超声波电机谐振驱动电路仿真与实验研究

超声波电机谐振驱动电路仿真与实验研究张瑞。等

超声波电机谐振驱动电路仿真与实验研究

张瑞,史敬灼,刘兆魁

(河南科技大学电子信息工程学院,洛阳471003)

摘要:根据超声波电机的容性负载特性,通过串联匹配电感,构成由超声波电机本体参与的LC谐振升压的无变压器式驱动电路。文章提出了固定所有电路参数,只改变驱动信号频率、占空比和谐振周波数的方法,实现对超声波电机的驱动控制。以USR30为研究对象,对此方法进行实验验证,并为进一步有效地驱动控制电机提供可靠的依据。

关键词:超声波电动机;比谐振;驱动电路

中图分类号:TM359.9文献标志码:A文章编号:1001.6848(2010)03.0045.03

ResearchonResonantDriveCircuitSimulationandExperimenofultrasonicMotor

ZHANGRui,SHIJing.zhuo,LIUZhao—kui

(HenanUniversityofScienceandTechnology,LuoYang471003,China)

Abstract:Accordingtothecapacitivecharacteristicofultrasonicmotor。matchingwithsuitableseries—inductance,anon-transformerdrivecircuitforultrasonicmotorattachingitselftoLCresonantWasim—posedinthispaper.ThecircuitWassimulated,analyzingdifferentvaluesofdutyratioandfrequencygeneratedwaveforms,choosingappropriatedutyratioandresonantcyclenumberofdrivesignal,ob-rainedsinusoidaldrivesignal.FocusedonUSR30,analyzedthesimulationwaveforms,proposeda印一proachfixingallthecircuitparametersonlychangingfrequency.dutyratioandresonantcyclenumberofthedrivesignal,andprovidedareliablefoundationforselectingdriveandcontrolsignals.

KeyWords:Ultrasonicmotor;LCresonance;DriveCircuit

O引言

目前,超声波电机驱动控制器的体积较大,在一些应用中受到很大的限制。文献[1]根据电机的容性负载特性,通过简化超声波电机的等效电路,提出了利用LC谐振的无变压器式驱动电路,并进行了仿真分析。文献[2]研究了谐振驱动电路的设计方法,说明了输出信号中各次谐波幅值和能量比与驱动信号占空比和谐振周期之间的关系。上述文献的研究为超声波电机功率谐振式驱动电路的研究提供了较好基础,但所给出的驱动电路只能使电机工作在预先设计的确定工作点,电机驱动电压频率等可控变量均不可调节,严重限制了该类电路的实际应用。文献[3]在可调可控方面进行了初步探索,对选择不同的电阻、电感值以实现频率离线调节进行了分析。但由于电路中的电感是功率电感,变电感值不易在线准确实现,

收稿日期:2009-04-20

基金项目:河南省高校杰出科研人才创新工程项目

(2005KYCX007)功率谐振式驱动电路的可调可控仍有待进一步研究。

本文提出了一种新的驱动控制方法:即在固定电感值等所有电路参数不变的基础上,只改变功率开关驱动信号频率、占空比和谐振波数,以使驱动超声波电机的正弦波等效效应发生改变,从而实现电机驱动电压可调可控,进而实现电机转速控制。在此基础上进行仿真测试并搭建硬件电路,通过实验验证了这种方法的可行性,并为更好的驱动控制超声波电机提供可靠的依据。

1超声波电机等效电路

超声波电机在谐振频率附近,可以用图l的等效电路来表示,其中cd是压电陶瓷的夹持电容,£。是电机质量效应的等效电感,c。是弹性效应的等效电容,尺。是定子内机械损耗的等效电阻。在不改变外特性的前提下,将等效电路简化为RC并联电路,各参数关系如下:

?45?

