相变温度分析仪(PCA)

相变温度分析仪(PCA)
相变温度分析仪(PCA)

相变温度分析仪(PCA)

Phase Change Temperature Analyzer

嘉仪通科技

嘉仪通科技成立于2009年,总部位于武汉市东湖开发区未来科技城,拥有研发及办公面积1100多平方米,在北京、上海、成都建有办事处,并与当地科研院所合作建立了联合实验室。

嘉仪通科技是一家研发、生产和销售关于新材料、尤其是薄膜材料物性分析科学仪器的高新技术企业,从而为客户新材料的研发及改进提供理论依据和实验平台。嘉仪通科技秉承技术创新、应用为上的价值理念,遵循“穷理致用”的原则,踏踏实实、认认真真做好每一台科学仪器。嘉仪通科技拥有一批海归研发团队,解决了纳米级薄膜材料物性分析的国际难题,并获得多项荣誉。

作为薄膜材料物性分析领跑者,嘉仪通科技已建立完善的薄膜材料物性分析科学仪器产品线:

●相变温度分析仪(PCA)

●热膨胀系数分析仪(TEA)

●光功率热分析仪(OPA)

●热电参数测试系统(Namicro)

●薄膜热电参数测试系统(MRS)

●薄膜热导率测试系统(TCT)

●薄膜热应力测试系统(TST)

●薄膜变温电阻测试仪(TRT)

●薄膜磁性测试系统(TMT)

●霍尔效应测试系统(HET)

......

部分使用客户

清华大学中科院金属所

中科院电工所中科院上海微系统所

福建省特检院华中科技大学

北京科技大学武汉理工大学

安徽工业大学武汉工程大学

西华大学盐城工学院

Queen Mary of University London,UK

相变温度分析仪(PCA )

分析原理

根据薄膜材料在相变前后光学性质(反射光功率)有较大差异的特性,在程序控制温度下,采用一束恒定光功率的激光照射样品表面,观测记录其反射光功率变化,通过形成反射光功率和温度的变化曲线,确定样品相变温度,包括晶化温度,软化温度和其他晶态之间的转变等二级相变在内的多种相变温度。

创新优势

人性化的送样组件

1、以直线滚珠轴承作为组件支撑及运动导向关联件,确保送样的平稳可靠,行程限垫可有效确保导轨的行程范围。

2、压迫式弹针接触端子可确保温度传感器的有效接通,同时其弹力可确保设备处于锁紧状态时方可进行加热操作等事宜,避免误操作。

3、组合隔温挡圈能有效形成前后隔离,确保温场均匀。

材料一般光学特性

高性能的加热及控制系统

1、采用高性能长寿命红外加热管进行加热,核心加热区采用抛物反射面设计,确保对样品进行有效全方位加热。

2、采用PID 调节与模糊控制相结合的温控系统可实现系统的高速跟随控制。

3、可搭载各种配属组件进行关联操作。

4、默认配置为K 型热电偶。

简约的光学系统

1、基于三维调整的光隔离器能够有效保护激光器以及调整激光通路。

2、搭载聚焦及滤波的传感模块能够有效提高信号的检出率。

型号PCA-300PCA-1200PCA-1800温度范围RT~300℃RT~1200℃RT~1800℃程序升温重复性偏差<1.0%

程序升温速率偏差<10.0%

相变温度测量精密度偏差<0.5%

相变温度测量正确度偏差<0.5%

最大工作功率 4.0KW

3000℃/min(50℃~1800℃,真空氛围)最大升温速度

2700℃/min(50℃~1800℃,N2氛围)

±2.0℃(1800℃,真空)

温场一致性

±4.5℃(1800℃,N2)

制冷要求水冷

极限真空50Pa10Pa1Pa

相变薄膜材料检测厚度下限 5.0×10-9m

样品要求

●尺寸:长×宽5x5~20x20mm2,厚度2.0mm(含基底)以下为宜

●具备光学反射平面

●薄膜可选择适当基底,建议用20mm x20mm x1.5mm石英玻璃或硅片

应用材料

形变记忆合金材料铁电、压电薄膜材料

相变存储材料——硫系相变化合物:Ge2Sb2Te5高温陶瓷薄膜

金属薄膜材料(研究马氏体、奥氏体、贝氏体等)硬质合金薄膜材料

高温涂层薄膜复合薄膜材料

......

红外材料复合材料

图1:二氧化钒VO2不同升温速率对比图图2:铝镍合金复合薄膜

(升温速率分别为每分钟12℃、15℃)(西南科技大学提供)

(四川大学提供)

相变存储材料——硫系相变化合物

图3:相变存储材料(中科院微系统所提供)图4:与DSC的对比(GeTe薄膜相变温度测试)硬质合金薄膜材料

图5:切削刀具相变监测曲线图6:LOW-E玻璃热膨胀系数监测曲线(武汉大学提供)(福耀玻璃提供)

