=52.(1)求m的值;(2)求原方程的解.【分析】(1)将x=52代入方程②,整理即可求出m的值,(2)将m的值代入方程①即可求出正确的解.【解答】(1)把x=52代入2(x+3)﹣mx﹣1=3(5﹣x)中,得:2×(52+3)−52m﹣1=3×(5−52),解得:m=1.(2)当m=1时原方程为r33−K16=5−2,2(x+3)﹣(x﹣1)=3(5﹣x),4x=8,x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【例题5】(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个?()A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得=12r2,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.【变式5-1】已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.【分析】根据方程的解是正整数,可得5的约数.【解答】解:由kx=5﹣x,得x=5r1.由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于k的方程是解题关键.【变式5-2】已知关于x的一元一次方程mx﹣1=2(x+32)的解是正整数,则整数m的值为.【分析】根据方程的解是正整数,可得4的约数,根据4的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx﹣1=2(x+32),得x=4K2,因为关于x的方程mx﹣1=2(x+32)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于m的方程是解题关键.【变式5-3】(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.【变式5-4】(2022秋•邗江区校级期末)若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.【分析】首先解方程表示出x的值,然后根据解为正整数求解即可.【解答】解:2ax=(a+1)x+6,移项得:2ax﹣(a+1)x=6,合并同类项得:(a﹣1)x=6,系数化为1得:=6K1,∵关于x的方程2ax=(a+1)x+6的解为正整数,∴=6K1为正整数,∴a﹣1=1或a﹣1=2或a﹣1=3或a﹣1=6∴a=2或a=3或a=4或a=7.【点评】本题主要考查方程的解和解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【变式5-5】设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.【分析】(1)把m=2代入原方程,得到关于x得一元一次方程,解之即可,(2)根据“m≠5,该方程有整数解,且m是整数”,结合一元一次方程的解题步骤,得到关于m的几个一元一次方程,解之即可.【解答】解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,=−13,(2)当m≠5时,方程有解,=3−K5=−1−2K5,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.【点评】本题考查了一元一次方程的解和一元一次方程的定义,解题的关键:(1)正确掌握一元一次方程的解题步骤,(2)正确掌握一元一次方程的定义和一元一次方程的解题步骤.。
20道方程题带答案解析
20道方程题带答案解析1.题目:解方程2x+5=15。
解析:首先将方程改写为2x=15−5,得到2x=10。
进一步解得x=5。
因此,方程的解为x=5。
2.题目:解方程3(x−2)=15。
解析:首先将方程展开得到3x−6=15,然后移项得到3x=21。
解得x=7。
因此,方程的解为x=7。
3.题目:解方程 $\\frac{x}{4} = 2$。
解析:乘以4得到x=8。
因此,解为x=8。
4.题目:解方程7−2y=3。
解析:移项得到−2y=3−7,进一步得到−2y=−4,解得y=2。
因此,解为y=2。
5.题目:解方程5(3x+1)=40。
解析:展开得到15x+5=40,移项可解得15x=35,解得 $x =\\frac{35}{15} = \\frac{7}{3}$。
因此,解为 $x = \\frac{7}{3}$。
6.题目:解方程4(x+5)=3(2x+9)。
解析:展开得到4x+20=6x+27,移项得到20−27=6x−4x,解得−7=2x,最终解得 $x = -\\frac{7}{2}$。
因此,解为 $x = -\\frac{7}{2}$。
7.题目:解方程 $\\frac{x-3}{2} = \\frac{x+1}{3}$。
