混合集成电路封装技术

混合集成电路封装技术
混合集成电路封装技术

混合集成电路封装技术

概述:集成电路封装在电子学金字塔中的位置既是金字塔的尖顶又是金字塔的基座。说它同时处在这两种位置都有很充分的根据。从电子元器件(如晶体管)的密度这个角度上来说,IC代表了电子学的尖端。但是IC又是一个起始点,是一种基本结构单元,是组成我们生活中大多数电子系统的基础。同样,IC不仅仅是单块芯片或者基本电子结构,IC的种类千差万别(模拟电路、数字电路、射频电路、传感器等),因而对于封装的需求和要求也各不相同。本文对IC封装技术做了全面的回顾,以粗线条的方式介绍了制造这些不可缺少的封装结构时用到的各种材料和工艺。

关键字:作用要求变革标准依据发展趋势 IC封装

1、作用

集成电路封装不仅起到集成电路芯片内键合点与外部进行电气连接的

作用,也为集成电路芯片提供了一个稳定可靠的工作环境,对集成电路芯片起到机械或环境保护的作用,从而集成电路芯片能够发挥正常的功能。并保证其具有高稳定性和可靠性。总之,集成电路封装质量的好坏,对集成电路总体的性能优劣关系很大。因此,封装应具有较强的机械性能、良好的电气性能、散热性能和化学稳定性。

虽然IC的物理结构、应用领域、I/O数量差异很大,但是IC封装的作用和功能却差别不大,封装的目的也相当的一致。作为“芯片的保护者”,封装起到了好几个作用,归纳起来主要有两个根本的功能:

(1)保护芯片,使其免受物理损伤;

(2)重新分布I/O,获得更易于在装配中处理的引脚节距。封装还有其他一些次要的作用,比如提供一种更易于标准化的结构,为芯片提供散热通路,使芯片避免产生α粒子造成的软错误,以及提供一种更方便于测试和老化试验的结构。封装还能用于多个IC的互连。可以使用引线键合技术等标准的互连技术来直接进行互连。或者也可用封装提供的互连通路,如混合封装技术、多芯片组件(MCM)、系统级封装(SiP)以及更广泛的系统体积小型化和互连(VSMI)概念所包含的其他方法中使用的互连通路,来间接地进行互连。

随着微电子机械系统(MEMS)器件和片上实验室(lab-on-chip)器件的不断发展,封装起到了更多的作用:如限制芯片与外界的接触、满足压差的要求以及满足化学和大气环境的要求。人们还日益关注并积极投身于光电子封装的研究,以满足这一重要领域不断发展的要求。最近几年人们对IC封装的重要性和不断增加的功能的看法发生了很大的转变,IC封装已经

成为了和IC本身一样重要的一个领域。这是因为在很多情况下,IC的性能受到IC封装的制约,因此,人们越来越注重发展IC封装技术以迎接新的挑战。

2、要求

集成电路封装还必须充分地适应电子整机的需要和发展。由于各类电子设备、仪器仪表的功能不同,其总体结构和组装要求也往往不尽相同。因此,集成电路封装必须多种多样,才足以满足各种整机的需要。

集成电路封装是伴随集成电路的发展而前进的。随着宇航、航空、机械、轻工、化工等各个行业的不断发展,整机也向着多功能、小型化方向变化。这样,就要求集成电路的集成度越来越高,功能越来越复杂。相应地要求集成电路封装密度越来越大,引线数越来越多,而体积越来越小,重量越来越轻,更新换代越来越快,封装结构的合理性和科学性将直接影响集成电路的质量。因此,对于集成电路的制造者和使用者,除了掌握各类集成电路的性能参数和识别引线排列外,还要对集成电路各种封装的外形尺寸、公差配合、结构特点和封装材料等知识有一个系统的认识和了解。以便使集成电路制造者不因选用封装不当儿降低集成电路性能;也使集成电路使用者在采用集成电路进行征集设计和组装时,合理进行平面布局、空间占用,做到选型恰当、应用合理。

3、变革

1、封装形式

集成电路发展初期,其封装主要是在半导体晶体管的金属圆形外壳基础上增加外引线数而形成的。但金属圆形外壳的引线数受结构的限制不可能无限增多,而且这种封装引线过多时也不利于集成电路的测试和安装,从而出现了扁平式封装。而扁平式封装不易焊接,随着波峰焊技术的发展又出现了双列式封装。由于军事技术的发展和整机小型化的需要,集成电路的封装又有了新的变化,相继产生了片式载体封装、四面引线扁平封装、针栅阵列封装、载带自动焊接封装等。同时,为了适应集成电路发展的需要,还出现了功率型封装、混合集成电路封装以及适应某些特定环境和要求的恒温封装、抗辐照封装和光电封装。并且各类封装逐步形成系列,引线数从几条直到上千条,已充分满足集成电路发展的需要。

2、封装材料

如上所述,集成电路封装的作用之一就是对芯片进行环境保护,避免芯片与外部空气接触。因此必须根据不同类别的集成电路的特定要求和使

用场所,采取不同的加工方法和选用不同的封装材料,才能保证封装结构气密性达到规定的要求。集成电路早起的封装材料是采用有机树脂和蜡的混合体,用充填或灌注的方法来实现封装的,显然可靠性很差。也曾应用橡胶来进行密封,由于其耐热、耐油及电性能都不理想而被淘汰。目前使用广泛、性能最为可靠的气密密封材料是玻璃-金属封接、陶瓷-金属封装和低熔玻璃-陶瓷封接。处于大量生产和降低成本的需要,塑料模型封装已经大量涌现,它是以热固性树脂通过模具进行加热加压来完成的,其可靠性取决于有机树脂及添加剂的特性和成型条件,但由于其耐热性较差和具有吸湿性,还不能与其他封接材料性能相当,尚属于半气密或非气密的封接材料。

随着芯片技术的成熟和芯片成品率的迅速提高,后部封接成本占整个集成电路成本的比重也愈来愈大,封装技术的变化和发展日新月异,令人目不暇接。

4、标准依据

我国集成电路封装外形尺寸,是根据国际电工委员会(IEC)第191号标准制定的,同时还参考了美国电子器件联合工程协会(JEDEC)及半导体设备和材料国际组织(SEMI)的有关标准。根据目前我国集成电路技术和生产情况,已有半导体集成电路的13类封装外形尺寸及膜集成电路和混合集成电路的14类封装外形尺寸列入了国家标准。随着技术的发展和生产的需要,将逐步增加新的内容和项目,以便不断地补充和完善。