【材料分析方法】相变研究以及相变温度的确定方法

相变研究以及相变温度的确定方法 材料科学与工程1121900133 缪克松 关键词:相变研究是材料科学与工程中重要的一门研究,温度、压力等因素会诱发材料的相变,相变前后材料的微观结构的差异将使材料在物理性质、化学性质等方面发生较 大程度的改变,从而决定了材料的应用范围。温度作为材料在制备、加工、应用中 常常面对的环境变量,对于相变的影响最为直观可控,本文就确定材料的相变温度 介绍了几种方法。 关键词:相变温度;膨胀法;差示扫描量热法;X射线法;声发射法;电阻法 1相变概述 从广义上讲,构成物质的原子或分子的聚合状态、相状态发生变化的过程均称为相变。[1]例如液相到固相的凝固过程、液相到气相的蒸发过程等。相变前的相状态称为旧相或者母相,相变后的相状态成为新相。固态相变发生后,新相与母相之间必然存在某些差别。这些差别或者表现在晶体结构上(同素异构转变),或者表现在化学成分上(调幅分解),或者表现在表面能上(粉末烧结),或者表现在应变能上(形变再结晶),或者表现在界面能上(晶粒长大),或者几种差别兼而有之(过饱和固溶体脱溶沉淀)。 相变的发生往往收到外界环境的激发,温度是最直观也最容易控制的参数,通过对材料在不同温度下几种不同类型的相变的控制,就可以获得预期的组织和结构,充分发挥材料体系的潜能,因此,确定材料的相变温度十分有意义。 随温度的变化,材料在相变前后的差别可以作为检测材料相变温度的依据,本文所述的几种方法其基本原理都是通过比对材料随温度变化发生的改变从而来确定相变温度。 2 膨胀法 2.1 原理 物质的热膨胀是基于构成物质的质点间平均距离随温度变化而变化的一种现象,晶体发生相结构变化的同时总是伴随着热膨胀的不连续变化,因此相变过程中的热膨胀行为的测量是研究相变的重要手段之一。 将样品放入加热炉内,按给定的温度程序加热,加热炉和样品的温度分别由对应的热电偶进行测量,样品长度随温度变化而变化,同时样品支架和样品推杆的长度也发生变化,测量的长度变化结果是样品、样品支架和推杆三者长度变化总和。样品推杆将该长度变化总和传递给位移传感器后,使位移传感器的铁芯发生位置变化而产生电动势,该电动势由测量放大器按比例转换为直流电压,由计算机记录下来。

材料热力学

2012 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料热力学 学生所在院(系):理学院应用化学系 学生所在学科: 学生姓名 学号: 学生类别: 考核结果阅卷人 第 1 页(共 5 页)

材料热力学在材料研究方面的应用 摘要:材料热力学对于材料的预测和使用具有理论指导作用,本文总结了近年来材料热力学在功能材料设计分析方面的应用,并对材料热力学这门学科在材料方面的应用进行了总结。 关键词:材料热力学;材料;应用 1.材料热力学概述 材料热力学就是把热力学原理和材料联系起来,用热力学的理论解决材料在设计、制造、应用时的相应问题。材料热力学课程以热力学定律为基础,着重介绍了统计热力学在材料中的应用,如溶液的统计热力学、相图热力学、相变热力学和化学平衡热力学等。 2.计算材料科学与热力学 随着科学技术的不断进步,已有的材料越来越不能满足当前甚至可预见的未来的科技发展对于生产、生活中各种器械材料的需要,已有的材料不断被淘汰,人们对材料提出越来越多的要求和希望。材料逐渐向功能的多样化和性能的优异化发展。大量的材料量和质的需求使人们不得不摈弃传统材料开发的逐一试探的方法。带预测性的材料设计理念就这样应运而生了。随着现当代材料分析与检测仪器精度和灵敏性的提高,人们可以积累大量的材料性能的数据,这为发展新的材料模型或新材料的预测和模拟研究提供了有利条件。由此产生了以材料热力学理论为基础,计算机技术辅助支撑的计算材料科学。 耿太在他的硕士论文[1]中提到,计算材料科学发展中最活跃的是包含相图热力学和相变动力学计算在内的CALPHAD领域。在此领域中,热力学模拟优化的过程和实验技术紧密结合,并与材料的成分、足迹和制备过程联系密切。而目前,材料设计领域的新课题就是连接不同层次材料的成分设计、微观结构、制备工艺来达到从微观结构到宏观性能的整体预测和设计。在这篇文章中,应用了热力学计算软件,计算了平衡态相图对耐腐蚀合金的耐腐蚀性能,计算了铁铝、铁硼合金的平衡态相图,并与标准的二元相图做了比较分析。他认为这种计算分析对于合金成分设计制备具有指导意义。 3.材料热力学用于金属材料 实际生产生活中应用最广泛的材料是金属材料。而金属材料中用到最多的又是金属基的复合材料。通过复合化设计后金属材料可以形成金属基的复合材料。金属基的复合材料具有更好的机械性能和功能性能,是当前高新技术、环境、能源、通信、汽车、国防及航空航天设备中不可替代的重要材料,并在国民经济和国防建设中有着不可替代的重要作用。 范同祥等人认为,金属熔体的热力学性质历来是材料科学、冶金化学和流体物理学等领域的工作者关注的冶金热力学的核心课题之一[2]。他们认为,热力学和动力学在研究复合材料界面反应控制、反应自生增强相种类选择、反应自生增强相尺寸控制、金属基复合材料体系设计及复合制备工艺优化等方面有很大的应用价值。并且,基于组元元素的悟性参数能为金属基复合材料的研究提供理论指导。但是,金属熔体的结构比较复杂,其热力学和动力学性质带有复杂性,且不同的体系有其特殊性,在这种情况下的热力学和动力学的模型应用就有其局限性和针对性,这样的模型需要发展和完善。另外,可以把热力学和动力学与第一性原理相结合,从原子尺度进行计算,这样就能在复合材料的研究中扩大热力学和动力学的应

