PVA-FRCCs粘贴式薄板单轴直接拉伸试验研究

PVA-FRCCs粘贴式薄板单轴直接拉伸试验研究
PVA-FRCCs粘贴式薄板单轴直接拉伸试验研究

三轴压缩试验 简介

三轴压缩试验简介 三轴压缩试验是测定土抗剪强度的一种较为完善的方法。 三轴压缩仪的突出优点是能较为严格地控制排水条件以及可以量测试件中孔隙水压力的变化。此外,试件中的应力状态也比较明确,破裂面是在最弱处,而不像直接剪切仪那样限定在上下盒之间。 一、实验目的 1、了解实验的设备系统组成。 2、学会三轴实验的土样制作方法和安装方法。 3、掌握了解三轴实验的实验过程和要求。 4、分析实验数据和图形。 二、实验仪器设备 全自动三轴仪由三轴仪主机、围压反压控制器和微机(含土工试验微机数据采集处理系统软件)组成。包含了压力室、轴向加荷系统、施加周围压力系统、孔隙水压力量测系统、软件控制系统等。 三、实验步骤 1、按照规范要求制备不少于3个原状土试样或扰动土试样。 2、称试样质量,并取切下的余土测定其含水量。 3、在压力室底座上依次放上不透水板、试样及不透水试样帽,将橡皮膜用承膜筒套 在试样外,并用橡皮圈将橡皮膜两端与底座及试样帽分别扎紧。 4、将压力室罩顶部活塞提高,安放压力室罩,将活塞对准试样帽顶部中心,旋紧压 力室罩。 5、在微机上启动“土工试验微机数据采集处理系统”软件,在“采集”菜单中选择 三轴试验。 6、输入试验参数。试验编号和土样编号同组保持不变。一般取:试样高度:8.00, 试样直径:.3.91,轴向应变:20,加荷级数:1,采样步长:0.2,试验方法:UU,剪切速率:1,围压:100。 7、在显示屏黄色压力室处点击“开始注水”,向压力室加注纯水,待顶部排气孔 有水溢出时,点击“停止操作”,拧紧排气孔螺旋。 8、在绿色框内点击“开始试验”,仪器首先进行自检,然后施加周围压力,并开始 剪切试验,按语音提示进行。 9、试验完成后,语音提示试验结束,自动卸除围压。点击黄色压力室处“开始抽水”, 待水抽空后,点击“停止操作”,取下压力室罩,取下试样,准备安装下一个试样。 10、以后的试验仅改变“围压”一项,其他参数和试验步骤不便。依次完成3~4个 试样的剪切试验。 四、分析实验图形和曲线

比对试验数据处理的3种方法

比对试验数据处理的3种方法 摘要引入比对试验的定义,结合两个实验室进行的一组比对试验数据实例,介绍比对试验数据处理的3种基本方法,即(:rubbs检验、F检验、t检验,并阐述三者关系。 在实验室工作中,经常遇到比对试验,即按照预先规定的条件,由两个或多个实验室或实验室内部 对相同或类似的被测物品进行检测的组织、实施和评价。实验室间的比对试验是确定实验室的检测能 力,保证实验室数据准确,检测结果持续可靠而进行的一项重要的试验活动,比对试验方法简单实用,广 泛应用于企事业、专业质检、校准机构的实验室。国家实验室认可准则明确提出,实验室必须定期开展 比对试验。虽然比对试验的形式较多,如:人员比对、设备比对、方法比对、实验室间比对等等,但如何 将比对试验数据归纳、处理、分析,正确地得出比对试验结果是比对试验成败的关键。 以下笔者结合实验室A和B两个实验室200年进行的比对试验中的拉力试验数据实例,介绍比对试验数据处理的3种最基本的方法,即格鲁布斯(Grubbs)检验、F检验、t检验。 1 数据来源情况 试样 在实验室的半成品仓库采取正交方法取样,样品为01. 15 mm制绳用钢丝。在同一盘上截取20 段长度为lm试样,按顺序编号,单号在实验室A测试,双号在实验室B测试。 试验方法及设备 试验方法见 GB/T 228-1987,实验室A : LJ-500(编号450);实验室B : LJ-1 000(编号2)。 测试条件 两实验室选择有经验的试验员,严格按照标准方法进行测试,技术人员现场监督复核,确认无误后 记录。对断钳口的试样进行重试。试验时两实验室环境温度(28 T )、拉伸速度(50 mm/min )、钳口距 离(150 mm)相同。 试验数据 测试得出的两组原始试验数据见表to 表1 实验室A,B试验数据