解析:首先通分得到3(x−3)=2(x+1),展开得到3x−9=2x+ 2,移项得到3x−2x=9+2,解得x=11。
因此,解为x=11。
8.题目:解方程2x−3=3x+2。
解析:移项得到2x−3x=2+3,解得−x=5,进一步解得x=−5。
因此,解为x=−5。
9.题目:解方程 $\\frac{x}{3} - 2 = \\frac{x}{6}$。
解析:首先通分得到2(x−6)=x,展开得到2x−12=x,移项得到2x−x=12,解得x=12。
因此,解为x=12。
10.题目:解方程5x+4=3x+10。
解析:移项得到5x−3x=10−4,解得2x=6,进一步解得x=3。
因此,解为x=3。
数理方程例题解析
例 7.求解双曲型方程初边值问题
⎧u tt = a 2 u xx , x ∈ (0, π ), t ∈ (0, + ∞ ) ⎪ ⎪ ⎨u x = 0 = 0, u x =π = 0 ⎪ ⎪ ⎩u t = 0 = sin x, u t t = 0 = 0 2 解:对应的固有值和固有函数分别为: λ n = n , X n ( x ) = sin nx , (n=1,2,……) 。
数学物理方程常规例题
(1-30 题)
一、数学模型例题
例 1. 密度为 ρ 均匀柔软的细弦线 x =0 端固定,垂直悬挂,在重力作用下,横向拉它一下, 使之作微小的横振动。试导出振动方程。 解:考虑垂直悬挂的细弦线上一段微元 ds,该微元在坐标轴上投影为区间[x,x+dx],在微 元的上端点处有张力:
所以
R 1 R Yπ ( ) 2 [( x + dx) 2 u x ( x + dx, t ) − x 2 u x ( x, t )] = ρπ ( ) 2 (3x 2 dx + 3xdx 2 + dx 3 )u tt ( x, t ) L 3 L 两端除 dx,并取极限,得 Y [ x 2 u x ( x, t )] x = ρx 2 u tt ( x, t )
u = f (ξ ) + g (η )
其中, f , g 是两个任意一元函数(二阶连续可微) 。代回原来变量,得原方程的通解
u = f (9 x − y ) + g ( x − y )
例 4.判别二阶微分方程 y u xx + 6 xyu xy + 8 x u yy = 0 的类型并求通解。
2 2
T1 = ρg ( L − x ) ,
数理方程课后习题(带答案)
u0 X0T0 B0A0 C0
0
Tn
a2n22
l2
Tn
0
a2n22 t
Tn Ane l2
un XnTn
ABea2nl222t nn
cons l
xCea2nl222t n
cosn
l
x
un 0unC 0n 1Cnea2n l2 22tconlsx
数学物理方程与特殊函数
第2章习题选讲
u(uutx(,0x0,)at)2xx,20u2,,u(lx,t) 0,
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
0xl1,0yl2 0yl2
u(x,0)0,u(x,l2)(x), 0xl1
uXY
XX0,
X(0)X(l1)0
0xl1
YY0
n n2 nl1 2,n1,2,3,L
n
Xn An sin l1 x
Yn
n2 2
l12
Yn
0
ny
ny
Yn Cnel1 Dne l1
数学物理方程与特殊函数
第2章习题选讲
un 1unn 1Cnenl1 yD nenl1 ysinnl1 x u(x,0)n 1CnDnsinnl1x0 u(x,l2)(x)n 1 C nenl1l2D nenl1l2 sinn l1x
最新高中数学圆的方程经典例题与解析
高中数学圆的方程经典例题与解析例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k 所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解. 例3、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例4 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.例5:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
数理方程第二版 课后习题答案讲解学习
数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
(整理)数理方程第二版课后习题答案
第一章曲线论§ 1向量函数1 .证明本节命题3、命题5中未加证明的结论略2 .求证常向量的微商等于零向量。
证:设31,回为常向量,因为r(t4- At) -r(t) c-c 11m = lim = 0it —AtAt —At所以E33 .证明⑹ p 2(t)则此向量在该区间上是常向量 证:设[=«r)=)⑴ 返 [回 回1为定义在区间口上的向量函数,因为 回在区间口上可导当且仅当数量函数 晅],EH3和EH3在区间 口上可导。