相变点测试方法

TC11钛合金相变点的测定与分析 采用计算法、差示扫描量热法和连续升温金相法3种手段计算和测定了TC11两相钛合金(α+β)/β相变点。计算法由于各元素及杂质元素含量对相变点的影响值是在一个含量范围内的计算值,因此计算的相变点与实测值是接近的;差示扫描量热法由于钛合金和坩埚的化学反应,产生相变滞后现象,导致所测相变温度过高;而连续升温金相法由于淬火温度间隔选择较小,测量的准确性较高,因此更能准确测量TC11钛合金相变温度。 采用sTA449c 一同步热分析仪测量钛及钛合金相变温度,其参比样品为粉末状23A l O ,升温速度为10℃1min -?;保护氩气流量为45 m1 1min -?。测试前,应先在两个样品坩埚内放人等量23A l O 粉末,测定仪器基线符合规定后,即可开始测定正式样品DSC 曲线。 采用连续升温金相法测定相变温度。试样尺寸为10 mm ×10 mm ×10 mm ;在加热试样时为了保证热透,保温时间为60 min 。淬火温度选择范围为990~1040℃,淬火温度间隔为10℃,然后将试样水淬。其中间转移速度不超过2S 。将淬火后的试样制成金相观察试样,在放大倍数为500倍的光学显微镜观察试样组织变化。 2.1计算法测定相变温度 根据各元素对钛相变温度的影响推算出相变点的公式为: /T αββ+相变点 =885℃+Σ各元素含量x 该元素对相变点的影响 (1) 式中885℃为计算时纯钛的相变点。 2.2差示扫描量热法测定相变温度 差示扫描量热法测定钛及钛合金相变温度是借助于同步热分析仪将待测试样与另一参比试样在完全相同的条件下加热(或冷却),根据两者温差与温度或时间的变化关系(DSC 曲线),对物质状态进行判定。图2为差示扫描量热法测得TC11钛合金相变点的DSC 曲线。对于α+β型及亚稳定β型钛合金,(α+β)→β转变是一个持续过程,在DSC 曲线上,相变完成表现为基线迁移;同时,由于钛有极高的化学活性,在高温下与氧、氮、坩埚(23A l O )等物质反应,在DSC 曲线上产生不同的峰值,从而使分析判定难度加大。 对于Tcll 钛合金而言,α-Ti →β-Ti 转变是一个吸热反应。当温度在1060℃时,峰值明显。表明相变温度在1060℃左右。由于TCll 钛合金与坩埚(23A l O )化学反应放热,并且测量过程中不断加热,导致热滞后现象产生,推迟了α相向β相转 变,使差示扫描量热法测得的相变温度过高。 2.3连续升温金相法测定相变温度 首先选择淬火温度范围,确定淬火温度间隔为10℃。加热保温然后水淬。最后观察不同淬火温度的试样在光学显微镜下的组织变化。将仍残留初生α相的淬火温度和与该温度最邻近、初生α相消失的温度之间的平均温度确定为相变温度。 在淬火温度为1030℃时,初生α相仍然存在;当淬火温度达到1040℃时,在试样中已看不到初生α相,观察到的全部是针状的马氏体,表明淬火温度已经达到了相变点温度。因此判定Tc11钛合金的相变点在1030~1040℃之间,其相变点的平

材料热力学与固态相变研究生试题-20131115

西南交通大学研究生2013 -2014 学年第(II)学期考试试卷 课程代码 0805021202a 课程名称 材料热力学与固态相变 考试时间 90 分钟 阅卷教师签字: 材料热力学部分 一、 基本概念题(请按照热力学与材料科学的基本理论正确叙述下列概念(对))(30分,每题10分) 1、 拉乌尔定律 2、 热焓与熵 3、 化学位与物相平衡 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

二、简答题(30分,每题10分) 1、假设有一孤立体系:10摩尔处于-10℃的过冷水,在一个大气压下,将自发转变 为固态冰,同时放出结晶潜热使体系升温(没有热量损失),欲计算转变结束时,该体系的最终温度,若为两相共存,则如何计算水和冰的比例(摩尔比),请设计计算框图。(假定已知水的结晶潜热、液态水和固态冰的恒压比热容,不用计算。) 2、若A、B两组元可以形成稳定的中间相(即合金化合物AnBm),请根据热力学 理论,解释端际固溶体(A固溶B或B固溶A)的最大溶解度与合金化合物AnBm 的稳定性之间的定性关系。

3、根据体系与环境的关系,简单说明何为开放体系、何为封闭体系,何为孤立体 系? 三、综合分析题(40分,每题20分)

2、单相体系热力学计算(误差在±50K以内15分,±5K以内 18分,±0.5K以内19分,±,0.05K以内20分)(要求列出详细计算过程) 某液态金属的蒸气压随温度变化的关系式为: lgp(atm)=(-6600/T)-1.0 lgT + 9 其固体的蒸气压随温度的变化关系为: lgp(atm)=(-6700/T)-0.9 lgT + 9 求:(1)在一个大气压下该液态金属的沸点(大于1000K); (2)三相点温度(小于1000K)。

材料热力学计算及其在合金制备中的应用

材料热力学计算 及其在纳米材料中的应用 一导论 材料热力学对于材料科学的研究和发展有着重要的意义。相图在材料工程中有重要的应用价值,它和合金体系中各相的热力学参数是材料设计和制备的重要依据之一。从理论上来说,热力学和相图之间的联系不存在任何障碍。但从历史上看,两者却是沿着各自的方向独立发展。传统上,相图主要是用热分析、金相分析和X射线结构分析等实验方法测定,并没有用到热力学知识,也没有完全将热力学用来解决生产实际问题。而热力学则主要是对相平衡进行理论分析,提出不同状态下平衡过程的方向和限度,其实验数据主要是热化学性质的测定。直至近年来,由于在溶液模型、数值方法和计算机软件等方面取得较大的进展,这才使得人门能够将热力学应用到相图中来。热力学和相图的计算机耦合形成了CALPHAD(computer CALculations of Phase Diagram)技术。CALPHAD技术主要是依据热力学原理和基本关系计算物质体系的平衡性质。一个物质体系的热力学特征函数确定,这个物质体系的全部热力学性质都可计算出来,其中包括相图。这就是CALPHAD技术中的相平衡计算部分。 二CALPHAD技术的发展 现今CALPHAD方法的内涵已由相图和热化学的计算机耦合拓展至宏观热力学计算与量子化学第一性原理计算相结合、宏观热力学计算与动力学模拟相结合、建立新一代计算软件和多功能数据库(multi-function database),其科学内容十分丰富,已成为材料科学比较成熟的重要分支., CALPHAD可以按照常规方法进行复杂的相平衡计算,而且还是建立在合理的物理基础之上。已经有大量可以在PC上运行的软件来进行复杂计算,例如FACT[5]、MTDATA[6]、Lukas Program[7]、Ther-mo-Calc[8]、ChemSage等[9]已在全球通用;建立了许多相图热力学数据库,如SGTE纯物质数据库、溶液数据库等。这些软件运行时不需要大量的专门技术,并且在不断地升级以采用更精确的热力学模型和算法更新现有的数据库,在很多情况下可以预测多元合金的相平衡,并与实验结果接近。目前,新一代的软件也在不断地开发完善之中,例如WinPhad[10]和PANDAT等[11]。因此,CALPHAD成为了一个成熟的科学分支,事实上,已经进入了其发展的另一个阶段,强调的是扩展其应用范围的集中要求。