万方数据

第二篇 超声波电机驱动原理

第二章超声波电机的驱动原理 本章从压电陶瓷的特性出发,系统地叙述了超声波电机中压电陶瓷的压电效应和逆压电效应,并对其相关的参数进行了系统的讨论。本章还将几何分析法和弹性动力分析法相结合,分析了定子表面质点的椭圆运动的形成,论述了行波型超声波电机的运行机理,为行波型超声波电机的建模、设计制作、实验研究以及驱动电源和控制系统的研究提供必要的理论指导。 2.1 压电效应与压电陶瓷[21-25] 压电陶瓷作为超声波电机能量转换的媒介,它起着为超声波电机提供驱动力的重要作用,如同人体的心脏一样。因此,研究超声波电机就必须对压电材料特性有深入的认识和了解,才能掌握超声波电机的运行机理并能正确地选择和使用压电材料。在研究超声波电机的驱动机理前,首先从压电陶瓷与普通陶瓷的最重要的区别——压电效应开始。 2.1.1 压电效应 压电效应(Piezoelectric Effect)早在1880年,法国的两位科学家——居里(Curie)兄弟,在研究石英晶体的物理性质时,发现了一种特殊的现象,这就是若按某种方位从石英晶体上切割下一片薄晶片,在其表面上敷上电极,当沿着晶片的某些方向施加作用力而使晶片产生变形后,会在两个电极表面上出现等量的正、负电荷。电荷的面密度与施加的作用力的大小成正比;作用力撤销后,电荷也就消失了。这种由于机械力的作用而使晶体表面出现电荷的现象,称为正压电效应,如图2-1所示。后来人们又在其它一些晶体上进行了类似的实验,发现有许多晶体都具有这种现象。这些具有压电效应的晶体统称为压电晶体。发现正压电效应的第二年,也就是1881年,由李普曼在理论上预言,由居里兄弟在实验上证实了另一种物理现象:将压电晶体置于外电场中,由于电场的作用,会使 图2-1 正压电效应示意图图2-2 逆压电效应示意图 (实线代表变形前的情况,虚线代表变形后的情况)

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

电机驱动模块的使用

共享知识分享快乐 电机驱动模块的使用 2015212822 号学 张家梁学生姓名 应用物理学(通信基础科学)专业名称 理学院所在系(院) 指导教师韩康榕

日月年2017 4 4 卑微如蝼蚁、坚强似大象. 共享知识分享快乐 电机驱动模块的使用 张家梁 () 100876北京邮电大学,北京摘要:实验中使用电机驱动模块,采用一片双通道H桥电流控制电机驱动器DRV8833,可以同时驱动两个直流电机或一个步进电机,可通过代码改变DRV8833控制信号的占空比来改变电机的转速或LED的亮度,可以通过电流表、电压表、示波器等来完成对具体观测点的测量,对数据分析后验证功能是否正常。 信号驱动;示波器;PWM关键词:直流电机;步进电机;TI Cortex M4 The Use of Motor Drive Module JiaLiang Zhang (Department of Applied Physics, Beijing, BJ 10, China) Abstract:The motor drive module is used in the experiment,. The dual-channel H-bridge current control motor driver DRV8833 can drive two DC motors or one stepper motor at the same time. The duty cycle of the DRV8833 control signal can be changed by code to change the motor speed or LED Of the brightness, you can through the ammeter, voltmeter, oscilloscope, etc. to complete the measurement of the specific point of view, after the data analysis function is normal. Keywords: DC motor; stepper motor; TI Cortex M4; PWM signal driver; oscilloscope. 1引言 电机驱动模块包括直流电机和步进电机,同时由PWM信号驱动,从而改变电机转速。 直流电机的驱动程序需要液晶、滚轮、Tiva的PWM输出、定时器等多个模块共同配合完成。液晶用于显示电机转数、滚轮用来调节PWM 的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转、而定时器则是用来检测电机的旋转数度。 2 实验原理 1.电机驱动模块布局 卑微如蝼蚁、坚强似大象. 共享知识分享快乐 2.直流电机的控制与测速 电路等效原理结构图:

直流电机驱动电路设计

应用越来越广泛的直流电机,驱动电路设计 Source:电子元件技术| Publishing Date:2009-03-20 中心论题: ?在直流电机驱动电路的设计中,主要考虑功能和性能等方面的因素 ?分别介绍几种不同的栅极驱动电路并比较其性能优缺点 ?介绍PWM调速的实现算法及硬件电路 ?介绍步进电机的驱动方案 解决方案: ?根据实际电路情况以及要求仔细选择驱动电路 ?使用循环位移算法及模拟电路实现PWM调速 ?对每个电机的相应时刻设定相应的分频比值,同时用一个变量进行计数可实现步进电机的分频调速 直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1。输出电流和电压围,它决定着电路能驱动多大功率的电机。 2。效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3。对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4。对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5。可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 三极管-电阻作栅极驱动 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2。7V 基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。