所 以,।° I ,根据数量函数的Lagrange 中值定理,有证毕4.利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,x(t) - X(t o ) 4- %)y(t) =y(S)+ y r (日”(t -力式 t) = z(M)+ /(%)《一其中 51,囹,因介于口与口之间。
从而* =3(口 =比⑷ y(t) 4 t)} =+ £(%)(「-1) y(j) + 4(%)«-咐 《%) +={刀(珀 “幻)+ X(sp 4电)/(%)}("明=『口 +年一%)上式为向量函数的 0阶 Taylor 公式,其中 :—卜("'_‘(")_一 ⑻):。
如果在 区间口上处处有F ⑴=口⑷ *)曰!,则在区间口上处处有适三从而F = (,©) y'(%) ,(1)] = o]于是E3。
证毕5 .证明左逗1具有固定方向的充要条件是F 黑亍二°1证:必要性:设F=1a)l 具有固定方向,则F =直力1可表示为F =, 其中四为某个数量函数,目为单位常向量,于是f"=。
⑴P 住"X" Q] 充分性:如果区三可,可设[_叫,令巨运三叵画,其中四为某个 数量函数,回为单位向量,因为F=p 岸前⑴+。
("'⑴]于是r x ? = O-*p(t)2(t) x [p'(t)?(t) + p(t)e (t) - O^*p 2(f)[e(t) x e (t) - 0 因为回,故国亘1,从而F⑷x.(t)=。
数理方程第一章、第二章习题全解
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
数理方程答案
1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫ ⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+ 利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为)()(x l g x T -=ρ且)(x T 的方向总是沿着弦在x 点处的切线方向。
数理方程习题答案
习题4.11.(2)解:根据一维波动方程的达朗贝尔公式有()[]()[]11,()()221155225+x atx at x atx at u x t x at x at d a d atxϕϕψξξξξ+-+-=++-+=++=⎰⎰ 6.(1)解:根据一维波动方程一般强迫振动的解公式有()[]()()()()[]()()()020232211,()()221,21115522215232x atx at t x a t x a t x at t x a t x at x a t x at x at x u x t x at x at d a f d d a d e d d a a a t x t e e e aτττατϕϕψξξατατξξατ+-+---++----+-=++-+⎡⎤+⎢⎥⎣⎦⎡⎤=+++⎢⎥⎣⎦=++++-⎰⎰⎰⎰⎰⎰习题4.21. 解:根据端点固定的半无界弦的自由振动的解公式有()()()()()()()()()()()11,22,11,2211sin sin cos ,2211sin sin cos ,22c sin cos x at x at x at at x x at x at x at at x x x at x at d t a au x t xx at at x d t a a x x at x at d t a ax x at at x d t a a x at ϕϕψξξϕϕψξξξξξξ+-+-+-+-⎧++-+≤⎡⎤⎣⎦⎪⎪=⎨⎪+--+>⎡⎤⎣⎦⎪⎩⎧++-+≤⎡⎤⎣⎦⎪⎪=⎨⎪+--+>⎡⎤⎣⎦⎪⎩+=⎰⎰⎰⎰os sin ,sin cos sin cos ,x at x t a a x at xx at t a a ⎧≤⎪⎪⎨⎪+>⎪⎩2.解:齐次波动方程2tt xx u a u =的通解为()()()12,u x t f x at f x at =++-由初始条件有当0x ≥时的()1f x 和()2f x 都为0,但x a t -可正可负。
数理方程课后习题答案
数理方程课后习题答案数理方程课后习题答案数理方程是数学中的一个重要分支,它研究的是各种数学模型中的方程。
在学习数理方程的过程中,课后习题是巩固知识、提高能力的重要途径之一。
本文将为大家提供一些数理方程课后习题的答案,希望能对大家的学习有所帮助。
1. 解方程:2x + 5 = 13解答:将方程中的常数项5移到等号右边,得到2x = 13 - 5,即2x = 8。
然后将2移到等号右边,得到x = 8/2,即x = 4。
所以方程的解为x = 4。
2. 解方程组:{2x + y = 7,x - y = 1}解答:可以使用消元法来解决这个方程组。
首先将第二个方程的系数取负,得到{-x + y = -1}。