材料热力学与相变复习总结

热力学定律定义表达式:一、能量从一种形式转化为其他形式时,其总量不变。▽u=q —W 二、一切自发过程都是不可逆的。或热不可能从低温物体传到高温物体而不引起其他变化。 盖.吕萨克(Gay-Lussac )定律:恒压下,任何气体温度升高或降低1℃所引起的体积膨胀都等于它们零度时体积的1/273.16。)16.2731(16.273000t V t V V V t +=+= 敞开体系或开放体系: 与环境之间既有物质交换,也有能量交换的体系 封闭体系或关闭体系:与环境之间只有能量交换,而无物质交换的体系 隔离体系或孤立体系:与环境之间既无物质交换,也无能量交换的体系 体系的性质是状态的函数。我们把这些性质,包括体系的温度、压力、体积、能量或其他,都叫做体系的状态函数 强度性质:与体系的总量无关的性质,例如温度、压强、比表面能、磁场强度等 广度性质:与体系的总量成比例的性质,例如体积、面积、质量等。 盖斯定律:同一化学反应,不论其经过的历程如何(一步或几步完成),只要体系的初态和终态一定,则反应的热效应总是一定的(相同的)。 对于可逆过程而言,qR/T 最大,所以对于同样的△u ,qR 是一定的,且仅取决于体系的状态。这样,qR /T 就具备了状态函数的特点。以S 表示之,称为熵。T q S R ?=?,T dq dS R =熵虽然可以作为此问题判断的依据,但是只适用于隔离体系。 G 称为吉布斯(Gibbs )自由能,也是个状态函数,可以判断恒温恒压下过程可逆与否。若令 G =H -TS 则dW' ≤-dG 如果过程只作膨胀功,即dW' =0,则有 dG ≤0,或 △G ≤0 判断恒温恒压、无非膨功的条件下过程自发进行的可能性。自由能减小不可逆、自发。不变则可逆平衡。 能斯特定理0)()( lim lim 00=?=???→→T T P T S T G 后来人们提出了另外两种热力学第三 定律的表达式: 0)(lim 0=?→S T 00 l i m S S T =→ 将偏摩尔量的定义式中的广度性质G 以自由能F 代之,则得到偏摩尔自由能1 21......,,,)/(-??=i n n n P T i i n F μ 化学位的物理意义是:恒温恒压下,加入微量i 所引起的体系自由能的变化。显然,化学位与自由能之间存在以下关系∑=i i dn dF μ 化学位反映了某一组元从某一相中逸出的能力。某一组元在一相内的化学位越高,它从这相迁移到另一相中的倾向越大。所以可以用化学位来判断过程的方向和平衡: 0≤∑i i dn μ“<”表示反应的方向;“=”表示平衡条件 拉乌尔定律:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其摩尔分数的乘积。 亨利定律:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比 大多数实际溶液都对拉乌尔定律有偏差,即蒸气压大于或小于拉乌尔定律的计算值。如果蒸气压大于拉乌尔定律的计算值,称为正偏差;如果蒸气压小于拉乌尔定律的计算值,叫做负

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

TC4钛合金相变温度的测定与分析

TC4钛合金相变温度的测定与分析 摘要:相变温度对钛合金加工工艺十分重要,钛合金加工需要进行热处理,对钛合金的相变温度范围需要计算出具体的数值。本文采用了计算法、差热分析法和连续升温金相法对钛合金试样进行了测定,取得了相变温度范围。文中对三种测试方法进行了分析,得出TC4钛合金的相变温度值为998℃。 关键词:TC4钛合金;相变温度;连续升温金相法 前言 TC4钛合金的应用范围较广,并且应用的领域均属航空、航天工业,其对工艺的要求较高。在钛合金工艺改造过程中需要对其进行热处理,这需要分析钛合金的相变温度范围,文中针对一种钛合金试样采用了三种方法测试,得出相变温度值。 1.TC4钛合金的性质及相变温度 TC4钛合金(Ti-6Al-4V)的组成是由α和β两相钛合金组成,其优点为:(1)工艺性强;(2)可塑性强;(3)可焊接和耐腐蚀。TC4钛合金应用广泛,在我国主要体现在航空业和航天工业中。 对钛和钛合金的加工需要进行热处理,所以TC4钛合金的相变温度的测定十分重要,也是TC4钛合金处理工艺的应用参数,处理时做热加工处理,加工钛合金,使其形成目的形状,需要对钛合金的适用温度进行掌控,这也是在钛合金热处理工艺中氧和氮污染指标的重要参考依据。在钛合金材料的使用工艺中,相变温度或相变温度范围需要有准确的数值,而钛合金的相变温度数值随着钛合金的成分不同和加工历史不同,每批原材料的相变温度也不同。 2.TC4钛合金相变温度的测定与分析 2.1不同方法对相变温度的测定 2.1.1计算法对相变温度的测定 钛合金相变温度的变化是热加工后对其中各元素的变化,通过计算法来推算其温度变化,计算法能够在连续升温金相法中提供淬火温度的选择范围[1]。 使用计算法对钛合金相变温度的测定公式为: 公式中885℃为单纯钛的相变温度;W为各元素的质量值;q为各元素对相变温度的影响。