超声波电机驱动控制器毕业设计

超声波电机驱动控制器毕业 设计 1 绪论 (1) 1.1 超声波电机概述 (1) 1.2 超声波电机驱动技术现状 (2) 1.2.1 超声波电机控制方法 (2) 1.2.2 驱动技术的发展 (2) 1.3 驱动电路的设计要求 (5) 2 驱动控制器总体方案设计 (5) 2.1 系统总体方案简介 (5) 2.2 DDS 技术工作原理及方案选择 (7) 2.2.1 DDS 技术概述 (7) 2.2.2 DDS 工作原理 (8) 2.2.3 DDS器件的选择 (9) 2.3 滤波电路方案选择 (12) 2.3.1 滤波器的原理与分类 (12) 2.3.2 滤波器件选择 (14) 2.4 放大电路方案选择 (15) 2.4.1 放大电路要求及电路初步设计 (16) 2.4.2 高压集成运算放大器的选定 (17) 2.4.3 前置放大器型号选择 (18) 3 硬件电路设计与实现 (18) 3.1 DDS 波形产生电路设计 (18) 3.1.1 AT89LS52 外围电路设计 (18) 3.1.2 AD9854 外围电路设计 (20) 3.2 带通滤波电路设计 (24) 3.3 功率放大电路设计 (27)

3.4 系统电源电路设计 (29) 4 软件设计与系统调试 (32) 4.1 系统软件基本结构 (32) 4.2 波形产生软件设计 (33) 4.2.1 AD9854 的工作模式 (33) 4.2.2 AD9854 的使用 (36) 致谢........................................... 错误!未定义书签。参考文献 (1)

1 绪论 1.1 超声波电机概述 超声波电机(Ultrasonic Motor,简称 USM)的基本结构及工作原理完全不同于传统的电磁电机,它不是以电磁作用传递能量,而是利用压电陶瓷的逆压电效应激发超声振动(频率≥20kHz),然后通过定、转子之间的接触和摩擦力将交变的振动转化成旋转运动或直线运动,实现从电能到机械能的能量转换[1]。由于超声波电机特殊的工作原理,它具有很多传统电磁电机无法比拟的优越性能,如低速大转矩、体积小、重量轻、功率密度大、响应速度快、微位移、不受电磁场的影响、掉电自保护、设计自由度大、可直接驱动负载等[2-4]。可以说,超声波电机技术是当今世界极有发展前途的技术之一。 目前 USM 产业化和实用化正在快速发展,在一定程度上开始取代某些小型电磁电机。国外在上世纪 90 年代开始进入超声波电机的实用化、商品化开发阶段。如日本已将超声波电机广泛用于照相机镜头的自动聚焦系统[5];三星公司将微型超声波电机用于手机摄像头;美国JPL实验室研制的用于宇宙飞船船体检测的爬壁机器人驱动装置[6];Akihiro 公司将其用于高档手表的振动报时;高档汽车中应更加广泛:座椅调整、方向盘位置调整、后视镜角度调整、以及应用于门窗、雨刮器、刹车传动装置等;此外办公设备、家电和 PC 机、平板振子输送纸机构、X-Y 绘图仪、直角坐标自动定位装置等也有所应用,体现了超声波电机广阔的应用前景[7]。日本在该领域的研究处于世界领先地位,几乎拥有大部分有关超声波电机的发明专利,并且个别种类的超声波电机已经实现产业化,在国民经济中发挥着重要作用[8]。我国在这方面的研究虽起步较晚(90 年代初),但也取得了一些突破性成果,如南京航空航天大学研究已经取得了原创性和先进性的成果,成功研制出十余种旋转型行波与驻波超声波电机,并且达到了小批量的产业化和商品化;清华大学已研制出直径1mm的弯曲旋转超声波电机;哈尔滨工业大