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

拉伸试验处理数据

用origin9处理拉伸试验的数据,拉伸试验用了引伸计,求材料的屈服强度和抗拉强度。 一、数据的导入和画图。 1.将拉伸数据导入origin9中。点击如图所示的按钮。然后在跳出来的Import Wizard-Source 对话框里选择拉伸试验的路径的文件,Add File(s)并OK,再点击Import Wizard-Source对话框中的Finish按钮。

数据导入后,选中不要的数据的行点击鼠标右键Delete。 2.处理试验的数据的拉力和伸长量,将数据改为应力和应变数据。 将拉力/试样的横截面积,伸长量/标距*100。 选中拉力的列,右击下图:

输入计算公式,得到正应力(2.00和12.30为试验样品的厚度和宽度)。 伸长的列操作类似,如下图:

*100是因为在坐标中需要%为横坐标。 3.将应力的列设为Y,应变的列设为X。操作如下,选中应力的列右击set as为Y。应变的列设为X。 4.选中两列并用Line做出曲线。并对曲线的横纵轴进行调整为0为起点。 二、进行直线的拟合并求出材料的弹性模型。 1.选中应力应变曲线中需要拟合的线段的范围。点击Data Selector旁边的图案,拖动红色选择适当范围,并双击红线确认范围。

3.点击Analysis,Fitting,Linear fit,Open Dialog。在Fit Options中的Fix Intercept打钩固定 截距为0,使拟合的直线过原点。点击Ok拟合选中范围的曲线。在随后跳出来的对话框里选择No。 4.将0.2%塑性应变时的应力作为屈服指标。 点击Graph, Add Function Graph,输入Y=(x-2)*slope,slope为斜率(材料的弹性模量)。 用读入这条直线与应力应变的交点就是屈服强度。 5.用Excel找出纵坐标的最大值,就是抗拉强度。

三轴实验最新操作规程

试验规程 微机控制冻土三轴试验机操作规程说明 1 试验机的开机 1.1 打开控制器电源开关 1.2 打开计算机,启动试验程序 (说明:开启油源前,将侧向缸和轴向缸的给定调整均调整为最底部) 1.3 开油源(注意可根据试验要求选择合适的系统压力) (说明:根据土样所在的深度特征,估计施加周围压力的大小,选择合适的系统压力,一般情况下,当系统压力为3MPa时,围压可达到7MPa; 当系统压力为7MPa时,围压可达到15MPa); 1.4 在位移控制方式下装夹试样 (说明:在装夹试样前,用支撑杆支起中间活动杆顶端的法兰;安装试样并沾干净压力室底板上的沙土,放好O型圈,拧紧连接螺丝;将压力室底板推进低温箱;施加围压,直至排油孔有气泡冒出,拧紧排气孔;待中间活动杆跟传感器连接杆接触时,手动切换侧向为围压控制,施加围压,保证侧向缸不是上升到最顶端,否则需要切换侧向为位移控制,再向侧向液压缸中抽油;待围压加载到设定值后,将支撑杆拿掉,抬升轴向作动器使压力室底板的四个轮子脱离开导轨,具体抬升的高度可计算出,使试样顶端恰好与活动杆底部接触;开启低温箱养护试样;若试样需要固结排水,在侧向作动器处在中间位置以上且土样本身的含水量较大需要分级进行固结,可选择[固结],以程序控制的方式进行固结;在侧向作动器处在中间位置以下且土样本身的含水两较少,无须进行分级控制,直接按另一种固结程序进行。) 1.5 建立新工程或打开一个已经有的工程,设定试验参数, 1.6 对新工程:按固结前采样 (说明:固结部分的思路为以当前的周围压力和主应力为基础,设定周围压力的总的变化量及主应力随周围压力变化的系数和固结级数,对每级固结来说,需要设置固结结束时间以完成每级的等时间固结;在整个固结操作中,可完全根据向导的提示进行操作,固结完毕后可进入各种试验)。 1.7 对新工程:选择固结方式开始固结