材料热力学练习题

1、由5个粒子所组成的体系,其能级分别为0、ε、2ε及3ε,体系的总能量为3ε。试分析5个粒子可能出现的分布方式;求出各种分布方式的微观状态数及总微观状态数。 2、有6个可别粒子,分布在4个不同的能级上(ε、2ε、3ε及4ε),总能量为10ε, 各能级的简并度分别为2、2、2、1,计算各类分布的Ωj 及Ω总。 3、振动频率为ν的双原子分子的简谐振动服从量子化的能级规律。有N 个分子组成玻耳兹曼分布的体系。求在温度T 时,最低能级上分子数的计算式。 4、气体N 2的转动惯量I =1.394?10-46kg ?m 2,计算300K 时的Z J 。 5、已知NO 分子的Θυ=2696K ,试求300K 时的Z υ。 ν~J υ7、计算300K 时,1molHI 振动时对内能和熵的贡献。 8、在298K 及101.3kPa 条件下,1molN 2的Z t 等于多少? 9、在300K 时,计算CO 按转动能级的分布,并画出分子在转动能级间的分布 曲线。 10、计算H 2及CO 在1000K 时按振动能级的分布,并画出分子在振动能间的分 布曲线;再求出分子占基态振动能级的几率。 11、已知HCl 在基态时的平均核间距为1.264?10-10m ,振动波数ν~=2990m -1。计 算298K 时的Θm S 。 12、证明1mol 理想气体在101.3kPa 压力下 Z t =bLM 3/2(T /K )5/2 (b 为常数) 13、计算1molO 2在25?C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。设Θ0U 等于零。 14、已知300K 时金刚石的定容摩尔热容C V ,m =5.65J ?mol -1?K -1,求ΘE 及ν。 15.已知300K 时硼的定容摩尔热容C V ,m =10.46J ?mol -1?K -1,求(1) ΘD ; (2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值;(3) 作C V ,m 值? T 图形。 16、试根据Einstein 热容理论,证明Dulong-Petit 经验定律的正确性。 17、假设?H 及?S 与温度无关,试证明金属在熔点以上不可能发生凝固。 18、在25?C 、0.1MPa 下,金刚石和石墨的摩尔熵分别为 2.45J ?K -1?mol -1和 5.71J ?K -1?mol -1,其燃烧热分别为395.40J ?K -1?mol -1和393.51J ?K -1?mol -1,其密度分别为3.513g ?cm -3和2.26g ?cm -3,试求此时石墨→金刚石的相变驱动力。 19、已知纯钛α/β的平衡相变温度为882?C ,相变焓为14.65kJ ?mol -1,试求将βTi 冷却到800?C 时,β→α的相变驱动力。 20、除铁以外的所有纯金属的加热固态相变有由密排结构向疏排结构的转变的规 律,试用热力学解释这一规律。 21、空位在金属的扩散与相变中都发挥着重要的作用,试推算在平衡状态下,纯 金属中的空位浓度。

液固相变的热力学基础

液固相变的热力学基础- - 金属有液态转变为固态的过程称为凝固。由于凝固后的固态金属通常是晶体,所以讲这一转变过程称之为结晶。一般的金属制品都要经过熔炼和铸造,也就是说都要经历由液态转变为固态的相变过程。 1.1 凝固过程的宏观现象 1.1.1 过冷现象 金属在凝固之前,温度连续下降,当液态金属冷却到理论凝固温度T m时,并未开始凝固,而是需要继续冷却到T m之下的某一温度T n,液态金属才开始凝固。金属的实际温度T n与理论凝固温度T m之差,称为过冷度,以ΔT表示,ΔT=T m-T n。过冷度越大,则实际凝固温度越低。 过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大的范围内变化。今属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大。当以上两因素确定之后,过冷度的大小主要取决于冷却速度,冷却速度越大,则过冷度越大,即实际凝固温度越低。反之,冷却速度越慢则过冷度越小,实际凝固温度越接近理论凝固温度。但是,不管冷却速度多么缓慢,也不可能在理论凝固温度进行凝固。对于一定的金属来说,过冷度有一最小值,若过冷度小于此值,凝固过程就不能进行。 1.1.2 凝固潜热 一摩尔物质从一个相转变为另一个相时,伴随着放出或吸收的热量称为相变潜热。金属熔化时从固相转变为液相是要吸收热量,而凝固时从液相转变为固相则放出热量,前者称为熔化潜热,后者称为凝固潜热。当液态金属的温度到达凝固温度T n时,由于凝固潜热的释放,补偿了散失到周围环境的热量,所以冷却过程中出现了温度恒定的现象,温度恒定的这段时间就是凝固过程所需要的时间,凝固过程结束,凝固潜热释放完毕,温度才开始继续下降。 另外,在凝固过程中,如果释放的凝固潜热大于向周围环境散失的热量,温度将会上升,甚至发生已凝固的局部区域的重熔现象。因此,凝固潜热的石方和散失,是影响凝固过程的一个重要因素。 1.2 金属凝固的微观过程 凝固过程是如何进行的?它的微观过程怎样?多年来,人们致力于研究解决这些疑问,关于凝固过程的研究人们做了大量的工作,取得了很多卓有成效的研究结果。上个世纪20年代,有人研究了透明的易于观察的有机物的接近过程,结果发现,无论是非金属还是金属,在凝固时均遵循着相同的规律:凝固过程从其发生到结束是由两个过程构成,即起始晶核的形成和这些核心的长大。凝固时首先在液体中形成具有某一临界尺寸的晶核,然后这些晶核再不断凝聚液体中的原子