5、发展趋势

在较长一段时期内,集成电路封装几乎没有多大变化,6~64根引线的扁平和双列式封装,基本上可以满足所有集成电路的需要。对于较高功率的集成电路,则普遍采用金属圆形和菱形封装。但是随着集成电路的迅速发展,多于64,甚至多达几百条引线的集成电路愈来愈多。如日本40亿次运算速度的巨型计算机用一块ECL.复合电路,就采用了462条引线的PGA。过去的封装形式不仅引线数已逐渐不能满足需要,而且也因结构上的局限而往往影响器件的电性能。同时,整机制造也正在努力增加印制线路板的组装密度、减小整机尺寸来提高整机性能,这也迫使集成电路去研制新的封装结构,新的封装材料来适应这一新的形势。因此,集成电路封装的发展趋势大体有以下几个方面:

1.表面安装式封装将成为集成电路封装主流集成电路的表面安装结构是适应整机系统的需要而发展起来的,主要是因为电子设备的小型化和轻量化,要求组装整机的电子元器件外形结构成为片式,使其能平贴在预先印有焊料膏的印制线路板焊盘上,通过再流焊工艺将其焊接牢固。这种

作法不仅能够缩小电子设备的体积,减轻重量,而且这些元器件的引线很短,可以提高组装速度和产品性能,并使组装能够柔性自动化。

表面安装式封装一般指片式载体封装、小外形双列封装和四面引出扁平封装等形式,这类封装的出现,无疑是集成电路封装技术的一大进步。

2.集成电路封装将具有更多引线、更小体积和更高封装密度

随着超大规模和特大规模集成电路的问世,集成电路芯片变得越来越大,其面积可达7mm×7mm,封装引出端可在数百个以上,并要求高速度、超高频、低功耗、抗辐照,这就要求封装必须具有低应力、高纯度、高导热和小的引线电阻、分布电容和寄生电感,以适应更多引线、更小体积和更高封装密度的要求。

要想缩小封装体积,增加引线数量.唯一的办法就是缩小封装的引线间距。一个40线的双列式封装要比68线的H式载体封装的表面积大20%,其主要区别就是引线目距由2.54mm改变自1.27mm或1.00cmm。不难想像,如果引线间距进而改变为0.80mm,O.65mm甚至0 50mm,则封装的表面积还会太大地缩小。但是为了缩小引线间距,这势必带来了一系列新的目题,如印线精密制造就必须用光致腐蚀的蚀刻工艺来代替机械模具的冲制加工,并必须解决引线间距缩小所引起的引线间绝缘电阻的降低和分步电容的增大等各个方面研究课题。

集成电路芯片面积增大,通常其相应封装面积也在加大,这就对热耗散问题提出了新的挑战。这个问题是一个综台性的,它不仅与芯片功率、封装材料、封装结构的表面积和最高结温有关,还与环境温度和冷玲方式等有关,这就必须在材料的选择、结构的设计和冷却的手段等方面作出新的努力。

3.塑料封装仍然是集成自路的主要封装形式

塑料模塑封装具有成本低、工艺简单和便于自动化生产等优点,虽然在军用集成电路标准中明文规定,封装结构整体不得使用任何有机聚合物材料,但是目前在集成电路总量中,仍有85%以上采用塑料封装。

塑料封装与其他封装相比,其缺点主要是它属于非气密或半气密封装,所以抗潮湿性能差,易受离子污染;同时热稳定性也不好,对电磁波不能屏蔽等,因而对于高可靠的集成电路不宜选用这种封装形式。但是近几年来,塑料封装的模塑材料、引线框架和生产工艺已经不断完善和改进,可靠性也已大大提高,相信在这个基础上,所占封装比例还会继续增大。

4.直接粘结式封装将取得更大发展

集成电路的封装经过插入式、表面安装式的变革以后,一种新的封装结构—直接粘结式已经经过研制、试用达到了具有商品化的价值,并且取得了更大的发展,据国际上预测,直接粘结式封装在集成电路中所占比重将从1990年的8%上升至2000年的22%,这一迅速上升的势头,说明了直接粘结式封装的优点和潜力。

所谓直接粘结式封装就是将集成电路芯片直接粘结在印制线路板或覆有金属引线的塑料薄膜的条带上,通过倒装压焊等组装工艺,然后用有机树脂点滴形加以覆盖。当前比较典型的封装结构有芯片板式封装(COB)、载带自动焊接封装(TAB)和倒装芯片封转(FLIPCHIP)等树种,而其中COB 封装和TAB封装已经大量使用于音乐、语音、钟表程控和照相机快门等直接电路。

直接粘结式封装其所以能够迅速发展,最重要的因素是它能适用于多引线、小间距、低成本的大规模自动化或半自动化生产,并且简化了封装结构和组装工艺。例如COB封装不再使用过去的封装所必需的金属外引线;TAB封装采用倒装压焊而不再使用组装工艺必须的内引线键合。这样,一方面减少了键合的工作量,另一方面因减少引线的压焊点数而提高了集成电路的可靠性。

在我国COB封装已经大量生产,而TAB封装尚处于开发阶段,相信在今后的集成电路中,这类封装会占据一定的地位和取得更大的发展。

5. 功率集成电路封装小型化已成为可能

功率集成电路的封装结构,受封装材料的导热性能影响,造成封装体积较大而与其他集成电路不相匹配,已成为人们关注的问题之一,而关键所在是如何采用新的封装材料。

功率集成电路所用的封装材料,不仅要求其导热性能好,而且也要求线膨胀系数低,并具备良好的电气性能和机械性能。随着科学的进步,一些新的材料已经开始应用到集成电路方面来,如导热性能接近氧化铍(BeO)线膨胀系数接近硅(Si)的新陶瓷材料—氮化铝(AlN),将成为功率集成电路封装结构的主体材料,从而大大地缩小了体积和改善了电路的性能,相信将来还会有更多的新材料参与到这一领域中来,使功率集成电路能进一步缩小体积。

另外,采用氟利昂小型制冷系统对功率集成电路进行强制冷却,以降低其表面环境温度来解决封装的功耗,已在一些大型计算机中得到实现。这样在改变封装结构的外形设计、使用新的封装材料的同时,再改善外部冷却条件,那么集成电路的热性能就可取得更大的改善。

附录:常见IC封装

1、BGA(ball grid array)

球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。 BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。

2、BQFP(quad flat package with bumper)

带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。

3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。

4、C-(ceramic)

表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。

5、Cerdip

用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。

6、Cerquad

表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。

7、CLCC(ceramic leaded chip carrier)

带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。

8、COB(chip on board)

板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。

9、DFP(dual flat package)

双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。

10、DIC(dual in-line ceramic package)

陶瓷DIP(含玻璃密封)的别称(见DIP).