然后将第二个方程乘以2,得到{-2x + 2y = -2}。
将这两个方程相加,得到{0x + 3y = -3},即3y = -3。
解得y = -1。
将y的值代入第一个方程,得到2x - 1 = 7,即2x = 8。
解得x = 4。
所以方程组的解为x = 4,y = -1。
3. 解二次方程:x^2 - 5x + 6 = 0解答:可以使用因式分解法来解决这个二次方程。
将方程因式分解为(x - 2)(x - 3) = 0。
根据乘积为零的性质,得到x - 2 = 0或x - 3 = 0。
解得x = 2或x = 3。
所以方程的解为x = 2或x = 3。
4. 解三次方程:x^3 - 6x^2 + 11x - 6 = 0解答:可以使用因式分解法来解决这个三次方程。
观察方程,可以发现x = 1是一个解。
通过除以x - 1,得到(x - 1)(x^2 - 5x + 6) = 0。
将x^2 - 5x + 6进行因式分解,得到(x - 1)(x - 2)(x - 3) = 0。
根据乘积为零的性质,得到x - 1 = 0或x - 2 = 0或x - 3 = 0。
解得x = 1或x = 2或x = 3。
所以方程的解为x = 1或x = 2或x = 3。
数理方程习题答案
习题6.21. 解:这是Laplace 方程的Robin 问题,直接调用公式,得⎰⎰⎰⎰∂∂-=∂∂-=sMM sMM MMds r n ds r n M M r M u )1(41)]1()()(1[41)(00πϕψπ2. 解:011111()()()()441111()()44S V S V u M M M dS f M dV r n r r M dS M dV n r r ψϕππϕδππ⎡∂⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎡∂⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰习题6.31. 证明:设u1与u2是定解问题(,,),(,,)(,,)SSu f x y z x y z V u x y z ϕ∆=∈⎧⎪⎨=⎪⎩的两个解。
令v=u1-u2,则: 120()S Sv v u u ∆=⎧⎪⎨=-≡⎪⎩由调和函数性质知:在VS 上: 1212()0SSV V vu u u u =-≡⇒=得证解的唯一性。
设在边界S 上给出两个函数f1与f2,且: 12f f ε-< 泊松方程的狄氏问题对应于f1与f2的解设为u1与u2,即:111(,,),(,,)SSu f x y z x y z V u f ∆=∈⎧⎪⎨=⎪⎩222(,,),(,,)SSu f x y z x y z V u f ∆=∈⎧⎪⎨=⎪⎩ 令:12v u u =-, 那么:120,(,,)SS v x y z V v f f ∆=∈⎧⎪⎨=-⎪⎩由调和函数极值原理,v 在VS 上的极值只能在S 上取得,所以 12u u ε-< 得证解的稳定性。
习题6.41.(2)证明:10441)41(),(220-=+⋅-=∂-∂=∂∂⎰⎰⎰⎰r rdS n v r dS n M M G ss πππ 其中v v ,02=∇是调和函数,所以0d =∂∂⎰⎰S nvS。
得证。
习题6.51. 求区域上的格林函数(1) 解:格林函数满足的定解问题为:200,()()(1)0(2),0(3)RG M M G G ρϕπδ==∆=--⎧⎪⎨==⎪⎩设想在000(,)M ρϕ放置电量为ε0的电荷(1) 对于 0,ϕπ=在000(,)M ρϕ'-放置电量为-ε0的电荷,则能够使边界条件(3)满足,但不能使(2)满足。
数学九年级上人教新课标第二十二章方程和方程组的解法例题解析教
初三数学方程和方程组的解法例题解析一. 本周教学内容: 方程和方程组的解法方程和方程组的解法是方程知识的核心内容。
同学们要灵活掌握方程解法的多样性。
例1. 写出一个以x =3为根的一元一次方程。
分析:这是一道考查学生发散思维能力的试题。
答案不唯一,题目是已知方程的解,来构造方程,可求出x -3=0或2x -6=0等。
例2. ()()求关于的一元一次方程的解。
x k xk x k 211180-+--=-分析:由已知可知原方程为一元一次方程,分两种情况:(1)当指数k -1=1时,即k =2时,原方程化为3x +x -8=0,解之得:x =2;(2)当k 2-1=0且k -1≠0时,也就是当k =-1时,原方程化为-2x -8=0,解之得:x =-4,所以原方程的解为x =2或x =-4。
答:x =2或x =-4例3. 填空:当,时,方程有唯一解。
当,时,方程无解。
当,时,方程有无穷多解。
ab ax x b ab ax x b abax x b +=-+=-+=-111分析:本题实质就是解方程ax x b +=-1()()根据解方程的步骤,原方程可化为a x b -=-+11 此方程分三种情况解:()当,即时,原方程有唯一解。
()当,,即,时,原方程无解。