直剪试验和三轴剪切试验对比分析

直剪试验和三轴剪切试验对比分析 【摘要】土的抗剪强度是指地基土抵抗外荷载破坏的能力。抗剪强度指标是确定地基土承载力的关键指标,在地基与基础设计及办坡工程设计中至关重要。 土的抗剪强度指标主要是通过室内试验获得。试验方法主要有直接快剪、固结快剪和固结不排水剪。本文通过在室内对同一土体进行固结快剪和固结不排水剪试验,探研两种试验方法所得结果的差异。 【关键词】抗剪强度;固结快剪;固结不排水剪 为了确定建筑物地基承载力、预测边坡的稳定性、确定渠道和基抗的坡角等,都需要研究土的抗剪强度。抗剪强度指标是工程计算中需要的直接计算指标。 土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。土的抗剪强度是由颗粒间的内摩擦力以及胶结物和水膜的分子引力所产生的粘聚力共同组成。 1. 土的抗剪强度的基本理论 1773年,库仑根据砂土的摩擦试验,砂土的抗剪强度决定于砂土的内摩擦角,即决定于砂土颗粒之间的内摩擦力。它与压应力成正比。砂土的抗剪强度曲线为一过原点的直线,可用τf=σtgφ表示。 后来又提出粘性土的抗剪强度表达式为: τf=c+σtgφ

式中:τ f ——土的抗剪强度,kpa; σ——作用于剪切面上的法向应力,kpa; φ——土的内摩擦角,(°) c——土的粘聚力,kpa。 据库伦定律求土的抗剪强度指标是很简单。但由于土的抗剪强度受许多因素影响,如试验时的排水条件、试样的受压历史、剪切的速度、仪器的类型和操作方法等,所以c、φ值随着影响因素的不同而异,实际上,它是表示在一定条件下的抗剪强度。 2. 试验方法对比 2.1 固结快剪。 试验仪器采用直接剪刀切仪。首先将制备好的3~4个高2cm面积30cm2的圆柱形土体分别置于剪切盒内,使其承受一定的竖向压力σ下排水,待固结稳定后快速施加水平剪应力使其剪破,在剪应力施加过程中记录下剪应力的峰值强度,若未出现峰值取剪位移为4mm相对应的剪应力作为它的抗剪强度(一般最大位移为试样直径的1/15~1/10。对于直径61.8mm的试样,其最大剪切位移为4~6mm,所以规定取剪切位移为4mm对应的剪应力为抗剪强度值。同时要求试验的剪切位移达6mm)。 2.2 固结不排水剪。 试验仪器采用三轴压缩仪。首先将3~4个制备好的高8cm面积12cm2的圆柱形土体在周围压力σ3下排水,待固结稳定后,开始剪切,过程中按一定变形量测记测力计、轴向变形和孔隙水压

实验

实验3 常温单轴拉伸实验 马 杭 编写 单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 图3-1 圆棒拉伸试样简图 三、试样 材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。本试验采用圆棒试样,如图1-1所示。试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。 材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。例如,由于颈缩局部及其影响区的塑性变形在断后延伸

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据 处理和分析 The Standardization Office was revised on the afternoon of December 13, 2020

拉伸试验测定结果的数据处理和分析 一、试验结果的处理 有以下情况之一者,可判定拉伸试验结果无效: (1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。 (2)操作不当 (3)试验期间仪器设备发生故障,影响了性能测定的准确性。 遇有试验结果无效时,应补做同样数量的试验。但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。若再不合格,该炉号材料或该批坯料就判废或降级处理。 此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明 二、数值修约 (一)数值进舍规则 数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。具体说明如下: (1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。 例如、将13.346修约到保留一位小数,得13.3。 (2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。

例如,将52. 463修约到保留一位小数,得52.5。 (3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。 例如,将2.1502修约到只保留一位小数。得2.2。 (4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。 例如,将下列数字修约到只保留一位小数。 修约前 0.45 0.750 2.0500 3.15 修约后 0.4 0.8 2.0 3.2 (5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。 例如,将17.4548修约成整数。 正确的做法是:17.4548→17 不正确的做法是:17.455→17.46→17.5→18 (二)非整数单位的修约 试验数值有时要求以5为间隔修约。此时将拟修约的数值乘以2,按指定位数依前述进舍规则修约,然后将所得数值再除以2即可。例如:将下列数字修约到个位数的0.5单位。 拟修约数值X 乘以2 2X修约值 X修约值 30.75 61.50 62.0 30.0 30.45 60.90 61.0 30.5 三、拉伸试验的力学性能指标修约 拉伸试验测定的力学性能指标,除有特殊要求外,一般按表的要求进行修约。