11、DIL(dual in-line)

DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。

12、DIP(dual in-line package)

双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。 DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm 和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为cerdip(见cerdip)。

13、DSO(dual small out-lint)

双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。

14、DICP(dual tape carrier package)

双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP 命名为DTP。

15、DIP(dual tape carrier package)

同上。日本电子机械工业会标准对DTCP 的命名(见DTCP)。

16、FP(flat package)

扁平封装。表面贴装型封装之一。QFP 或SOP(见QFP 和SOP)的别称。部分半导体厂家采用此名称。

17、flip-chip

倒焊芯片。裸芯片封装技术之一,在LSI 芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技术中体积最小、最薄的一种。但如果基板的热膨胀系数与LSI 芯片不同,就会在接合处产生反应,从而影响连接的可靠性。因此必须用树脂来加固LSI 芯片,并使用热膨胀系数基本相同的基板材料。

18、FQFP(fine pitch quad flat package)

小引脚中心距QFP。通常指引脚中心距小于0.65mm 的QFP(见QFP)。部分导导体厂家采用此名称。

19、CPAC(globe top pad array carrier)

美国Motorola 公司对BGA 的别称(见BGA)。

20、CQFP(quad fiat package with guard ring)

带保护环的四侧引脚扁平封装。塑料QFP 之一,引脚用树脂保护环掩蔽,以防止弯曲变形。在把LSI 组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L 形状)。这种封装在美国Motorola 公司已批量生产。引脚中心距0.5mm,引脚数最多为208 左右。

21、H-(with heat sink)

表示带散热器的标记。例如,HSOP 表示带散热器的SOP。

22、pin grid array(surface mount type)

表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的底面有陈列状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得不怎么大,而引

脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。

23、JLCC(J-leaded chip carrier)

J 形引脚芯片载体。指带窗口CLCC 和带窗口的陶瓷QFJ 的别称(见CLCC 和QFJ)。部分半导体厂家采用的名称。

24、LCC(Leadless chip carrier)

无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高速和高频IC 用封装,也称为陶瓷QFN 或QFN-C(见QFN)。

25、LGA(land grid array)

触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现已实用的有227 触点(1.27mm 中心距)和447 触点(2.54mm 中心距)的陶瓷LGA,应用于高速逻辑 LSI 电路。 LGA 与QFP 相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻抗小,对于高速LSI 是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用。预计今后对其需求会有所增加。

26、LOC(lead on chip)

芯片上引线封装。LSI 封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm 左右宽度。

27、LQFP(low profile quad flat package)

薄型QFP。指封装本体厚度为1.4mm 的QFP,是日本电子机械工业会根据制定的新QFP 外形规格所用的名称。

28、L-QUAD

陶瓷QFP 之一。封装基板用氮化铝,基导热率比氧化铝高7~8 倍,具有较好的散热性。封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI 开发的一种封装,在自然空冷条件下可容许W3

的功率。现已开发出了208 引脚(0.5mm 中心距)和160 引脚 (0.65mm 中心距)的LSI 逻辑用封装,并于1993 年10 月开始投入批量生产。

29、MCM(multi-chip module)

多芯片组件。将多块半导体裸芯片组装在一块布线基板上的一种封装。根据基板材料可分为MCM-L,MCM-C 和MCM-D 三大类。 MCM-L 是使

用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低。 MCM-C 是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC 类似。两者无明显差别。布线密度高于MCM-L。

MCM-D 是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al 作为基板的组件。布线密谋在三种组件中是最高的,但成本也高。

30、MFP(mini flat package)

小形扁平封装。塑料SOP 或SSOP 的别称(见SOP 和SSOP)。部分半导体厂家采用的名称。

31、MQFP(metric quad flat package)

按照JEDEC(美国联合电子设备委员会)标准对QFP 进行的一种分类。指引脚中心距为 0.65mm、本体厚度为3.8mm~2.0mm 的标准QFP(见QFP)。

32、MQUAD(metal quad)

美国Olin 公司开发的一种QFP 封装。基板与封盖均采用铝材,用粘合剂密封。在自然空冷条件下可容许2.5W~2.8W 的功率。日本新光电气工业公司于1993 年获得特许开始生产。

33、MSP(mini square package)

QFI 的别称(见QFI),在开发初期多称为MSP。QFI 是日本电子机械工业会规定的名称。

34、OPMAC(over molded pad array carrier)

模压树脂密封凸点陈列载体。美国Motorola 公司对模压树脂密封BGA 采用的名称(见 BGA)。

35、P-(plastic)

表示塑料封装的记号。如PDIP 表示塑料DIP。

36、PAC(pad array carrier)

凸点陈列载体,BGA 的别称(见BGA)。

37、PCLP(printed circuit board leadless package)

印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引

脚中心距有0.55mm 和0.4mm 两种规格。目前正处于开发阶段。

38、PFPF(plastic flat package)

塑料扁平封装。塑料QFP 的别称(见QFP)。部分LSI 厂家采用的名称。

39、PGA(pin grid array)

陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装型PGA)。

40、piggy back

驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN 相似。在开发带有微机的设备时用于评价程序确认操作。例如,将EPROM 插入插座进行调试。这种封装基本上都是定制品,市场上不怎么流通。

41、PLCC(plastic leaded chip carrier)

带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形,是塑料制品。美国德克萨斯仪器公司首先在64k 位DRAM 和256kDRAM 中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18 到84。 J 形引脚不易变形,比QFP 容易操作,但焊接后的外观检查较为困难。 PLCC 与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现在已经出现用陶瓷制作的J 形引脚封装和用塑料制作的无引脚封装(标记为塑

料LCC、PC LP、P -LCC 等),已经无法分辨。为此,日本电子机械工业会于1988 年决定,把从四侧引出 J 形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ 和QFN)。

42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)

有时候是塑料QFJ 的别称,有时候是QFN(塑料LCC)的别称(见QFJ 和QFN)。部分

LSI 厂家用PLCC 表示带引线封装,用P-LCC 表示无引线封装,以示区别。

43、QFH(quad flat high package)

四侧引脚厚体扁平封装。塑料QFP 的一种,为了防止封装本体断裂,QFP 本体制作得较厚(见QFP)。部分半导体厂家采用的名称。

44、QFI(quad flat I-leaded packgac)

四侧I 形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I 字。也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。

由于引脚无突出部分,贴装占有面积小于QFP。日立制作所为视频模拟IC 开发并使用了这种封装。此外,日本的Motorola 公司的PLL IC 也采用了此种封装。引脚中心距1.27mm,引脚数从18 于68。

45、QFJ(quad flat J-leaded package)

四侧J 形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J 字形。是日本电子机械工业会规定的名称。引脚中心距

1.27mm。

材料有塑料和陶瓷两种。塑料QFJ 多数情况称为PLCC(见PLCC),用于微机、门陈列、 DRAM、ASSP、OTP 等电路。引脚数从18 至84。

陶瓷QFJ 也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM 以及带有EPROM 的微机芯片电路。引脚数从32 至84。

46、QFN(quad flat non-leaded package)

四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP 的引脚那样多,一般从14 到100 左右。材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。

塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外,还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。

47、QFP(quad flat package)

四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP 是最普及的多引脚LSI 封装。不仅用于微处理器,门陈列等数字逻辑LSI 电路,而且也用于VTR 信号处理、音响信号处理等模拟LSI 电路。引脚中心距有1.0mm、0.8mm、 0.65mm、0.5mm、0.4mm、0.3mm 等多种规格。0.65mm 中心距规格中最多引脚数为304。日本将引脚中心距小于0.65mm 的QFP 称为QFP(FP)。但现在日本电子机械工业会对QFP 的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为 QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三种。

另外,有的LSI 厂家把引脚中心距为0.5mm 的QFP 专门称为收缩型QFP 或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm 及0.4mm 的QFP

也称为SQFP,至使名称稍有一些混乱。 QFP 的缺点是,当引脚中心距小于0.65mm 时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP 品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP)。在逻辑LSI 方面,不少开发品和高可靠品都封装在多层陶瓷QFP 里。引脚中心距最小为 0.4mm、引脚数最多为348 的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqa d)。

48、QFP(FP)(QFP fine pitch)

小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm 、 0.3mm 等小于0.65mm 的QFP(见QFP)。

49、QIC(quad in-line ceramic package)

陶瓷QFP 的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。

50、QIP(quad in-line plastic package)

塑料QFP 的别称。部分半导体厂家采用的名称(见QFP)。

51、QTCP(quad tape carrier package)

四侧引脚带载封装。TCP 封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利用 TAB 技术的薄型封装(见TAB、TCP)。

52、QTP(quad tape carrier package)

四侧引脚带载封装。日本电子机械工业会于1993 年4 月对QTCP 所制定的外形规格所用的名称(见TCP)。

53、QUIL(quad in-line)

QUIP 的别称(见QUIP)。

54、QUIP(quad in-line package)

四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚中心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板。是比标准DIP 更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采用了些种封装。材料有陶瓷和塑料两种。引脚数64。

55、SDIP (shrink dual in-line package)

收缩型DIP。插装型封装之一,形状与DIP 相同,但引脚中心距(1.778mm)小于DIP(2.54 mm),

因而得此称呼。引脚数从14 到90。也有称为SH-DIP 的。材料有陶瓷和塑料两种。

56、SH-DIP(shrink dual in-line package)

同SDIP。部分半导体厂家采用的名称。

57、SIL(single in-line)

SIP 的别称(见SIP)。欧洲半导体厂家多采用SIL 这个名称。

58、SIMM(single in-line memory module)

单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插座的组件。标准SIMM 有中心距为2.54mm 的30 电极和中心距为1.27mm 的72 电极两种规格。在印刷基板的单面或双面装有用SOJ 封装的1 兆位及4 兆位DRAM 的SIMM 已经在个人计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM 都装配在SIMM 里。

59、SIP(single in-line package)

单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状。引脚中心距通常为2.54mm,引脚数从2 至23,多数为定制产品。封装的形状各异。也有的把形状与ZIP 相同的封装称为SIP。

60、SK-DIP(skinny dual in-line package)

DIP 的一种。指宽度为7.62mm、引脚中心距为2.54mm 的窄体DIP。通常统称为DIP(见 DIP)。

61、SL-DIP(slim dual in-line package)

DIP 的一种。指宽度为10.16mm,引脚中心距为2.54mm 的窄体DIP。通常统称为DIP。

62、SMD(surface mount devices)

表面贴装器件。偶尔,有的半导体厂家把SOP 归为SMD(见SOP)。

63、SO(small out-line)

SOP 的别称。世界上很多半导体厂家都采用此别称。(见SOP)。

64、SOI(small out-line I-leaded package)

I 形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I 字形,中心距 1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引脚数 26。

65、SOIC(small out-line integrated circuit)

SOP 的别称(见SOP)。国外有许多半导体厂家采用此名称。

66、SOJ(Small Out-Line J-Leaded Package)

J 形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J 字形,故此得名。通常为塑料制品,多数用于DRAM 和SRAM 等存

储器LSI 电路,但绝大部分是DRAM。用SO J 封装的DRAM 器件很多都装配在SIMM 上。引脚中心距1.27mm,引脚数从20 至40(见SIMM )。

67、SQL(Small Out-Line L-leaded package)

按照JEDEC(美国联合电子设备工程委员会)标准对SOP 所采用的名称(见SOP)。

68、SONF(Small Out-Line Non-Fin)

无散热片的SOP。与通常的SOP 相同。为了在功率IC 封装中表示无散热片的区别,有意增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。

69、SOF(small Out-Line package)

小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L 字形)。材料有塑料和陶瓷两种。另外也叫SOL 和DFP。

SOP 除了用于存储器LSI 外,也广泛用于规模不太大的ASSP 等电路。在输入输出端子不超过10~40 的领域,SOP 是普及最广的表面贴装封装。引脚中心距1.27mm,引脚数从8 ~44。

另外,引脚中心距小于1.27mm 的SOP 也称为SSOP;装配高度不到

1.27mm 的SOP 也称为 TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。

70、SOW (Small Outline Package(Wide-Jype))

宽体SOP。部分半导体厂家采用的名称。

71、COB(Chip On Board)

通过bonding 将IC裸片固定于印刷线路板上。也就是是将芯片直接粘在PCB上用引线键合达到芯片与PCB的电气联结然后用黑胶包封。COB的关键技术在于Wire Bonding(俗称打线)及Molding(封胶成型),是指对裸露的机体电路晶片(IC Chip),进行封装,形成电子元件的制程,其中IC 藉由焊线(Wire Bonding)、覆晶接合(Flip Chip)、或卷带接合(Tape Automatic Bonding;简称(TAB)等技术,将其I/O经封装体的线路延伸出来。

72、COG(Chip on Glass)

国际上正日趋实用的COG(Chip on Glass)封装技术。对液晶显示(LCD)技术发展大有影响的封装技术。

集成电路封装工艺

集成电路封装工艺 摘要 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个发挥集成电路芯片功能的良好环境,以使之稳定,可靠,正常的完成电路功能.但是集成电路芯片封装只能限制而不能提高芯片的功能. 关键词: 电子封装封装类型封装技术器件失效 Integrated Circuit Packaging Process Abstract The purpose of IC package, is to protect the chip from the outside or less environmental impa ct, and provide a functional integrated circuit chip to play a good environment to make it stable an d reliable, the completion of the normal circuit functions. However, IC chip package and not only restricted to enhance the function of the chip. 引言 电子封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 1.电子封装 什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。 2.部分封装的介绍 金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。在底座中心进行芯片安装和在

