基于模糊神经网络的红外图像边缘提取算法

基于模糊神经网络的红外图像边缘提取算法
基于模糊神经网络的红外图像边缘提取算法

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

红外图像的处理及其MATLAB实现

红外图像的处理及其MATLAB 函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 图1.1 输入的红外图像

1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f 1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示:

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

实验三 图像的边缘检测

实验三图像的边缘检测 一、实验目的与要求 1、了解图像边缘提取的基本概念; 2、了解进行边缘提取的基本方法; 3、编程实现对所给图像的边缘进行提取。 二、知识点 1、边缘检测的思想和原理 图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导,差分公式参考相关教材。 2、常用的梯度算子 (1)Roberts Cross算子,它的2个2 X2模板如图3所示。 图3 Robert Cross算子模板 (2)Prewitt 算子,它的2个3×3模板如图4所示。 图4 Prewitt算子模板 (3)Sobel 算子,它的2个3×3模板如图5所示。 图3 Sobel算子模板 3、高斯拉普拉斯(LoG)算法 高斯拉普拉斯(LoG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度

图像边缘检测及提取,分水岭算法

1.几种算子图像边缘提取: 程序代码如下: 运行结果: 原图为一堆苹果(彩图),各算子处理后的边缘提取图:

分水岭算法实现: a.直接对图像进行分水岭算法处理 代码如下:(原图还是上题一堆苹果) 运行结果如右图: 很明显,属于过度分割了。下面有改进算法: b.改进算法代码如下: 实现包括下列步骤: (1)读图像。读入图像 (2)对比度最大化。注意到图像中有许多彼此连通的 不同大小的对象。为使通过watershed变换找到的低 谷数目最小,我们使感兴趣的对象的对比度达到最 大。对比度增强的一个常用的技术是综合应用top— hat和bottom—hat变换。 top—hat变换定义为原图像和它的开之差。图像的 开是一与特定结构元素匹配的图像前景部分的集合。 bottom—hat变换定义为在原图像和它的闭之间的 差。图像的闭是一与特定结构元素匹配的图像背景 的集合。 通用的结构元素是正方形,长方形,圆盘,菱 形,球和线。既然图像中我们感兴趣的目标对象看 起来像圆盘,我们用strel函数建立一个半径为15个 像素的圆盘形结构元素。这个圆盘尺度是图像中的 目标对象的平均半径的一个估计。 (3)图像相加减。为使目标对象与分隔它们的间隙之 间的对比达到最大,用“原图top—hat图像+bottom —hat图像”得到增强的结果图。 ( 4)转换感兴趣的对象。调用watershed变换找出图像 的亮度”低谷”,把imcomplement作用 增强过的图像上,将感兴趣的目标对象转换为亮度低谷,得到增强图的补图。 (5)检测亮度低谷。对所得补图运用imextendedmin函数检测低于某特别阈值的所有亮度低谷。

模糊神经网络的预测算法在嘉陵江水质评测中的应用

题目:模糊神经网络的预测算法在嘉陵江水质评测中的应用 院(系):物联网工程学院 专业: 计算机科学与技术 班级:计科0802 姓名:刘伟 学号: 0304080230 设计时间: 10-11 学年 2 学期 2011年5月

一、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 二、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j 分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 三、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘公式计算得到ω。输出层采用公式计算模糊神经网络的输出。 四、嘉陵江水质评测 水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。 水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项