热力学相变

第二章 热力学基础 1) 热力学第零,第一,第二,第三定律的定义及其数学表达式 热力学第零定律:一切互为热平衡的物体具有相同的温度 热力学第一定律:能量从一种形式转化为其他形式时,其总量不变。表达式W q u -=? 热力学第二定律:一切自发过程都不可逆。 热力学第三定律:当温度接近0 K 时,任何凝聚系在任何压强下任何熵变都趋于零。表达式为0)(lim 0 =?→S T 2) 盖吕萨克定律和盖斯定律 盖吕萨克定律:恒压下,一定质量气体体积与热力学温度成正比。(原表述过繁琐P5)表达式摄氏表达为)15.2731(0t V V t +=,开氏表达为)15.273()15.27315.273(00T V t V V T =+= 盖斯定律:同一化学反应,热效应仅由初末状态决定。(即状态量改变仅由始末决定) 3) 理想气体状态方程 nRT PV = 4) 三种体系定义P10 开放体系:体系与环境有物质也有能量交换 封闭体系:体系与环境无物质却有能量交换 隔离体系:体系与环境无物质也无能量交换 5) 状态函数定义P11 体系性质一定时,其状态一定。表征这种一定状态的物理量称为状态函数。(温度、压力、体积、能量包括内能U 焓H 熵S 自由能A G 等)注:功W 和热Q 不是。 6) 强度性质和广度性质P11 强度性质:与体系总量无关的(温度、压强、磁场强度、密度等) 广度性质:与体系总量成正比(体积、面积、质量) 例子:将一杯水分成两杯:两杯水质量相加为原来的质量,所以质量是广度性质。显然密度是强度性质不可加。 以下个人理解: 单位广度性质就是强度性质:密度就是单位体积的质量。熵也是如此。 强度性质就是状态量 7) 熵、吉布斯自由能的定义和表达式 熵S :指的是体系的混乱的程度。是一种热力学几率。 定义式:ωln k S = 定义式T dq dS R =。R dq 为可逆过程的热变化 对于不可逆过程T dq T dq dS R >= 吉布斯自由能G :等温等压下做非体积功的能力。 定义式: TS H U -=

相变潜热测定方法探讨

相变潜热测定方法探讨 摘要:相变潜热是指物质在等温等压情况下,从一个相变化成另一个相所吸收或者放出的热量。研究物 质的性质以及开发储能材料时都需要对材料发生相变时的潜热进行测量。本文简要介绍了相变潜热的几种 测定方法。 关键词:潜热;相变;测量 Discussion on determination methods of latent heat Abstract: Latent heat of a substance is the quantity of heat absorbed or released when the substance changes from one phase to another phase under isothermal isobaric conditions. Properties of substances and materials are required for phase change latent heat measured at the time of the development of energy storage materials. This paper briefly describes several measurement methods of latent heat. Key words: latent heat; phase change; measurement 0引言 相变传热过程在各种工业过程和材料开发领域有着重要的应用。研究好相变的传热过程,测量出相变潜热的大小,对优化工业生产过程,开发优质储能材料有着极为重要的意义1756年英国化学家Joseph Black用32F冰与172F同等重量的水混合,得到平衡温度仍然为32F,而不是102F,这说明在冰溶解中,需要一些温度计所不能觉察的热量,进而发现各种物质在发生物态变化时都存在这种效应。Joseph Black将这种不表现为温度升高的热称为潜热。 若体系的热力学势是温度体积、压力这些变量的函数,如果在相变点,势力学函数本身是连续的,但是其一阶导数是不连续的,比如体积、熵有跃变,称为第一类相变。冰的熔化和水的汽化都是第一类的相变。如果一阶导数本身在相变点也是连续的,但二阶导数不连续,有跃变,就叫第二类相变。超导、超流、铁磁居里点等都属于第二类的相变。相变过程中单位质量的物质吸收或放出的热量叫物质的相变潜热。汽化热、融解热、升华热都是相变潜热。 1相变潜热测定方法 测定相变温度、相变潜热及比热的方法主要有三类:一般卡计法,差热分析法(DTA),差示扫描量热法(DSC)[1]。其中,一般卡计法[2]包含了参比温度曲线法,热线法,热针法等。除了以上几种测试方法之外,还有调制差示扫描量热法(MDSC)、瞬态平面热源法(Hot disk)、准稳态法等。 本文将主要介绍常用的几种测定相变潜热的技术:差热分析法,差示扫描量热法,电平衡加热法以及参比温度曲线法。

材料热力学考试习题

6、10个小球分配在4个完全相同的容积中,试求4个小容积中各分 得3、2、0、5个小球的微观状态数为多少? 7、由5个粒子所组成的体系,其能级分别为0、ε、2ε及3ε,体系的 总能量为3ε。试分析5个粒子可能出现的分布方式;求出各种分布方式的微观状态数及总微观状态数。 8、有6个可别粒子,分布在4个不同的能级上(ε、2ε、3ε及4ε),总 能量为10ε,各能级的简并度分别为2、2、2、1,计算各类分布的Ωj及Ω总。 9、振动频率为ν的双原子分子的简谐振动服从量子化的能级规律。有 N个分子组成玻耳兹曼分布的体系。求在温度T时,最低能级上分子数的计算式。 10、气体N2的转动惯量I =1.394?10-46kg?m2,计算300K时的q J。 11、已知NO分子的Θυ=2696K,试求300K时的qυ。 12、已知下列各双原子分子在基态时的平均核间距r0及振动波数ν~如 下: 计算各分子的转动惯量、ΘJ及Θυ。 13、计算300K时,1molHI振动时对内能和熵的贡献。