集成电路芯片封装技术

集成电路芯片封装技术(书) 第1章 1、封装定义:(狭义)利用膜技术及细微加工技术,将芯片及其他要素在框架或基板上布置、 粘帖固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构 成整体立体结构的工艺 (广义)将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程 2、集成电路的工艺流程:芯片设计(上)芯片制造(中)封装测试(占50%)(下)(填空) 3、芯片封装实现的功能:传递电能传递电路信号提供散热途径结构保护与支持 4、封装工程的技术层次(论述题):P4图 晶圆Wafer -> 第零层次Die/Chip -> 第一层次Module -> 第二层次Card ->第三层次Board -> 第四层次Gate 第一层次该层次又称芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层组装进行链接的模块 第二层次将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺 第三层次将数个第二层次完成的封装组装成的电路卡组合成在一个主电路板上使之成为一个部件或子系统的工艺 第四层次将数个子系统组装成为一个完整电子产品的工艺过程 5、封装的分类与特点: 按照封装中组合集成电路芯片的数目——单芯片封装(SCP)多芯片封装(MCP) 按照密封材料——高分子材料封装陶瓷材料封装 按照器件与电路板互连方式——引脚插入型(PTH)表面贴装型(SMT) 6、DCA(名词解释):芯片直接粘贴,即舍弃有引脚架的第一层次封装,直接将IC芯片粘贴到基板上再进行电路互连 7、TSV硅通孔互连封装 HIC混合集成电路封装 DIP双列直插式引线封装

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

集成电路芯片封装生产加工项目申请报告

集成电路芯片封装生产加工项目 申请报告 规划设计/投资分析/产业运营

集成电路芯片封装生产加工项目申请报告 中国集成电路封装行业技术演变路程漫漫,集成电路封装在电子学金 字塔中的位置既是金字塔的尖顶又是金字塔的基座。目前,我国集成电路 产业正处于一个快速发展阶段,集成电路封装行业因为符合国家战略发展 方向,有完善的政策资金支持,一直保持着稳定增长的势头。 该集成电路芯片封装项目计划总投资22389.32万元,其中:固定资产 投资16678.38万元,占项目总投资的74.49%;流动资金5710.94万元,占项目总投资的25.51%。 达产年营业收入46017.00万元,总成本费用35317.76万元,税金及 附加409.82万元,利润总额10699.24万元,利税总额12584.82万元,税 后净利润8024.43万元,达产年纳税总额4560.39万元;达产年投资利润 率47.79%,投资利税率56.21%,投资回报率35.84%,全部投资回收期 4.29年,提供就业职位939个。 提供初步了解项目建设区域范围、面积、工程地质状况、外围基础设 施等条件,对项目建设条件进行分析,提出项目工程建设方案,内容包括:场址选择、总图布置、土建工程、辅助工程、配套公用工程、环境保护工 程及安全卫生、消防工程等。 ......

集成电路封装:在电子学金字塔中的位置既是金字塔的尖顶又是金字塔的基座。说它同时处在这两种位置都有很充分的根据。从电子元器件(如晶体管)的密度这个角度上来说,IC代表了电子学的尖端。但是IC又是一个起始点,是一种基本结构单元,是组成我们生活中大多数电子系统的基础。同样,IC不仅仅是单块芯片或者基本电子结构,IC的种类千差万别(模拟电路、数字电路、射频电路、传感器等),因而对于封装的需求和要求也各不相同。本文对IC封装技术做了全面的回顾,以粗线条的方式介绍了制造这些不可缺少的封装结构时用到的各种材料和工艺。

集成电路芯片封装技术试卷

《微电子封装技术》试卷 一、填空题(每空2分,共40分) 1.狭义的集成电路芯片封装是指利用精细加工技术及,将芯片及其它要素在框架或基板上,经过布置、粘贴及固定等形成整体立体结构的工艺。 2.通常情况下,厚膜浆料的制备开始于粉末状的物质,为了确保厚膜浆料达到规定的要求,可用颗粒、固体粉末百分比含量、三个参数来表征厚膜浆料。 3.利用厚膜技术可以制作厚膜电阻,其工艺为将玻璃颗粒与颗粒相混合,然后在足够的温度/时间下进行烧结以使两者烧结在一起。 4.芯片封装常用的材料包括金属、陶瓷、玻璃、高分子等,其中封装能提供最好的封装气密性。 5.塑料封装的成型技术包括喷射成型技术、、预成型技术。 6.常见的电路板包括硬式印制电路板、、金属夹层电路板、射出成型电路板四种类型。 7. 在元器件与电路板完成焊接后,电路板表面会存在一些污染,包括非极性/非离子污染、、离子污染、不溶解/粒状污染4大类。 8. 陶瓷封装最常用的材料是氧化铝,用于陶瓷封装的无机浆料一般在其中添加玻璃粉,其目的是调整氧化铝的介电系数、,降低烧结温度。 9. 转移铸膜为塑料封装最常使用的密封工艺技术,在实施此工艺过程中最常发生的封装缺陷是现象。 10. 芯片完成封装后要进行检测,一般情况下要进行质量和两方面的检测。 11. BGA封装的最大优点是可最大限度地节约基板上的空间,BGA可分为四种类型:塑料球栅阵列、、陶瓷圆柱栅格阵列、载带球栅阵列。 12. 为了获得最佳的共晶贴装,通常在IC芯片背面镀上一层金的薄膜或在基板的芯片承载架上先植入。 13. 常见的芯片互连技术包括载带自动键合、、倒装芯片键合三种。 14. 用于制造薄膜的技术包括蒸发、溅射、电镀、。 15. 厚膜制造工艺包括丝网印刷、干燥、烧结,厚膜浆料的组分包括可挥发性组分和不挥发性组分,其中实施厚膜浆料干燥工艺的目的是去除浆料中的绝大部分。 16. 根据封装元器件的引脚分布形态,可将封装元器件分为单边引脚、双边引脚、与底部引脚四种。 17. 载带自动键合与倒装芯片键合共同的关键技术是芯片的制作工艺,这些工艺包括蒸发/溅射、电镀、置球、化学镀、激光法、移植法、叠层制作法等。 18. 厚膜浆料必须具备的两个特性,一是用于丝网印刷的浆料为具有非牛顿流变能力的粘性流体;二是由两种不同的多组分相组成,即和载体相。 19. 烧结为陶瓷基板成型的关键步骤,在烧结过程中,最常发生的现象为生胚片的现