L298N电机驱动模块详解

L298N电机驱动器使用说明书 注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。

实例一:步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是: 1、它是通过输入脉冲信号来进行控制的。 2、电机的总转动角度由输入脉冲数决定。 3、电机的转速由脉冲信号频率决定。 二、步进电机的驱动电路 根据控制信号工作,控制信号由单片机产生。(或者其他信号源)

三、基本原理作用如下: 两相四拍工作模式时序图: (1)控制换相顺序 1、通电换相这一过程称为脉冲分配。 例如: 1、两相四线步进电机的四拍工作方式,其各相通电顺序为(A-B-A ’-B ’)通电控制脉冲必须严格按照这一顺序分别控制A,B 相的通断。) 2、两相四线步进电机的四拍工作方式,其各相通电顺序为: (A -AB -B -BA ’-A ’-A ’B ’-B ’-B ’依次循环。(出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用八拍工作方式)

(2)控制步进电机的转向 如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。如:正转通电顺序是:(A-B-A’-B’依次循环。)则反转的通电顺序是:(B‘-A’-B-A依次循环。) 参考下例: (3)控制步进电机的速度 如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。调整单片机发出的脉冲频率,就可以对步进电机进行调速。(注意:如果脉冲频率的速度大于了电机的反应速度,那么步进电机将会出现失步现象)。参考下例: (4)四相电机的控制程序

H桥电机驱动原理与应用

H 桥电机驱动原理与应用 我们首先来看马达是如何转动的呢?举个例子: 你手里拿着一节电池,用导 线将马达和电池两端对接,马达就转动了;然后如果你把电池极性反过来会怎么 样呢?没有错,马达也反着转了。 OK 这个是最基本的了。现在假设你想用一块指甲盖大小的微控制芯片 (MCU >你又如何控制马达的呢?首先,你手上有一个固态的状态开关——一个 晶体管一一来控制马达的开关。 提示:如果你用继电器连接这些电路的时候, 要在继电器线圈两端并一个二 极管。这是为了保护电路不被电感的反向电动势损坏。二极管的正极(箭头)要 接地,负极要接在MCI 连接继电器线圈的输出端上。 电路连接好后,你可以用一个逻辑输出的信号来控制马达了。 高电平(逻辑 1)让继电器导通,马达转动;低电平(逻辑 0)让继电器断开,马达停止。 在电路相同的情况下,把马达的“极性”反过来接,我们可以控制马达的翻 转和停止。 问题来了:如果我们要同时需要马达能够正转好反转, 怎么办?难道每次都 要把马达的连线反过来接? 我们先来看另一个概念:马达速度。当我们在其中一种状态下,频繁的切换 开关状态的时候,马达的转速就不再是匀速,而是变化的了,相应的扭矩也会改 变。 通常反应出来的是马达速度的变化。 +JS

我们想要同时控制正反向的话,就需要更多的电路——没错,就是H桥电路。H桥电路的“ H'的意思是它实际电路在电路图上是一个字幕H的样式。下图就是一个用继电器连接成的H桥电路。 处于“高”位置的继电器是控制电源流入的方向,称之为“源”电路;处于“低”位置的继电器是控制电源流入地的方向,称之为“漏”电路。 现在,你将左上电路(A)和右下电路(D)接通,马达就正转了(如下图)此时各个端口的逻辑值为A-1、B-0、C-0、D-1. 1| i c) ARID ran-st ia-n

步进电机驱动电路设计

https://www.360docs.net/doc/f214981997.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

电机驱动电路的设计

《电子线路CAD》课程论文题目:电机驱动电路的设计

1 电路功能和性能指标 此电路是用MCU发出的PWM波来控制电机的转速的电路,电路输入电压是7.2V。 2 原理图设计 2.1原理图元器件制作 元器件截图: 图1 这个是图中的BTN7971的原理图,是一款电机驱动半桥芯片。 制作步骤: 1.点击菜单栏的放置,然后点击弹出的窗口中的矩形,如下图: 图2 2.然后鼠标光标下就会出现一个黄色的矩形边框,自己就可以随意设置边框的大小,之后框图的大小可以拖动修改,如下图:

图3 3.框图定好后,点击下图的图标,可以进行画引脚: 图4 4.放引脚时可以按table键设置引脚属性: 图5 2.2 原理图设计 ①原理图设计过程: 首先简历里一个PCB工程项目,保存命名为BTN驱动,然后在这个工程下面