()当,,即,时,原方程有无穷多解。
110121010113101011a a a b a b a b a b -≠≠-=-+≠=≠--=-+===-()()通过此题,总结出一般规律: 方程ax =b 的解()当时,方程的解为;()当,时,方程无解;()当,时,方程的解为全体实数。
10200300a x b aa b a b ≠==≠==例4. ()已知,求的值。
x y x y x y --+++=+233202分析:两个非负数之和为0,则这两个数须同时为0。
所以解方程组求出、,再计算的值。
x y x y x y x y --=++=⎧⎨⎩+230320解:由已知,得:x y x y --=<>++=<>⎧⎨⎩23013202由得:,<>-<>+=∴=-215501y y ()将代入得:y x =-<>---=112130 得:x =1∴==-⎧⎨⎩∴+=x y x y 110例5. 如果是方程的一个根,求的值,并求出另一个x x kx k k =---=2502根。
高考数学直线方程典型例题解析
高考数学直线方程典型例题解析一. 教学内容: 直线方程[知识点]1. 直线方程两点式:()()()方程推导:已知直线经过两点,,,求直线的l P x y P x y x x l 11122212≠方程?解:k y y x x =--2121代入点斜式()y y k x x -=-121()∴-=---y y y y x x x x 121211·∴--=--y y y y x x x x 121121注意:(1)特殊情况:x =x 1或y =y 1不能用两点式表示,即与x 轴平行或与x 轴垂直的直线不能用两点式表示,故平面上的直线与两点式方程不是一一对应。
(2)两点式变形形式:(y -y 1)(x 2-x 1)=(y 2-y 1)(x -x 1) 此方程与平面上的直线一一对应。
2. 直线方程的截距式:公式推导:已知直线与x 轴交于A (0,a )与y 轴交于B (b ,0),其中(a ≠0,b ≠0)求直线l 的方程。
解用两点式:y b x aa --=--000∴=-y b a x a∴+=x a yb1(截距式)注意:(1)特殊情况:当a =0或b =0时不能用上式,即过原点或与x 轴平行或与y 轴平行的直线不能用截距式。
(2)截距式是两点式的特殊情况。
3. 直线方程的一般式:方程形式:,、不同时为零。
Ax By C A B ++=0适用范围:平面直角坐标系中,任何一条直线都可由一般式表示出来。
4. 关于直线方程形式间的互化方法。
【典型例题】例1. 已知直线过点P (-5,-4),且与两坐标轴围成三角形面积为5,求直线l 的方程。
解:设直线的截距式方程为:x a yb +=1则有-+-==⎧⎨⎪⎪⎩⎪⎪541125a bab⇒==-a b 52,或,a b =-=524∴-+=--=直线方程为或852*******x y x y例2. 如图,已知直线l 经过点P (3,2),且与x 轴、y 轴的正半轴分别交于点A 、B 。
数学方程式真题答案解析
数学方程式真题答案解析数学方程式作为一门重要的理科学科,一直以来都是学生们备考的难点之一。
一套完整的数学方程式作业通常会包含多个问题,每个问题都需要学生根据所学的数学知识进行分析和解答。
然而,很多学生在解答数学方程式的时候常常会遇到各种困难,特别是对于一些复杂的问题,他们常常无从下手。
因此,在本文中,我们将对一些数学方程式的真题进行解析,希望能帮助到广大学生更好地理解和掌握数学方程式的解题技巧。
问题一:解方程cos(x) = 1/2,其中x属于[0,2π]区间。
解析:首先,我们需要明确的是cos(x) = 1/2是什么意思。
cos(x)是指角度x对应的余弦值,所以我们需要找到在[0,2π]区间内,哪些角度的余弦值等于1/2。
根据我们对三角函数的理解,我们知道余弦值等于1/2的角度有π/3和5π/3。
所以,x的解集为{x = π/3,x = 5π/3}。
问题二:解方程x^2 - 2x + 1 = 0。
解析:这是一个关于x的二次方程,我们可以使用求根公式来求解。
根据求根公式,x的解为x = (-b ± √(b^2 - 4ac))/2a,其中a、b、c分别是二次方程的系数。
带入题目中的系数,我们可以得到x =(2 ± √(4 - 4))/2 = 1。
所以,x的解集为{x = 1}。
问题三:解方程e^x + e^(-x) = 3。
解析:首先,我们可以将e^(-x)移动到左边,得到e^x - 3 +e^(-x) = 0。
然后,我们可以将e^x看作一个变量t,变成t^2 - 3t+ 1 = 0。
这个是一个关于t的二次方程,我们可以使用求根公式得到t = (3 ± √(9 - 4))/2 = (3 ± √5)/2。
由于t = e^x,所以e^x= (3 ± √5)/2。
带入指数函数的定义,我们可以得到x = ln((3 ± √5)/2)。
所以,x的解集为{x = ln((3 + √5)/2), x = ln((3 -√5)/2)}。