芯片封装的主要步骤

芯片封装的主要步骤 板上芯片(Chip On Board, COB)工艺过程首先是在基底表面用导热环氧树脂(一般用掺银颗粒的环氧树脂)覆盖硅片安放点,然后将硅片直接安放在基底表面,热处理至硅片牢固地固定在基底为止,随后再用丝焊的方法在硅片和基底之间直接建立电气连接。 裸芯片技术主要有两种形式:一种是COB技术,另一种是倒装片技术(Flip Chip)。板上芯片封装(COB),半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB是最简单的裸芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。 COB主要的焊接方法: (1)热压焊 利用加热和加压力使金属丝与焊区压焊在一起。其原理是通过加热和加压力,使焊区(如AI)发生塑性形变同时破坏压焊界面上的氧化层,从而使原子间产生吸引力达到“键合”的目的,此外,两金属界面不平整加热加压时可使上下的金属相互镶嵌。此技术一般用为玻璃板上芯片COG。 (2)超声焊 超声焊是利用超声波发生器产生的能量,通过换能器在超高频的磁场感应下,迅速伸缩产生弹性振动,使劈刀相应振动,同时在劈刀上施加一定的压力,于是劈刀在这两种力的共同作用下,带动AI丝在被焊区的金属化层如(AI膜)表面迅速摩擦,使AI丝和AI膜表面产生塑性变形,这种形变也破坏了AI层界面的氧化层,使两个纯净的金属表面紧密接触达到原子间的结合,从而形成焊接。主要焊接材料为铝线焊头,一般为楔形。 (3)金丝焊 球焊在引线键合中是最具代表性的焊接技术,因为现在的半导体封装二、三极管封装都采用AU线球焊。而且它操作方便、灵活、焊点牢固(直径为25UM的AU丝的焊接强度一般为0.07~0.09N/点),又无方向性,焊接速度可高达15点/秒以上。金丝焊也叫热(压)(超)声焊主要键合材料为金(AU)线焊头为球形故为球焊。 COB封装流程 第一步:扩晶。采用扩张机将厂商提供的整张LED晶片薄膜均匀扩张,使附着在薄膜表面紧密排列的LED晶粒拉开,便于刺晶。 第二步:背胶。将扩好晶的扩晶环放在已刮好银浆层的背胶机面上,背上银浆。点银浆。

半导体集成电路封装技术试题汇总(李可为版)

半导体集成电路封装技术试题汇总 第一章集成电路芯片封装技术 1. (P1)封装概念:狭义:集成电路芯片封装是利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。 广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程。 2.集成电路封装的目的:在于保护芯片不受或者少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。 3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持。 4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。 5.封装工程的技术的技术层次? 第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。第四层次,将数个子系统组装成为一个完整电子厂品的工艺过程。 6.封装的分类?

按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。常见的单边引脚有单列式封装与交叉引脚式封装,双边引脚元器件有双列式封装小型化封装,四边引脚有四边扁平封装,底部引脚有金属罐式与点阵列式封装。 7.芯片封装所使用的材料有金属陶瓷玻璃高分子 8.集成电路的发展主要表现在以下几个方面? 1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多 对封装的要求:1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性 9.有关名词: SIP :单列式封装 SQP:小型化封装 MCP:金属鑵式封装 DIP:双列式封装 CSP:芯片尺寸封装 QFP:四边扁平封装 PGA:点阵式封装 BGA:球栅阵列式封装 LCCC:无引线陶瓷芯片载体 第二章封装工艺流程 1.封装工艺流程一般可以分为两个部分,用塑料封装之前的工艺步骤成为前段操作,在成型之后的工艺步骤成为后段操作

集成电路芯片封装技术复习题

一、填空题 1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装 ;在次基础之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。 2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;结构保护与支持。 3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。 4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。 5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。 6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。 7、在焊接材料中,形成焊点完成电路电气连接的物质叫做焊料;用于去除焊盘表面氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡膏。 8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。 9、薄膜工艺主要有溅射工艺、蒸发工艺、电镀工艺、 光刻工艺。

10、集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。 12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。 13、DBG切割方法进行芯片处理时,首先进行在硅片正面切割一定深度切口再进行背面磨削。 14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料干燥烧结的方法。 15、芯片的表面组装过程中,焊料的涂覆方法有点涂、 丝网印刷、钢模板印刷三种。 16、涂封技术一般包括了顺形涂封和封胶涂封。 二、名词解释 1、芯片的引线键合技术(3种) 是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上而形成电路互连,包括超声波键合、热压键合、热超声波键合。 2、陶瓷封装 陶瓷封装能提供高可靠度与密封性是利用玻璃与陶瓷及Kovar 或Alloy42合金引脚架材料间能形成紧密接合的特性。

集成电路封装知识

集成电路封装知识 典子封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 集成电路封装知识 典子封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。电子封装的类型也很复杂。从使用的包装材料来分,我们可以 将封装划分为金属封装、陶瓷封装和塑料封装;从成型工艺来分,我们又可以将封装划分为预成型封装(p re-mold)和后成型封装(post-mold);至于从封装外型来讲,则有SIP(single in-line pack age)、DIP(dual in-line package)、PLCC(plastic-leaded chip carrier)、PQFP(p lastic quad flat pack)、SOP(small-outline package)、TSOP(thin small-outline package)、PPGA(plastic pin grid array)、PBGA(plastic ball grid array)、CS

集成电路芯片封装技术

题型填空20题40分简答7题35分论述2题25分 第一章集成电路芯片封装技术 1.集成电路的工艺流程:设计-单晶材料-芯片制造-封装-检测 2..集成电路芯片狭义封装是指利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺。 3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持。 4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。 5.集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 封装工程的技术的技术层次?第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件。第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。第四层次,将数个子系统组装成为一个完整电子产品的工艺过程。 6.封装的分类,按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。 7.芯片封装所使用的材料有金属陶瓷玻璃高分子材料 8.集成电路的发展方向主要表现在以下几个方面?1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多 对封装的要求,1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性(在书12-13页,论述题要适当扩充) 第二章封装工艺流程 1.封装工艺流程一般可以分为两个部分,成型技术之前的工艺步骤称为前段操作,在成型之后的工艺步骤称为后段操作,前后段操作的区分标准在于对环境洁净度的要求不同 2.芯片封装技术的基本工艺流程硅片减薄硅片切割芯片贴装,芯片互联成型技术去飞边毛刺切筋成型上焊锡打码等工序 3.先划片后减薄:在背面磨削之前将硅片正面切割出一定深度的切口,然后再进行背面磨削。 4.减薄划片:在减薄之前,先用机械或化学的方式切割处切口,然后用磨削方法减薄到一定厚度之后采用ADPE腐蚀技术去除掉剩余加工量实现裸芯片的自动分离。 5.芯片贴装的方式四种:共晶粘贴法,焊接粘贴法,导电胶粘贴法,和玻璃胶粘贴法。 6. 芯片互连:将芯片焊区与电子封装外壳的I/O或基板上的金属布线焊区相连