建立一个原理图文件和一个PCB文件,并将其保存并重命名为BTN在与工程相同的目录下面,然后开始绘制原理图了,将所有设置默认为初始状态不需要更改,然后开始画原理图了,将其模块化绘图比较方便好看。 ②下面就是绘制成功后的原理图: 图6 ③下图为massage框图: 图7 其操作步骤为: 1.点击system中的message, 2.然后点击下图中高亮部分 图8

3.最后打开message就可以看见编译信息了 4.之后根据错误提示进行查找修改,直至没有错误和警告,如下图: 图9 ④该项目的元器件库截图如下: 图10 图11

生成原理图库的步骤为: 1.点击界面右下角的design compiler,然后点击如图高亮部分: 图12 2.点击界面上面的工具栏中的设计,然后点击高亮部分: 图13 3.最后可以查看刚才打开的navigater,如图:

电机驱动及控制模块

电机驱动及控制模块

3.3电机驱动及控制模块 331 电机特性 —小车前进的动力是通过直流电机来驱动的,直流电机是最早出现的电动机, 也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的 统治地位。它具有良 图7主、从单片机小系统应用电路 好的线性调速特性,简单的控制性能, 较高的效率,优异的动态特性。系统 选用的大谷基础车的260马达作为驱动电机。其额定电压为 3-12V ,额定功率 0.02KW 额定转速 3000r/min 。 近年来,直流电动机的结构和控制方式都发生了很大变化, 随着计算机进入 控制领域,以及新型的电力电子功率元件的不断出现,使采用全控制型的开关 功率元件进行脉冲调制(Pulse Width Modulation 简称PWM 控制方式已经成 为主流,这种控制方式容易在单片机控制中实现。 BE yr CAPCAP 2+ CAP + CiP I * EP Z CAP b HT-OVTl rr-xrr: T-m TDU rae.-[tfi E-C'UTL 化UT2 H 山习4 F21TF 匸曲 ~IF P22 vcc P22 m 酯T KX1WXI Pi - ? TTCZ'JPJL Pl? YT 11 T m 電 XTALi P14 nffo/pss F13 D1TLJP3J P12 JP34 P1J PLD PA 回■! P 討TCAO PM 时 ow P 禹 PIO Vcc P]1 FOCUADQ P32 POL/ADL E>JJ ! Plfl Pt3(AD3 P]5 P 】6 f :^AD5 P17 P0*'AD6 PB7/AD7 RST Tmjpsi EX LVD^ fiZRST2 AL&FI 5 曲朗 卜⑷PJ 4 wwu TflrP34 ri 郴 PIT PM 廻p 北 F35 FiZiiP]! F24 F33 xrAi.3 P]3 j^TALL P.3L Pin tr 空【 时 LED T 级, 厂:1巧处4打"卜单怜机 VCC 鱼T Z? 1. P ■ ■ ?一 ■■ ■ ■ b w 1 ? 3 *?!>rr ? .1 L I I I I r —PF p p Lp

电机驱动模块的使用

电机驱动模块的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 指导教师韩康榕 2017 年 4 月 4 日

电机驱动模块的使用 张家梁 (北京邮电大学,北京 100876) 摘要:实验中使用电机驱动模块,采用一片双通道H桥电流控制电机驱动器DRV8833,可以同时驱动两个直流电机或一个步进电机,可通过代码改变DRV8833控制信号的占空比来改变电机的转速或LED的亮度,可以通过电流表、电压表、示波器等来完成对具体观测点的测量,对数据分析后验证功能是否正常。 关键词:直流电机;步进电机;TI Cortex M4;PWM信号驱动;示波器 The Use of Motor Drive Module JiaLiang Zhang (Department of Applied Physics, Beijing, BJ 10, China) Abstract:The motor drive module is used in the experiment,. The dual-channel H-bridge current control motor driver DRV8833 can drive two DC motors or one stepper motor at the same time. The duty cycle of the DRV8833 control signal can be changed by code to change the motor speed or LED Of the brightness, you can through the ammeter, voltmeter, oscilloscope, etc. to complete the measurement of the specific point of view, after the data analysis function is normal. Keywords: DC motor; stepper motor; TI Cortex M4; PWM signal driver; oscilloscope. 1引言 电机驱动模块包括直流电机和步进电机,同时由PWM信号驱动,从而改变电机转速。直流电机的驱动程序需要液晶、滚轮、Tiva的PWM输出、定时器等多个模块共同配合完成。液晶用于显示电机转数、滚轮用来调节PWM 的占空比从而控制电机的转速、PWM 输出用于驱动直流电机旋转、而定时器则是用来检测电机的旋转数度。 2 实验原理 1.电机驱动模块布局

