纯电动汽车新技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生课程考核论文
(适用于课程论文、提交报告)
科目:发动机现代技术概论教师:周恩序
姓名:尤敏学号:20140713221 专业:车辆工程领域类别:(专业硕士)上课时间:2014 年9 月至2014 年11 月
考生成绩:
卷面成绩平时成绩课程综合成绩
阅卷评语:
阅卷教师(签名)
重庆大学研究生院制
电动汽车轮毂电机技术
【摘要】随着社会的快速发展,汽车领域所面临的能源紧缺和环境污染两大问题受到了高度重视,电动汽车的开发和应用已经成为研究热点。由于布局更为灵活,不需要复杂的机械传动系统,轮毂电机越来越受到人们的关注。再生制动系统在电动汽车的能量利用和续航里程等方面有着重要的作用,是电动汽车领域的一项关键的节能技术,再生制动系统的研究对电动汽车的应用有着重要的意义。超级电容可以进行短时大电流充放电,而且充放电循环次数可达上万次,故能很好的解决电动汽车制动能量回收的问题。
【关键词】电动汽车;轮毂电机;再生制动;超级电容
1.研究背景
随着石油等不可再生资源的日渐减少,大气环境越来越差,电动汽车以其低污染、低能耗等优势为各个国家及各大汽车厂商所青睐。然而电动汽车现在主要面临的问题有:续驶里程短、充电时间长等。所以动力电池技术、驱动电机技术和电子控制系统技术为电动汽车目前面临的主要技术问题。轮毂电机驱动电动汽车以其结构简单、能量利用率高等优点成为汽车发展的新宠儿。汽车在制动过程中车辆的动能一直没有被很好的利用,大都被转换为热量耗散掉了。特别是在市区等复杂的城市工况下,红绿灯较多,车速较低,制动频繁,制动能量回收的意义显得尤为明显。目前车辆的制动能量回收技术主要有飞轮储能制动能量回收、液压储能制动能量回收和电化学能储能制动能量回收等。而电化学储能制动能量回收因为其能量主要以电能的形式流动,构造简单,控制方便,具有很好的发展前途。电动汽车中的蓄电池与驱动电机结构为电化学储能制动能量回收提供了方便。超级电容作为一种全新的储能元件的出现,具有十分重要的意义。超级电容有着蓄电池所不具备的优点。超级电容的充放电速率要比电池快的多,功率密度要比蓄电池大得多。利用超级电容可以迅速的回收制动过程中产生的能量。
2.轮毂电机技术
轮毂电机驱动电动汽车因为独特的特点,越来越受到人们的关注,许多汽车企业已经将其列为公司发展规划当中。由此可见,轮毂电机技术正逐步被人们所重视。有人预言:未来电动汽车的发展趋势将是轮毂电机直接驱动汽车。这主要是因为轮毂电机直接驱动技术有着以下的优点:
1) 传动效率高是轮毂电机驱动技术最大的技术优势:普通的内燃机驱动汽车,在市区路况时,平均能量利用率仅为20%,而轮毂电机直接驱动技术可使能量利用率达到90%。轮毂电机没有传统的变速器、轴或齿轮,直接将转子与车轮安装在一起。这样既提升了性能,也让电动机更为紧凑,便于安装在汽车上,同时腾出了更多内部空间用于配置动力电子设备,如集成式逆变器、电子控制系统和软件。图2.1为轮毂电机结构。
图2.1 轮毂电机结构
2) 轮毂电机驱动技术结构简单,车内空间得到提升。轮毂电机驱动车辆与传统汽车相比,取消了发动机、离合器、变速器、主减速器、传动轴等机械装置,底盘结构得到简化的同时,车内空间得到明显改善。而且轮毂电机驱动汽车各组成模块之间主要由线束连接,省去了传统的机械连接,可以更好的布置动力电池及车内其他设备。
3) 轮毂电机驱动技术使车辆的行驶稳定性得以提高。对于ABS防抱死系统等底盘控制系统,轮毂电机驱动技术可以通过单独控制不同的车轮转速来实现这些功能。与传统车相比,控制系统的复杂程度得以简化,还提高了响应速度和精度,传统车延迟50-100毫秒,而轮毂电机最快响应时间0.5 毫秒。轮毂电机驱动汽车操纵稳定性更高。
4) 动力驱动系统布置更加多样化。由于轮毂电机具备单个车轮独立驱动的特性,因此无论是前驱、后驱还是四驱形式,它都可以比较轻松地实现,全时四驱在轮毂电机驱动的车辆上实现起来非常容易。同时轮毂电机可以通过左右车轮的不同转速甚至反转实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向(不过此时对车辆转向机构和轮胎的磨损较大),对于特种车辆很有价值。像图2.2所示的AHED“先进混合电驱动”样车的8轮电驱动很轻松就能实现。
图2.2 AHED“先进混合电驱动”
5) 轮毂电机驱动汽车能更合理的分配轴荷。轮毂电机驱动汽车取消了质量较大的动力总成,只要合理的布置动力电池,就很容易实现前后轴荷50:50,降低了新产品的开发难度。
6) 轮毂电机驱动车辆的制动能量回收效率更高。轮毂电机驱动汽车,车轮的转速与电机转子的转速一致,在制动时,轮毂电机发电,直接将电能回收,与传统汽车相比,去了机械传动部分,使制动能量回收效率得到提高。
7) 轮毂电机驱动汽车使整车噪声得以降低。轮毂电机的噪声与传统汽车动力总成的噪声相比,减小10-15分贝。轮毂电机驱动汽车的驾驶舒适性更好。
8) 轮毂电机驱动汽车也使线性控制技术更加容易实现,采用轮毂电机可以匹配
包括纯电动、混合动力和燃料电池电动车等多种新能源车型,如图2.3所示。
图2.3 轮毂电机匹配多种新能源车型
3.再生制动技术
车辆的制动形式主要包括液压制动、气压制动、气压液压混合制动和机械制动等。这些制动方式的原理是相同的,都是通过摩擦的方式将汽车行驶过程中的动能转变为热能消耗掉,使车辆减速或者停止,通过这些制动装置制动时,会有一些缺点:
1) 在复杂路况中,车辆常常会出现频繁制动或长时间制动,这会导致制动器表面产生大量的热量,使摩擦表面温度升高,制动效果会明显减弱甚至不起作用,对整车安全性造成很大的影响。
2) 制动过程中,车辆行驶所具有的动能被转换为热量耗散掉,增加了车辆行驶中的能量损失,使汽车的能量利用率降低。如果车辆在制动过程中采用制动能量回收技术,汽车的电能消耗可以得到较为明显的改善,同时制动器热负荷能够减小,磨损度也会下降,因此车辆的安全性得到提高。车辆在制动过程中的动能,到目前为止还没有很好的被回收,通常会转换为热能或其他形式的能量消耗掉。制动过程中所耗散的能量在车辆总的动能中占有很大的比重,这部分能量有很大的开发潜能。为了解决这一问题,再生制动技术逐渐发展起来,并成为了研究热点。
再生制动又称再生回馈制动,电动汽车在制动时,将汽车行驶的动能或势能通过传动系统传递给发电机,然后将其转换成电能,为动力电池充电,以实现制动能