14、在298K 及101.3kPa 条件下,1molN 2的q t 等于多少? 15、在300K 时,计算CO 按转动能级的分布,并画出分子在转动能 级间的分布曲线。 16、计算H 2及CO 在1000K 时按振动能级的分布,并画出分子在振 动能间的分布曲线;再求出分子占基态振动能级的几率。 17、已知HCl 在基态时的平均核间距为 1.264?10-10m ,振动波数 ν~=2990m -1 。计算298K 时的Θm S 。 18、证明1mol 理想气体在101.3kPa 压力下 q t =bLM 3/2(T /K )5/2 (b 为常数) 19、计算1molO 2在25?C 及101.3kPa 条件下的Θm G 、Θm S 及Θm H 。设Θ0U 等于零。 20、已知300K 时金刚石的定容摩尔热容C V ,m =5.65J ?mol -1?K -1,求ΘE 及ν。 21.已知300K 时硼的定容摩尔热容C V ,m =10.46J ?mol -1?K -1,求(1) ΘD ; (2) 温度分别为30K 、50K 、100K 、700K 、1000K 时的C V ,m 值; (3) 作C V ,m 值? T 图形。 22、试根据Einstein 热容理论,证明Dulong-Petit 经验定律的正确性。 23、假设?H 及?S 与温度无关,试证明金属在熔点以上不可能发生凝 固。 24、在25?C 、0.1MPa 下,金刚石和石墨的摩尔熵分别为2.45J ?K -1?mol -1 和 5.71J ?K -1?mol -1,其燃烧热分别为395.40J ?K -1?mol -1和393.51J ?K -1?mol -1,其密度分别为3.513g ?cm -3和2.26g ?cm -3,试求

材料热力学与固态相变研究生试题-20151117

西南交通大学研究生2015 -2016 学年第(I)学期考试试卷 课程代码 60933002 课程名称 材料热力学与固态相变 考试时间 90 分钟 阅卷教师签字: 材料热力学部分 一、 基本概念题(请按照热力学理论对下列概念(对)进行阐述)(30分,每题10分) 1、 吉布斯自由焓与熵 2、 状态与状态函数 3、 亨利定律与规则溶液 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

二、 简答题(25分) 1、 如何正确理解热力学封闭体系。(10分) 2、 1mol 某单质,其熔点为400K ,熔化热ΔH m 为600KJ/mol ,试求其在恒定350K 下结晶时的热焓变化ΔH 、自由焓变化ΔG ,以及熵的变化ΔS 。并依据热力学定律说明这一转变是否是自发的转变?(已知该物质液固两相的恒压热容差为ΔC p = C l p -C S p =10J/(mol.K))(15分) 附:吉布斯.亥姆霍兹(Gibbs-Helmholtz )方程: Kirchhoff 方程: dT T H T G d T T 2θ θ ?-=??? ? ? ??dT C H d p T ?=?θ

三、 综合分析计算题(45分) (5分) 附录: dT C H d p T ?=?θ

2、单相体系热力学计算(误差在±50K以内15分,±5K以内 18分,±0.5K以内21分,±,0.05K以内24分)(要求列出详细计算过程) 某固体的蒸气压随温度的变化关系为: lgp(atm)=(-6750/T)-0.93 lgT + 9.0 求:在一个大气压下该固态金属的升华点。

材料热力学知识点

1. 简述熵判据、亥姆赫兹函数判据和吉布斯函数判据的内容及使用条件: ①对于孤立系统:(△S )u,v,w ’:>0自发 =0可逆 <0自阻不自发 ②非孤立系统:△S 总=△S 系+△S 环:>0自发 =0可逆 <0自阻不自发 ③亥姆霍兹自由能(F ) dF ≤w ’ 在恒温容器不做其他功的情况下△F :<0自发 =0可逆(平衡) >0自阻不自发 ④吉布斯自由能(G )dG ≤w ’在恒温恒压下不做其他功的情况下△G :<0自发 =0可逆(平衡) >0自阻不自发 5. 说明为什么纯金属(纯铁材料除外)加热的固态相变是由密排结构到疏排结 构的相变: dH=TdS+VdP →(?H/?V )T =(?S/?V )T +V (?P/?V )T Maxwell 方程(?S/?V )T =(?P/?V )T 体积不变,温度升高导致压力升高(?P/?T )V >0 →(?S/?V )T >0 在温度 一定时,熵随体积而增大,即:对于同一金属,在温度相同是,疏排结构的熵大于密排结构。 (?H/?V )T >0温度一定时,焓随体积而增大,即:对于同一金属,在温度相 同是,疏排结构的焓大于密排结构。G=H-TS 在低温时,TS 项对G 的贡献小,G 主要取决于H 项,H 疏排>H 密排,G 疏排>G 密排,低温下密排相是稳定相;在高温下,TS 项对G 的贡献很大,G 主要取决于TS 项,S 疏排>S 密排,G 疏排<G 密排,高温下疏排相是稳定相。 6. 说明为什么固相与气相或液相之间平衡时,相平衡温度T 与压力P 之间的关系 是指数关系;而固相与液相之间平衡时,相平衡温度T 与压力P 之间的关系是直线关系: ①由dT/dP=△V/△S 对于凝聚态之间的相平衡(L →S )dT/dP=△αβVm/△αβSm 压力改变不大时,△S 和△T 的改变很小,可以认为dT/dP=C P ∝T 为直线关系;②有一相为气相的两相平衡dP/dT=△vapH/T △vapV ,蒸发平衡,升华平衡的共同特点是其中有一相为气相,压力改变时△V 变化很大。 △vapVm=Vm(g) 得dP/dT=△vapHmP/RT 2→dlnP/dT=△vapHm/RT 2→P=Aexp(-Hm/ RT 2) L(s) ←→G 相平衡溫度T 和压力之间的关系为指数关系。 10.化学势:保持温度,压力和除i 以外其他组元的量不变的情况下,在溶液中改变1摩尔i 引起溶液Gibbs 自由能的变化,μi =(?G/?ni)T,P,n ξ≠ni Gm-X 图中化学位的确定:在摩尔自由能曲线(Gm-X 图)上,过成分点的切线与两纵轴的交点为两个组元A 和B 的化学势。 11.活度:既能克服化学势的缺点,又能保存化学势的基本特征.定义式:μi =0G i +RTlna i ai 为组元i 的活度 a i =x i ·f i f i 为活度系数 表示实际溶液 与理想溶液的偏差。f i =exp(1-x i )2I AB /RT 9.试简述两相平衡条件的热力学条件、意义,对于两种或者两种以上物相存在的二元体系吉布斯自由能-组分关系图中如何确定相平衡条件和范围,以及上述方法的热力学原理; 两相平衡的热力学条件:每个组元在各相中的化学位相等,u i α=u i β