三轴实验报告精编版

三轴试验报告 课程高等土力学 授课老师冷伍明等 指导老师彭老师 学生姓名刘玮 学号 114811134 专业隧道工程

目录 1.试验目的 (1) 2.仪器设备 (1) 3.试样制备步骤 (1) 4.试样的安装和固结 (2) 5.数据处理(邓肯—张模型8大参数的确定) (2) 6.注意事项 (9) 7.总结 (10)

1.试验目的 (1).三轴压缩试验室测定图的抗剪强度的一种方法,它通过用3~4个圆柱形试样,分别在不同的恒定周围压力下,施加轴向压力,进行剪切直至破坏;然后根据摩尔-强度理论,求得土的抗剪强度参数;同时还可求出邓肯-张模型的其它6个参数。 (2).本试验分为不固结不排水剪(UU);固结不排水剪(CU或CU)和固结排水剪(CD)等3种试验类型。本次试验采用的是固结排水剪(CD)。 2.仪器设备 本次实验采用全自动应变控制式三轴仪:有反压力控制系统,周围压力控制系统,压力室,孔隙压力测量系统,数据采集系统,试验机等。 3.试样制备步骤 (1).本次试验所用土属于粉粘土,采用击实法对扰动土进行试样制备,试样直径39.1mm,试样高度80mm。选取一定数量的代表性土样,经碾碎、过筛,测定风干含水率,按要求的含水率算出所需加水量。 (2).将需加的水量喷洒到土料上拌匀,稍静置后装入塑料袋,然后置于密闭容器内24小时,使含水率均匀。取出土料复测其含水率。 (3).击样筒的内径应与试样直径相同。击锤的直径宜小雨试样直径,也允许采用与试样直径相同的击锤。击样筒在使用前应洗擦干净。 (4).根据要求的干密度,称取所需土质量。按试样高度分层击实,本次试验为粉粘土,分5层击实。各层土料质量相等。每层击实至要求高度后,将表面刨毛,然后再加第2层土料。如此继续进行,直至击完最后一层,并将击样筒中的试样取出放入饱和器中。 表1 含水率记录表 试验要求干密度为1.7g/cm3,饱和器容积为96cm3,所以所需湿土质量为: + ? = + mρ(g) w =v 1(= ? ) 188 8. 7.1 96 ) .0 1( 1575 分5层击实,则每层质量为37.76g。 (5).试样饱和:采用抽气饱和,将装有试样的饱和器置于无水的抽气缸内,进行抽气,当真空度接近当地1个大气压后,应继续抽气1个小时。抽气完成后徐徐注入清水,并保持真空度稳定。待饱和器完全被水淹没即停止抽气,并释放

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

单轴拉伸

单轴拉伸实验报告 使用设备名称与型号 同组人员 实验时间 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备与仪器 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 三、实验原理 单轴拉伸实验在电子万能材料试验机上进行。在试验过程中,试验机上的载荷传感器和位移传感器分别将感受到的载荷与位移信号转变成电信号送入EDC 控制器,信号经过放大和模数转换后送入计算机,并将处理过的数据同步地显示在屏幕上,形成载荷—位移曲线(即l P ?-曲线),试验数据可以存储和打印。在实验前,应进行载荷传感器和位移传感器的标定(校准)。 根据l P ?-曲线和试样参数,计算材料的各项机械性能指标。根据性能指标、 l P ?-曲线特征并结合断口形貌,分析、评价材料的机械性能。试验机操作软件的使用可参见附录一。 四、实验操作步骤 1.原始尺寸测量:(1)确定标距0l 。(2)测量直径0d :在标距中央及两条标距线附近各取一截面进行测量,每截面沿互相垂直方向各测一次取平均值,0d 采用三个截面中的平