电机及电机驱动模块设计

电机及电机驱动模块设计 1.电机选择 通过对各种电机性能的初步查询和在单片机开发板上对于步进马达和PWM直流电机的实验,我们了解到:步进电机的优点是可以精确定位,但缺点是耗电量大,若采用电池供电,可能不能长时间工作,此外,采用步进电机需要两块驱动板,控制复杂。而直流电机的缺点是不能实现精确定位,但是可以通过调节PWM波实现调速,但在电源相同的条件下,速度较慢;优点是耗电小。由于设备有限,我们无法精确测量两种电机工作时的实际工作电流,上述比较出自文献[1]与产品参数的分析。结合我们的需求,最终决定选择普通直流电机。2.增加驱动、实现换向、实现调速 由于电机属于大功率的器件,而单片机的I/O口所提供的电流往往十分有限,所以必须外加驱动电路来增大驱动;由于我们小车中即将使用的直流电机没有电刷,且供电电源为单电源,所以需要设计一个电子开关以实现换向功能。通过对电机驱动原理的研究得知使用H 桥电路可以实现这两个功能。 从图中可以看出,在上面电路由于内部采用了三极管,三极管本身起到放大的作用,即增大了驱动电流;假设开关A、D接通,电机正向转动,而开关B、C接通时,直流电机将反向转动,从而实现了电机的正反控制。 依据这个原理,我们决定直接使用结构较为简单、价格便宜且可靠性高的电机驱动芯片来连接单片机与电机以减少电路搭建的麻烦和硬件设计的复杂性。电机驱动芯片L298N内部的组成其就是H桥驱动电路,其内部电路图如下:

各引脚功能以及性能参数再次不做赘述。因为小车中打算采用两个直流电机,而选择的L298的特点是工作电压高,输出电流大。因此决定设计单片机和电机独立供电,即控制电路和驱动电路双电源供电。优点是可以保证电源功率和电压大小满足需要,可提高系统的稳定性。缺点是电机驱动模块中独立电影的增加会使车体变重,可能影响小车的运行效果。 最后将L298的引脚正确连接到单片机PO口并拉上电阻,通过Keil对单片机编写程序让小车上的两个电机正反转即可实现小车前进。目前已经写出使两个电机正转的程序,等待测试。小车左右转向的程序设计还未完成。 结构框图

小车的驱动模块

小车的组成 1、小车的运动性能取决于:它的电源模块和电机驱动模块 2、电源模块:为整个系统提供动力支持的部分。 电机驱动模块:驱动小车轮子的转动,是小车行进。 3、小车的驱动系统一般由控制器、功率变换器及电动机三个主要部分组成。 4、小车的驱动不但要求电机驱动系统具有高转矩重量比、宽调速范围、高可靠性,而且电机的转矩-转速特性受电源功率的影响,这就要求驱动具有尽可能宽的高效率区。 5、电机一般为直流电机,主要用到永磁直流电机、伺服电机及电机三种。直流电机的控制很简单,性能出众,直流电源也容易实现。 6、直流电机的驱动及控制需要电机驱动芯片进行驱动。常用的电机驱动芯片有: L297/298 ,MC33886 , ML4428.等 L298N内不包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A 以下的电机。

PWM调速 在对直流电动机电压的控制和驱动中,半导体功率器件(L298)在使用上可以分为两种方式: 线性放大驱动方式和开关驱动方式在线性放大驱动方式,半导体功率器件工作在线性区。