一种新的红外热像仪图像边缘检测方法

收稿日期:2013-04-05;修订日期:2013-05-18 基金项目:中央高校基本科研业务费专项资金(2010YD03) 作者简介:夏清(1987-),女,博士生,主要从事红外图像处理、摄影测量与遥感研究。Email:xiaqingfriendxia@https://www.360docs.net/doc/f88871148.html, 导师简介:胡振琪(1963-),男,博士生导师,主要从事遥感监测、3S 技术与土地复垦等方面研究。Email:huzqbj@yahoo.一种新的红外热像仪图像边缘检测方法 夏清,胡振琪,位蓓蕾,王亚云,陈超 (中国矿业大学(北京)土地复垦与生态重建研究所,北京100083) 摘要:针对红外热像仪采集的红外影像边缘信息模糊、影像存在噪声、边缘信息难提取的特点,提出了一种基于数学形态学对LOG 算子改进和Roberts 算子数据相结合的边缘检测新方法。该方法首先引进形态学中的开闭运算对具有随机噪声的红外影像进行滤波,接着运用拉普拉斯算法边缘检测,然后再采用Roberts 算子提取边缘信息,建立相应的融合规则及阈值条件,将两种方法检测出的影像边缘信息融合,得到最终的融合影像。最后,对增加椒盐噪声的影像用MATLAB 进行仿真实验,结果表明,该方法结合了两种检测算子的优点,定位精度高,有很强的抗噪性,获得了比较理想的检测效果。关键词:影像处理;边缘检测;数学形态学;LOG 算子;红外影像中图分类号:TP751.1文献标志码:A 文章编号:1007-2276(2014)01-0318-05 New edge detection method for images of infrared thermal imager Xia Qing,Hu Zhenqi,Wei Beilei,Wang Yayun,Chen Chao (Institute of Land Reclamation and Ecological Reconstruction,China University of Mining and Technology(Beijing), Beijing 100083,China) Abstract:According to the character of fuzzy image edge,noise image,difficult to extract the edge information collected by infrared thermal imager,a new edge detection method was proposed.The method combined LOG operator improved by mathematical morphology with Roberts operator.First the thermal infrared camera images with random noise was filtered using opening and closing operation of mathematical morphological.Then the Laplace algorithm was used for edge detection of thermal infrared images.Second,Roberts operator was introduced to extract edge information.Fusing edge information of images detected by two methods,at the same time,establishing corresponding fusion rule and the threshold condition were applied for this images,the final fused image was obtained.Finally,MATLAB was introduced to perform the experimental simulation for adding salt and pepper noise image.The experimental results show that the method has the advantages of two detection operators and has a good effect in noise suppression and positioning accuracy.Meanwhile the proposed algorithm is insensitive to noise and ideal detection results are obtained. Key words:image processing; edge detection;mathematical morphology;the improved LOG operator;infrared image 第43卷第1期 红外与激光工程2014年1月Vol.43No.1Infrared and Laser Engineering Jan .2014

基于Matlab的图像边缘检测算法的实现及应用

目录 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1 课程设计选题的背景及意义 (3) 1.2 图像边缘检测的发展现状 (4) 第二章边缘检测的基本原理 (5) 2.1 基于一阶导数的边缘检测 (8) 2.2 基于二阶导的边缘检测 (9) 第三章边缘检测算子 (10) 3.1 Canny算子 (10) 3.2 Roberts梯度算子 (11) 3.3 Prewitt算子 (12) 3.4 Sobel算子 (13) 3.5 Log算子 (14) 第四章MATLAB简介 (15) 4.1 基本功能 (15) 4.2 应用领域 (16) 第五章编程和调试 (17) 5.1 edge函数 (17) 5.2 边缘检测的编程实现 (17) 第六章总结与体会 (20) 参考文献 (21)

摘要 边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。 边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。 关键词:边缘检测;图像处理;MATLAB仿真

引言 边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。 本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作,我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较

数字图像处理实验报告_图像边缘检测和特征提取

华南师范大学实验报告 一、实验目的 1、.掌握边缘检测的Matlab实现方法 2、了解Matlab区域操作函数的使用方法 3、了解图像分析和理解的基本方法 4、了解纹理特征提取的matlab实现方法 二、实验平台 计算机和Matlab软件环境 三、实验内容 1、图像边缘检测 2、图像纹理特征提取 四、实验原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,它研究的是为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。 导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 f x ? ? 与 f y ? ? 是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率, 而方向α上的灰度变化率可以用下面式子计算:

模糊神经网络综述

1.模糊神经网络的提出 模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的,而不是竞争的。在协作体中,各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。 2.模糊神经网络的研究进展 模糊神经网络的发展经历了一个漫长的过程。MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。此后,人们对模糊神经网络研究得很少。直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。 (1)引入模糊运算的神经网络———狭义模糊神经网络 狭义模糊神经网络通过调整参数进行学习。其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。(2)用模糊逻辑增强网络功能的神经网络 这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。 (3)基于神经网络的模糊系统—神经模糊系统 于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。这类模糊神经网络按照模糊逻辑的运算步骤分层构造,不改变模糊系统的基本功能(如模糊化、模糊推理和解模糊化)。 3.糊神经网络的应用 在基于模糊神经网络的控制器方面,Berenji和Khedker(1992)采用增强式学习方法提出了GARIC控制器结构,该系统通过三个神经网络完成了控制的功能:ASN进行普通模糊控制,AEN评价控制效果,SAM随机综合ASN和AEN的过程,然后产生控制信号;Lin和Lee(1994)提出了一种自动构造模糊系统的方法,该方

第8章 模糊神经网络方法

第八章 模糊神经网络算法 火灾火情决策是一个复杂的过程,它包括接收输入信号,与已知信息和经验进行比较,对输入信号作出判决,并给出正常、火警或故障信号。通常火灾自动报警系统的决策系统是很简单,它根据单个传感器送来信息作出是否发生火灾的判决。例如,当感烟探测器探测到的粒子数达到预定阈值,就发出火警信号。这些粒子可能是烟雾粒子,也可能是水雾或灰尘等非火灾产生的粒子,普通感烟探测器无法区分烟雾粒子,还是水雾和灰尘粒子,这就导致误报的发生。 经过长期的研究发现,火灾的发生具有双重性,既有它的随机性一面,又有它的确定性一面。人们并不能确切的知道何时发生火灾,但是当具备了发生火灾的条件,就会发生火灾,出现表征火灾的火灾参量。如果同时测量这些火灾参量,对信号进行综合分析处理,那么,火灾的误报率便大大降低。然而火灾的复杂性还在于相同的材料在不同的环境下,具有不同的着火温度,相同的环境不同的材料,着火条件也不一样,人类的活动以及环境的变化事先也无法确定,所以实际的火灾参量是随着空间和时间的变化而变化,很难用建立一种或几种数学模型进行精确描述。因此,火灾探测信号检测是一种十分困难的信号检测,它要求信号处理算法能够适应各种环境条件的变化,自动调整参数以达到既能快速探测火灾,又有很低的误报率。 而神经网络与模糊系统都属于一种数值化的和非数学模型的函数估计和动力学系统。它们都能以一种不精确的方式处理不精确的信息。因而它在火灾探测领域具有美好的应用前景。 第一节 模糊逻辑与模糊计算 一、模糊集合及其运算规则 (一) 模糊集合与隶属度 人们往往把讨论的议题限制在某个相关的范围内,例如讨论火灾问题,不会去谈论如何打乒乓球,讨论的范围称为“论域”。用大写字母U 、V 、X 、Y 表示。论域中的每个对象称为“元素”,用小写字母u 、v 、x 、y 表示。具有某些特定属性的元素的全体称为U 上的一个“集合”,常用大写字母A 、B……表示。 普通集合概念是论域中的任一元素,要么属于某个集合,要么不属于该集合,不允许有含混不清的说法,例如乒乓开关不是接通,就是断开。但是在现实生活中,却充满了模糊事物和模糊概念,例如“瘦子”集合,“少年”集合,“温度低”集合等等,其边界都是不明确的。将这类边界不明确的集合称为模糊集合,这里用A 表示一个模糊集合。 给定论域U 上的一个模糊集合A ,是指对于任意x U ∈都确定一个数A (x)μ , 0≤ A (x)μ ≤1,它表示x 对~ A 的隶属程度。 A A=((x)|x) , x U μ?∈ A (x )[0,1] μ∈

灰度图像边缘提取方法综述

内蒙古科技大学 本科毕业论文 题目:灰度图像边缘提取方法综述学生姓名: 学院:物理科学与技术学院 专业:应用物理学 学号:0809810054 班级:08级 指导教师: 二〇一二年 4 月

摘要 本文先介绍了一般边缘检测的步骤和灰度图像形态学的主要操作。着重讨论基于细胞神经网络的一般灰度图像的边缘提取和图像分割。先陈述了几种传统算法,并比较了各算法的优劣。通过例举介绍CNN 基本知识,详细描述了用CNN 提取图像边缘的过程,给出算法流程,阐述算法实现中的关键步骤。对二值图像和灰度图像,分别采用基于CNN 的算法和传统算子(prewitt、sobel、canny)进行边缘提取,给出提取效果图,定性比较两类算法在性能上的优劣。来直接的了解灰度图像边缘提取的方法。 关键字:灰度图像,边缘提取,分割,CNN算法,传统算子