均值的最小值。 2.初始条件设定:如图1-2,(1)首先进行载荷与位移清零,用鼠标点击载荷与位移(绿色)显示区右上方的0.0按纽,使两者的显示值均为零。(2)点击左上方“曲线参数”,根据材料的强度与塑性,选择合适的显示量程。图二右下方为载荷—位移曲线的显示区,其X轴为横梁位移(mm),Y轴为载荷(kN)。(3)点击左上方“试样信息”,输入试样参数。 3.试样装夹:(1)选择“手动操作”,设定较快的横梁移动速度(20mm/min或50mm/min),点击“上升”或“下降”使横梁移动并观察。当横梁到达合适的位置时,点击“停止”使横梁停止移动。(2)将试样的夹持端插入上楔形夹头并旋紧,点击“下降”使试样的另一端插入下楔形夹头,下降时注意对中以免产生碰撞,停机后旋紧下夹头。 注意,试样装夹之后不再进行载荷清零。 图1-2 拉伸试验的计算机界面 4.加载试验:(1)选择“手动操作”,设定试验速度,建议低碳钢试样设为5mm/min,铸

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

常温单轴拉伸实验、压缩实验、扭转实验

实验1 常温单轴拉伸实验 马 杭 编写 单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。 一、实验目的 1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。 2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。 二、实验设备 1.电子万能材料试验机WDW-100A(见附录一)。 2.计算机、打印机。 3.游标卡尺。 图1-1 圆棒拉伸试样简图 三、试样 材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。本试验采用圆棒试样,如图1-1所示。试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。 材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。例如,由于颈缩局部及其影响区的塑性变形在断后延伸

三轴实验-1讲解

土工试验 Wi ndows视窗版 [程序控制(全自动)三轴仪〗 使用说明书 十二年不断研究改进的技术成果 集300家试验室应用的点滴经验 Windows 平台增强系统应用功能 南京智龙科技开发有限公司 2005年3月南京

3.3 三轴试验(含无侧限抗压强度试验) 三轴试验采样程序用于常规三轴(uu、cu、c D试验、无侧限压缩试验的数据采集,亦支持个试样多级加载三轴试验的数据采集。本节还介绍使用程序控制三轴仪(全自动三轴仪)的过程控制和数据采集。 同一土样的各试样试验的v土样编号〉输入必须一致。 3.3.1 使用常规三轴仪三轴试验的采样过程,参见“三轴试验数据采集程序流程示意图”。

程序流程示意图 程序控制下的试验是使用全自动三轴仪进行的。 3.3.1.1 试验参数、动态显示、操作指令 ⑴ 试验参数的设置 轴向应变一一试验终点的最大应变,是控制采样设置的条件。程序的设置是,应力如出现峰值将再经 3%的应变结束采样;否则按设置的应变结束采样。对于一个试样多级加载试验,应是各级应变量累加值。 加荷级数一一程序区别是否做一个试样多级加载试验的参数。正常试验设1,大于1的数表示是多级 加载。一个试样最多可设6级。 三轴试验数据采集 打开三轴米样视窗 输入试验参数 无侧限压缩试验设围压为零其余同 UU 试验) 检查或作饱和处理 一 指令:放弃试验(通道恢复空闲) y —?I 指令:开始试验 设置压力参数 设置主机速率 >记录初始孔压与量管读数 ?轴压前仪器调试 输入固结排水量 多级剪? 线过零点? 多级剪? 指令:开始剪切 * 指令:倒车后退 ____ n 数据存盘 现异常 试验终点? 多级剪? 结束试验? 压力稳定 指令:开始剪切 数据存盘* 指令:放弃试验 1 通道恢复空闲H 系统待命 +试验结束关机 设置自控参数 加围压 *排水固结、测孔压 读数、关排水阀 n 指令:结束固结 设置轴向应变 指令:开始剪切 y n d= 加下级围压 y 加密采样 指令:修正零点或应变■^n 选定终点控制标准 d=3mm 1 T 辛采集数据文件 y y < 试验? 一*指令:暂停剪切 y n 停机转入次级试验 忆设定步长采样匚 n 加下一级围压 排除故障 继续试验?