优点:控制原理简单,输出波动小,线性好,对邻近电路干扰小。 缺点:功率器件工作在线性区,功率低和散热问题严重。 开关驱动方式是使半导体功率器件工作在开关状态,通过脉调制(PWM )来控制电动机的电压,从而实现电动机转速的控制。 当开关管的驱动信号为高电平时,开关管导通,直流电动机电枢绕组两端有电压U. t1秒后,驱动信号变为低电平,开关管截止,电动机电枢两端电压为0. t2秒后,驱动信号重新变为高电平,开关管的动作重复前面的过程。 输出波形和计算 电动机的电枢绕组两端的电平平均值U 为: U D T U t t t U t U //)*1()21/()*1(==+= 其中D 为占空比,T t D /=

直流电机H桥驱动原理和驱动电路选择L9110_L298N_LMD18200

在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机 即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使 用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM (脉冲宽度调制)调速。 2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防 止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或 光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 H桥驱动电路:H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。 要使电机M运转,必须使对角线上的一对三极管导通。例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。电机顺时针转动。当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。

电机驱动电路详细经典

先给大家介绍个技术交流QQ群有什么不能搞好的可以大家交流 28858693 技术交流QQ群 H桥驱动电路原理 2008-09-05 16:11 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。)

电机驱动入门简述与应用电路

V1.0 目录 一、电机 (2) 二、PWM (2) 三、电机驱动 (3) 1、原理介绍 (3) 2、H桥 (3) 3、电机驱动保护 (4) 四、场效应管 (4) 五、集成驱动芯片及应用电路 (5) 1、L298 (5) 2、MC33886 (6) 3、BTS/BTN系列 (6) 4、集成驱动芯片的问题 (7) 六、分立元件驱动电路 (8) 1、2PMOS+2NMOS (8) 2、4NMOS (9) 七、PCB注意事项 (11)

一、电机 电机(马达)是指依据电磁感应定律实现电能转换或传递的一种电磁装置(电能转化为机械能)。在电路中用字母M表示。按工作电源种类划分可分为直流电机和交流电机。直流电动机按结构及工作原理可划分无刷直流电动机和有刷直流电动机……等等。分类巨多,用处各不同。智能车用的电机是比较简单的永磁直流电机。对于这样的电机,给其正负端加上正电压,向前转,加上负电压,向后转。 这就像从前玩过的四驱车,打开开关,车就开了,但是问题是这样没法实现调速。智能车控制中加速减速是必须的,所以我们需要一个模块对电机进行加减速甚至正反转的控制,这个模块就是电机驱动。 二、PWM

1、原理介绍(本文档原理全部为帮助理解,并不是准确的电路理论) 由以上的说明我们可以得到这样一个直观认识:电机驱动可以视为一个可以由电路控制的开关。所以理论上一切有开关特性的电子元器件皆可用来构成电机驱动(但是要考虑功率等的问题)。比如继电器、三极管、场效应管等。但其中继电器的控制频率受很大限制,一般三极管的功率达不到要求,所以现在的智能车电机驱动多采用场效应管(不管是分立元件还是集成芯片)。 再回到电机操作上,你可以发现,有一个可控开关(现在姑且这么称呼)的电机驱动的却可以实现对电机速度的控制,但是有时候在急弯前需要刹车,即给车一个反向加速度,制动力让车迅速减速,这时候上述方案就不行了,因为上面的电路电机对车的力反向只是从0到最大,而如果希望倒转,则需要从负值最大到正值最大。实现这个想法的电路叫做H桥,又称为全桥驱动。 2、H桥 状态1 状态2 桥是如何实现控制电机的正转倒转调速的请看表2的状态1与状态2 中,左上角和右下角的可控开关导通,左下角和右上角的开关断开,此时电机正端(规定此图中左端为正)加上正电压,负端接地,电流正向流过,电机正转。 中,左下角和右上角的可控开关导通,左上角和右下角 此时电机正端接地,负端加上正电压,电流负向流过, 这样就实现了控制电机正转倒转。调速的方式和之前一样,输 信号,使之每周期导通的时间受控,实现速度调节。 桥的四个控制臂可以输入多种状态的信号,状态1和状态2 只是其中两种,而有一种特殊的状态需要特别注意:某一边的控制 端同时让开关导通(右图)。这时,很明显,相当于正负极短路了,

相关文档
最新文档