集成电路芯片封装技术

引线键合应用范围: 低成本、高可靠、高产量等特点使得它成为芯片互连的主要工艺方法,用于下列封装:: 1、陶瓷和塑料BGA、单芯片或者多芯片 2、陶瓷和塑料(CerQuads and PQFPs) 3、芯片尺寸封装(CSPs) 4、板上芯片(COB) 硅片的磨削与研磨:硅片的磨削与研磨是利用研磨膏以及水等介质,在研磨轮的作用下进行的一种减薄工艺,在这种工艺中硅片的减薄是一种物理的过程。 硅片的应力消除:为了堆叠裸片,芯片的最终厚度必须要减少到了30μm甚至以下。用于3D互连的铜制层需要进行无金属污染的自由接触处理。应力消除加工方法,主要有以下4种。 硅片的抛光与等离子体腐蚀:研磨减薄工艺中,硅片的表面会在应力作用下产生细微的破坏,这些不完全平整的地方会大大降低硅片的机械强度,故在进行减薄以后一般需要提高硅片的抗折强度,降低外力对硅片的破坏作用。在这个过程中,一般会用到干式抛光或者等离子腐蚀。 干式抛光是指不使用水和研磨膏等介质,只使用干式抛光磨轮进行干式抛光的去除应力加工工艺。等离子腐蚀方法是指使用氟类气体的等离子对工件进行腐蚀加工的去除应 力加工工艺。 T AIKO工艺:在实际的工程应用中,TAIKO工艺也是用 于增加硅片研磨后抗应力作用机械强度的一种方法。在此 工艺中对晶片进行研削时,将保留晶片外围的边缘部分(约 3mm左右),只对圆内进行研削薄型化,通过导入这项技 术,可实现降低薄型晶片的搬运风险和减少翘曲的作用, 如图所示。 激光开槽加工:在高速电子元器件上逐步被采用的低介电常数(Low-k)膜及铜质材料,由于难以使用普通的金刚石磨轮刀片进行切割加工,所以有时无法达到电子元件厂家所要求的加工标准。为此,迪思科公司的工程师开发了可解决这种问题的加工应用技术。减少应力对硅片的破坏作用 先在切割道内切开2条细槽(开槽),然后再使用磨轮刀片在2条细槽的中间区域实施全切割加工。通过采用该项加工工艺,能够提高生产效率,减少甚至解决因崩裂、分层(薄膜剥离)等不良因素造成的加工质量问题。 DFL7160将短脉冲激光聚焦到晶片表面后进行照射。激光脉冲被Low-k膜连续吸收,当吸收到一定程度的热能后,Low-k膜会瞬间汽化。由于相互作用的原理,被汽化的物质会消耗掉晶片的热能,所以可以进行热影响极少的加工。 GaAs化合物半导体的薄型晶片切割:GaAs晶片因为材料比较脆,在切割时容易发生破裂或缺损,所以难以提高通常磨轮刀片切割的进给速度。如果利用激光全切割技术,加工进给速度可以达到磨轮刀片切割进给速度的10倍以上,从而提高生产效率。(进给速度仅为一例。实际操作时,因加工晶片的不同会有所差异。)

集成电路芯片封装技术复习题

¥ 一、填空题 1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装 ;在次基础之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。 2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;结构保护与支持。 3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。 4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。 5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。 6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。 ' 7、在焊接材料中,形成焊点完成电路电气连接的物质叫做焊料;用于去除焊盘表面氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡膏。 8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。 9、薄膜工艺主要有溅射工艺、蒸发工艺、电镀工艺、

光刻工艺。 10、集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。 12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。 ^ 13、DBG切割方法进行芯片处理时,首先进行在硅片正面切割一定深度切口再进行背面磨削。 14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料干燥烧结的方法。 15、芯片的表面组装过程中,焊料的涂覆方法有点涂、 丝网印刷、钢模板印刷三种。 16、涂封技术一般包括了顺形涂封和封胶涂封。 二、名词解释 1、芯片的引线键合技术(3种) ] 是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上而形成电路互连,包括超声波键合、热压键合、热超声波键合。 2、陶瓷封装

芯片封装种类

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为 31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line)

《集成电路芯片封装技术》考试题

得分评分人《集成电路封装与测试技术》考试试卷 一、填空题(每空格1分共18分) 1、封装工艺属于集成电路制造工艺的工序。 2、按照器件与电路板互连方式,封装可分为引脚插入型(PTH)和两大类。 3、芯片封装所使用的材料有许多,其中金属主要为材料。 4、技术的出现解决了芯片小而封装大的矛盾。 5、在芯片贴装工艺中要求:己切割下来的芯片要贴装到引脚架的中间焊盘上,焊盘的尺寸要与芯片大小要。 6、在倒装焊接后的芯片下填充,由于毛细管虹吸作用,填料被吸入,并向芯片-基板的中心流动。一个12,7mm见方的芯片,分钟可完全充满缝隙,用料大约0,031mL。 7、用溶剂来去飞边毛刺通常只适用于的毛刺。 8、如果厚膜浆料的有效物质是一种绝缘材料,则烧结后的膜是一种介电体,通常可用于制作。 9、能级之间电位差越大,噪声越。 10、薄膜电路的顶层材料一般是。 11、薄膜混合电路中优选作为导体材料。 12、薄膜工艺比厚膜工艺成本。 13、导电胶是与高分子聚合物(环氧树脂)的混合物。 14、绿色和平组织的使命是:。 15、当锡铅合金中铅含量达到某一值时,铅含量的增加或锡含量的增加均会使焊料合金熔点。 16、印制电路板为当今电子封装最普遍使用的组装基板,它通常被归类于层次的电子封装技术 17、印制电路板通常以而制成。 18、IC芯片完成与印制电路板的模块封装后,除了焊接点、指状结合点、开关等位置外,为了使成品表面不会受到外来环境因素,通常要在表面进行处理。 二、选择题(每题2分共22分) 1、TAB技术中使用()线而不使用线,从而改善器件的热耗散性能。 A、铝 B、铜 C、金 D、银 2、陶瓷封装基板的主要成分有() A、金属 B、陶瓷 C、玻璃 D、高分子塑料 3、“塑料封装与陶瓷封装技术均可以制成双边排列(DIP)封装,前者适合于高可 靠性的元器件制作,后者适合于低成本元器件大量生产”,这句话说法是()。 A、正确 B、错误 4、在芯片切割工序中,()方法不仅能去除硅片背面研磨损伤,而且能 除去芯片引起的微裂和凹槽,大大增强了芯片的抗碎裂能力。 A、DBT法 B、DBG法 5、玻璃胶粘贴法比导电胶的贴贴法的粘贴温度要()。 A、低 B、高 6、打线键合适用引脚数为() A、3-257 B、12-600 C、6-16000 7、最为常用的封装方式是() A、塑料封装 B、金属封装 C、陶瓷封装 8、插孔式PTH(plated through-hole 镀金属通孔)封装型元器件通常采用 ()方法进行装配。 A、波峰焊 B、回流焊 9、相同成分和电压应力下,长电阻较之短电阻电位漂移要() A、小 B、大 10、金属的电阻噪比半导体材料电子噪声()。 A、高 B、低 11、()技术适合于高密度和高频率环境 A、厚膜技术 B、薄膜技术