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据处理和分析 一、试验结果的处理 有以下情况之一者,可判定拉伸试验结果无效: (1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。 (2)操作不当 (3)试验期间仪器设备发生故障,影响了性能测定的准确性。 遇有试验结果无效时,应补做同样数量的试验。但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。若再不合格,该炉号材料或该批坯料就判废或降级处理。 此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明 二、数值修约 (一)数值进舍规则 数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。具体说明如下: (1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。 例如、将13.346修约到保留一位小数,得13.3。 (2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。 例如,将52. 463修约到保留一位小数,得52.5。 (3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。 例如,将2.1502修约到只保留一位小数。得2.2。 (4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。 例如,将下列数字修约到只保留一位小数。 修约前0.45 0.750 2.0500 3.15 修约后0.4 0.8 2.0 3.2 (5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。 例如,将17.4548修约成整数。 正确的做法是:17.4548→17 不正确的做法是:17.455→17.46→17.5→18 (二)非整数单位的修约 试验数值有时要求以5为间隔修约。此时将拟修约的数值乘以2,按指定位数依前述进舍规则修约,然后将所得数值再除以2即可。例如:将下列数字修约到个位数的0.5单位。 拟修约数值X 乘以2 2X修约值X修约值

三轴实验操作及处理

应变控制式三轴仪 应变控制式三轴仪用于测量最大周围压力在1.0MPa,直径为39.1mm的土试样。在轴向静负荷条件下强度和变形特性的三轴剪切力试验,可以进行不固结不排水剪(UU)、固结不排水剪(CU)和固结排水剪(CD)的三轴试验。 实验仪器及参数: 仪器:应变控制式三轴仪 附属设备:击实筒、饱和器、切土盘、切土器、切土架、原状土分样器、承膜筒、砂样制备模 1. 试件尺寸: 39.1 x 80mm,最大直径300mm*高度600mm 2. 载荷: 0-10kN,最大载荷可达1500kN 3. 应变速率: 0.001 – 4.8mm/min. 无级调速 4. 工作台行程: 100mm maximum 5. 围压: 0 – 2MPa ,最大可以达6MPa 6. 反压: 0 – 2MPa ,最大可以达6MPa 7. 孔压: 0 – 2MPa ,最大可以达6MPa 8. 体积变化: 0 – 50ml 9. 轴向位移: 0 – 30mm 10. 电源: 220V±10% 50Hz 11.仪器尺寸: 主机: 350 x 300 x 1100mm (L x W x H) 控制器: 500 x 500 x 925mm (L x W x H) 12. 仪器重量: 170kg 试样的制备: 砂土试样在三轴仪中的制备过程一般为: ①在橡皮膜内将砂样制备至要求密度; ②加吸力稳住试样,拆试样模,测量试样尺寸; ③安装三轴室,加小围压(约25 kPa) ,释放吸力; ④灌二氧化碳和脱气水; ⑤加反压饱和; ⑥加压固结。 使用方法: 1、取出仪器箱与仪器四周塞块,仪器置于平台上,调节立柱螺丝,仪器平稳后并紧并帽。 2、稍并紧框架下横梁上的六角螺栓,使框架与杠杆基本稳定。 3、检查杠杆两侧与吊圈是否相摩,轴承滚动应灵活,调整平衡锤,使杠杆自重基本平衡,并紧平衡锤并帽,旋开螺栓,与杠杆充分脱开,并将杠杆处于立柱中间。 4、检查前切盒,滚动钢球应放正,滚动灵活五异物卡阻,按规程放入土样,放好透水石,传压板,使框架传压螺钉对准钢球中心。 5、摇动手轮,使上盒刚好接触量力环,百分表对零,同时将垂直移位百分表对零,旋动传压螺钉,适量太高杠杆,若试样未经预压可略高,以免加后土样下沉而使杠杆过于倾斜。 6、按工程实际需要施加垂直载荷,(杠杆应基本位于立柱中间)待土样受载或固定后,拧出螺丝插销,以均匀速度摇动手轮进行剪切,视量力环百分表指针不再前进,或有后退时记

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 一、列表法 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。

一般来讲,在用列表法处理数据时,应遵从如下原则: (1)栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2)在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3)填入表中的数字应是有效数字。 (4)必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 = ?mm ± .0 004

[课程]静三轴压缩实验报告_secret

指导老师: 班级:岩土工程2007级小组:第一小组时间:2008.5~2008.6 小组成员:

一 实验目的 1.通过静三轴压缩实验了解实验过程及方法; 2. 通过实验数据的处理掌握用EXCEL 处理实验数据; 3.通过实验加深对土的本构关系的理解; 4.掌握邓肯—张模型参数的计算方法。 二 实验原理 Duncan —Chang 模型是与时间无关的试验本构模型,其本质是依据Kondner 提出的用双曲线拟合应力应变关系,即 a 13a a b εσσε-= + (1) 其中a 、b 为试验常数。 1.切线变形模量E t 对于常规三轴压缩试验,εa =ε1,将(1)式改写为 1113 a b εεσσ+= - (2) 将常规三轴压缩试验的结果按 113 εσσ-~1ε的关系进行整理,则二者近似成 线性关系。其中,a 为直线截距;b 为直线斜率。参看图1。 图1 土的应力应变的双曲线关系 在常规三轴压缩试验中,由于d σ2=d σ3=0,所以切线模量为 13t 2 11d()d () a E a b σσεε-= =+ (3) 在试样的起始点,ε1=0,E t =E i ,则 i 1 E a = (4) 这表明a 代表的是在这个试验中的起始变形模量E i 的倒数。在(1)式中,如果1ε→∞,则 13ult 1 ()b σσ-= (5)

或者 13ult 1 ()b σσ= - (6) 由此可看出b 代表的是双曲线的渐近线所对应得极限偏差应力(σ1-σ3)ult 的倒数。 在土的试样中,如果应力应变曲线近似于双曲线关系,则往往是根据一定应变值(如ε1=15%)来确定土的强度(σ1-σ3)f ,而不可能在试验中使ε1无限大,求取(σ1-σ3)ult ;对于有峰值点的情况,取(σ1-σ3)f =(σ1-σ3)峰,这样(σ1-σ3)f <(σ1-σ3)ult 。定义破坏比R f 为 13f f 13ult ()()R σσσσ-= - (7) f 13ult 13f 1 ()()R b σσσσ= =-- (8) 将式(8)、(4)代入式(3)中,得 2 t f i 1i 13f 11 1()E R E E εσσ?? ? ?= ?+ ? -?? (9) 式(9)中E t 表示为应变ε1的函数,使用时不够方便,可将E t 表示为应力的函数形式。从式(2)可以得到 13113() 1() a b σσεσσ-= -- (10) 将式(10)代入式(3),得 t 2 2 2 131******** 1 ()()111()1()1()a E ab b a a a b b b σσσσσσσσσσ= = = ?? ????--++?? ????------? ??? ?? (11) 将式(8)、(4)代入式(11),得 2 13t i f 13f 1()E E R σσσσ?? -=-??-? ? (12) 根据莫尔-库仑强度准则,有

偏心拉伸试验

偏心拉伸试验 [实验目的] 1、测定偏心拉伸时的最大正应力,验证迭加原理的正确性。 2、学习拉弯组合变形时分别测量各内力分量产生的应变成分的方法。 3、测定偏心拉伸试样的弹性模量E 和偏心距e 。 4、进一步学习用应变仪测量微应变的组桥原理和方法,并能熟练掌握、灵活运用。 [使用仪器及工具] 静态电阻应变仪、拉伸加载装置、偏心拉伸试样(已贴应变计)、螺丝刀等。 [试样及布片介绍] 本实验采用矩形截面的薄直板作为被测试样,其两端各有一偏离轴线的圆孔,通过圆柱销钉使试样与实验台相连,采用一定的加载方式使试样受一对平行于轴线的拉力作用。 在试样中部的两侧面、或两表面上与轴线等距的对称点处沿纵向对称地各粘贴一枚单轴应变计(见图1、图2),贴片位置和试样尺寸如图所示。应变计的灵敏系数K 标注在试样上。 [实验原理] 偏心受拉构件在外载荷P 的作用下,其横截面上存在的内力分量有:轴力F N = P ,弯矩M = P ·e ,其中e 为构件的偏心距。设构件的宽度为b 、厚度为t ,则其横截面面积A = t ·b 。在图2所示情况中,a 为构件轴线到应变计丝栅中心线的距离。根据叠加原理可知,该偏心受拉构件横截面上各点都为单向应力状态,其测点处正应力的理论计算公式为拉伸应力和弯矩正应力的代数和,即: 26P M P Pe A W tb tb σ= ±=± (对于图1布片方案) 312y P M P Pea y A I tb tb σ= ±=± (对于图2布片方案) 根据胡克定律可知,其测点处正应力的测量计算公式为材料的弹性模量E 与测点处正应变的乘 积,即: 图1 加载与布片示意图1 图2 加载与布片示意图2 R

相关文档
最新文档