材料热力学知识点

材料热力学知识点 第一章单组元材料热力学名词解释:1 可逆过程 2 Gibbs 自能最小判据 3 空位激活能 4 自发磁化:5 熵: 6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题 1 根据材

料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变自能与温度的关系曲线。计算题1已知纯钛α/β的平衡相变温度为882OC,相变焓为4142J?mol-1,试求将β-Ti过冷到800OC时,β→α的相变驱动力2若某金属形成空位的激活能为?mol-1,试求在700OC下,该金属的空位浓度。3纯Bi在压力下的熔点为544K。增加压力时,其熔点以/10000K?MPa-1的速率下降。另外已知融化潜热为?g-1,试求熔点下液、固两相的摩尔体积差。混合在一起后,既没有热效应也没有体积效应时所形成的溶体。混合物:结构不同的相或结构相同而成分不同的相构成的体系化合物:两种或两种以上原子组成的具有特定结构的新相溶解度:溶体

4 热力学基础

第四章 热力学基础 习 题 一、单选题 1、一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同体积的终态,在绝热过程中的压强0p ?与等温过程中的压强T p ?的关系为 ( ) A. T p p ??0 C. T p p ?=?0 D. 无法确定 2、系统的状态改变了,其内能值则 ( ) A. 必定改变 B. 必定不变 C. 不一定改变 D. 状态与内能无关 3、将20g 的氦气(理想气体,且R C 2 3 V =)在不与外界交换热量情况下,从17℃升至27℃,则气体系统内能的变化与外界对系统作的功为 ( ) A. J 1023.62 ?=?E ,J 1023.62 ?=A B. J 1023.62 ?=?E ,J 1023.63 ?=A C. J 1023.62 ?=?E , 0=A D. 无法确定 4、将温度为300 K ,压强为105 Pa 的氮气分别进行绝热压缩与等温压缩,使其容积变为原来的1/5。则绝热压缩与等温压缩后的压强和温度的关系分别为 ( ) A. 等温绝热P P >, 等温绝热T T > B. 等温绝热P P <, 等温绝热T T > C. 等温绝热P P <, 等温绝热T T > D. 等温绝热P P >, 等温绝热T T < 5、质量为m 的物体在温度为T 时发生相变过程(设该物质的相变潜热为λ),则熵变为 ( ) A. T m S λ =? B.,T m S λ > ? C. T m S λ < ?, D. 0=?S , 6、质量一定的理想气体,从相同状态出发,分别经历不同的过程,使其体积增加一倍,然后又回到初态,则 ( ) A. 内能最大 B. 内能最小 C. 内能不变 D. 无法确定 7、一定量的理想气体,经历某一过程后,温度升高了。则根据热力学定律可以断定为:(1)该理想气体系统在此过程中吸热;(2)在此过程中外界对该理想气体系统作正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统从外界吸热,又对外作正功。以上正确的断言是( ) A. (1)、(3) B. (2)、(3) C.(3) D. (3)、(4)

相变热力学

第五章 相变热力学 相 变: 在均匀单相内, 或在几个混合相中,出现了不同成分或不同结构(包括原子、离子或电子位置位向的改变)、不同组织形态或不同性质的相。 6.1 相变分类 6.1.1 按热力学分类: 相变的热力学分类是按温度和压力对自由焓的偏导函数在相变点(T o ,P o )的数学特征——连续或非连续,将相变分为一级相变、二级相变或更高级的相变。 当温度升降到临界点T 0时,将发生α?β相变。如果外界条件使这一转变成为一个似静 过程,则两相的自由焓及化学位均相等,即: μα=μβ,G α= G β 相变时的化学位的n 阶偏导数不等,n-1阶偏导相等,则称为n 级相变 1) 一级相变(First-order phase transformations ): 将化学位的一阶偏微分在相变过程中发生突变的相变称为一级相变。 i i T T P P αβμμ??????≠ ? ??????? ,i i P P T T αβμμ??????≠ ? ??????? 其中 T V P μ???= ????,P S T μ??? = ????; 表现:体积和熵(焓)的突变,即 V V αβ≠,S S αβ≠,金属中大多数相变为一级相变。(测相变点往往通过热膨胀实验。)

2)二级相变(Second order phase transitions): 在相变过程中,化学势的一阶偏微分相同,二阶偏微分在相变过程中发生突变的相变称为二级相变。▲二级相变中,定压热容Cp、膨胀系数α与压缩系数β发生突变。

属于二级相变的有: (a )铁磁-顺磁转变 (Ferromagnetic-paramagnetic transition):Fe 、Ni 、Co 及其合金,各种铁氧体,Mn-Al 合物,稀土-过渡族元素化合物等 (b )反铁磁(Anti-ferromagnetic)-顺磁转变:Fe 、Mn 、Cr 及部分稀土元素等 (c )超导-常导转变 (Superconduct-generally conduct transition):In 、Sn 、Ta 、V 、Pb 、Nb 等纯金属和Nb-Ti 、Nb-Zr 、V 3 Ga 、Nb 3 Sn 、Nb 3 AlGe 、Nb 3 Ge 等金属 间化合物以及Y-Ba-Cu-O 等氧化物超导体等; (d )合金中有序-无序的转变:Au-Cu 、Ti-AI 、AI-Mn 、Cr-AI 、Cu-Zn 、Cu-Pd 、Cu-Pt 、Fe-Co 、Fe-AI 、Fe-Si 、Fe-Ni 、Fe-Pt 、Ni-V 等合金系。 T 0 在二级相变中热容的变化 C

相关文档
最新文档