集成电路的封装

集成电路的封装 班级物联一班姓名肖思文学号20100810324 摘要: 集成电路封装在电子学金字塔中的位置既是金字塔的尖顶又是金字塔的基座。说它同时处在这两种位置都有很充分的根据。从电子元器件的密度这个角度上来说,IC 代表了电子学的尖端。但是IC又是一个起始点,是一种基本结构单元,是组成我们生活中大多数电子系统的基础。同样,IC不仅仅是单块芯片或者基本电子结构,IC的种类千差万别(模拟电路、数字电路、射频电路、传感器等),因而对于封装的需求和要求也各不相同。 关键词:电子元器件,IC,芯片 封装的作用: 集成电路封装不仅起到集成电路芯片内键合点与外部进行电气连接的作用,也为集成电路芯片提供了一个稳定可靠的工作环境,对集成电路芯片起到机械或环境保护的作用,从而集成电路芯片能够发挥正常的功能,并保证其具有高稳定性和可靠性。总之,集成电路封装质量的好坏,对集成电路总体的性能优劣关系很大。因此,封装应具有较强的机械性能、良好的电气性能、散热性能和化学稳定性。 虽然IC的物理结构、应用领域、I/O数量差异很大,但是IC封装的作用和功能却差别不大,封装的目的也相当的一致。作为“芯片的保护者”,封装起到了好几个作用,归纳起来主要有两个根本的功能: (1)保护芯片,使其免受物理损伤; (2)重新分布I/O,获得更易于在装配中处理的引脚节距。 封装还有其他一些次要的作用,比如提供一种更易于标准化的结构,为芯片提供散热通路,使芯片避免产生α粒子造成的软错误,以及提供一种更方便于测试和老化试验的结构。封装还能用于多个IC的互连。可以使用引线键合技术等标准的互连技术来直接进行互连。或者也可用封装提供的互连通路,如混合封装技术、多芯片组件、系统级封装以及更广泛的系统体积小型化和互连概念所包含的其他方法中使用的互连通路,来间接地进行互连。 随着微电子机械系统器件和片上实验室器件的不断发展,封装起到了更多的作用:如限制芯片与外界的接触、满足压差的要求以及满足化学和大气环境的要求。人们还日益关注并积极投身于光电子封装的研究,以满足这一重要领域不断发展的要求。最近几年人们对IC封装的重要性和不断增加的功能的看法发生了很大的转变,IC封装已经成为了和IC本身一样重要的一个领域。这是因为在很多情况下,IC的性能受到IC封装的制约,因此,人们越来越注重发展IC封装技术以迎接新的挑战。 封装的要求: 集成电路封装还必须充分地适应电子整机的需要和发展。由于各类电子设备、仪器仪表的功能不同,其总体结构和组装要求也往往不尽相同。因此,集成电路封装必须多种多样,才足以满足各种整机的需要。集成电路封装是伴随集成电路的发展而

集成电路芯片封装

第一章集成电路芯片封装概述 (P1)封装概念:狭义:利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体 立体结构的工艺。 广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整 个系统综合性能的工程。 (P3)芯片封装实现的功能:1、传递功能2、传递电路信号3、提供散热途径4、结构保护与支持 (P4)封装工程的技术层次 封装工程始于集成电路芯片制成之后,包括集成电路芯片的粘贴固定、互连、封装、密封保护、与电路板的连接、系统组合,直到最终产品完成之前的所有过程。 第一层次:又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定、电路连线与封装保护的工艺,使之成为易于取放输送,并可与下 一层次组装进行连接的模块(组件)元件。 第二层次:将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺。 第三层次:将数个第二层次完成的封装组装的电路卡组合成在一个主电路板上使之成为一个部件或子系统的工艺。 第四层次:将数个子系统组装成为一个完整电子产品的工艺过程。 在芯片上的集成电路元器件间的连线工艺也称为零级层次的封装,因此封装工程也可以用五个层次区分。 (P5)封装的分类:1、按封装集成电路芯片的数目:单芯片封装(SCP)和多芯片封装(MCP) 2、按密封材料区分:高分子材料(塑料)和陶瓷 3、按器件与电路板互连方式:引脚插入型(PTH)和表面贴装型(SMT) 4、按引脚分布形态:单边引脚、双边引脚、四边引脚和底部引脚 SMT器件有L型、J型、I型的金属引脚。 SIP:单列式封装SQP:小型化封装MCP:金属鑵式封装 DIP:双列式封装CSP:芯片尺寸封装QFP:四边扁平封装 PGA:点阵式封装BGA:球栅阵列式封装LCCC:无引线陶瓷芯片载体 第二章封装工艺流程 (P19)封装流程一般分为两个部分:用塑料封装(固封)之前的工艺步骤称为前段操作,在成型之后的工艺步骤称为后段操作。 塑料封装的成型技术:转移成型技术、喷射成型技术、预成型技术 芯片封装技术的基本工艺流程:硅片减薄、硅片切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成型、上焊锡、打码等技术。 (P20)减薄后的芯片有如下优点:1、薄的芯片更有利于散热;2、减小芯片封装体积;3、提高机械性能、硅片减薄、其柔韧性越好,受外力冲击引起的应力也越小;4、晶片的厚度越薄,元件之间的连线也越短,元件导通电阻将越低,信号延迟时间越短,从而实现更高的性能;5、减轻划片加工量减薄以后再切割,可以减小划片加工量,降低芯片崩片的发生率。芯片切割技术减薄:先减薄---切割----裂片(热膨胀、机械) 先划片后减薄(DBG) 减薄划片(DBT) 贴装的方式:共晶粘贴法、焊接粘贴法、导电胶粘贴法、玻璃胶粘贴法。 共晶粘贴法:利用金-硅合金(一般是69%Au,31%的Si),363度时的共晶熔合反应使IC芯片粘贴固定。

28种芯片封装技术的详细介绍

28种芯片封装技术的详细介绍 1、BGA|ball grid array 也称CPAC(globe top pad array carrier)。球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚BGA仅为31mm见方;而引脚中心距为0.5mm的304 引脚QFP 为40mm 见方。而且BGA不用担心QFP 那样的引脚变形问题。 该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,随后在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。美国Motorola公司把用模压树脂密封的封装称为MPAC,而把灌封方法密封的封装称为GPAC。 2、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 3、COB (chip on board)

COB (chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。 4、DIP(dual in-line package) DIP(dual in-line package) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。欧洲半导体厂家多用DIL。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm 的封装分别称为SK-DIP(skinny dual in-line package) 和SL-DIP(slim dual in-line package)窄体型DIP。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP也称为Cerdip(4.2)。

相关文档
最新文档