Abstract This paper first introduces the general steps of gray image edge detection and morphology of the main operation. Focuses on the cellular neural network based general gray image edge extracting and image segmentation. Through the examples of introduction of basic knowledge of CNN, a detailed description of the CNN image edge extraction process, the algorithm process, the key step in the algorithm implementation. On two value image and the gray scale image, which are based on CNN algorithm and the traditional operator ( Prewitt, Sobel, canny ) edge extraction, given the extraction effect chart, qualitative comparison of two algorithms in performance on the quality of. To direct understanding of gray image edge extraction method. Keywords: image, edge detection, segmentation, CNN algorithm, the traditional operator

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

图像边缘提取方法及展望

1引言 图像最基本的特征是边缘,边缘是图像性区域和另一个属性区域的交接处,是区域属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。因此,图像的边缘提取在计算机视觉系统的初级处理中具有关键作用,但目前仍是“瓶颈”问题。 边缘检测技术对于数字图像是非常重要的,提取出边缘才能将目标和背景区分开来。现有的图像边缘提取方法可以分为三大类:一类是基于某种固定的局部运算方法,如:微分法,拟合法等,它们属于经典的边缘提取方法;第二类则是以能量最小化为准则的全局提取方法,其特征是运用严格的数学方法对此问题进行分析,给出一维值代价函数作为最优提取依据,从全局最优的观点提取边缘,如松驰法,神经网络分析法等;第三类是以小波变换、数学形态学、分形理论等近年来发展起来的高新技术为代表的图像边缘提取方法,尤其是基于多尺度特性的小波变换提取图像边缘的方法是目前研究较多的课题。该文将较为详细地对各种图像边缘提取算法的原理进行阐述,对几种最常用的图像边缘提取算法给出实验结果,并进行结果对比与分析。 2经典的图像边缘提取方法 2.1微分算子法 边缘的检测可借助空域微分算子通过卷积完成,导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 !f !x 与 !f !y 是最简单的导数算子,一个连续函数f(x,y)在位置(x,y)处方向导数的最大值是I G I=( !f !x )2+(!f !y )2 [I12,称为梯度模,相应地,取得最大值的方向为"=tan-1 !f !y !f !x T I I L T I I J 。 利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。在实际中,对于一幅数字图像采用了梯度模的近似形式,如常用的罗伯特交叉算子(Roberts Cross)和索贝尔算子(SobeI)的表达式分别为: Roberts算子表达式为: \G\=maX(I f(i,J)-f(i+1,J+1)I,I f(i+1,J)-f(i,J+1)I) SobeI算子表达式为: 121 000 -1-2- T I I L T I I J 1 10-1 20-2 10- T I I L T I I J 1 x方向卷积核y方向卷积核 图像边缘提取方法及展望 季虎孙即祥邵晓芳毛玲 (国防科技大学电子科学与工程学院,长沙410073) E-maiI:Iove63901@https://www.360docs.net/doc/f88871148.html, 摘要该文对现有代表性的各种图像边缘提取方法进行了介绍,对比、分析了各自的优缺点,重点对以小波变换为代表的现代信号处理技术提取图像边缘的方法进行了分析和阐述,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一幅标准测试图像Lena进行边缘提取的实验结果。最后,对图像边缘提取技术所面临的问题和发展方向阐述了自己的观点。 关键词边缘提取小波变换多尺度分析图像边缘检测 文章编号1002-8331-(2004)14-0070-04文献标识码a中图分类号TP391 The Algorithm for Image Edge Detection and Prospect Ji Hu Sun Jixiang Shao Xiaofang Mao Ling (SchooI of EIectronic and Engineering,NationaI University of Defense TechnoIogy,Changsha410073)Abstract:The representative aIgorithms in these days for image edge detection have been presented in this paper.after contrasting and anaIyzing the advantages and the disadvantages of every aIgorithm,we pIace an emphasis on anaIyzing and iIIuminating waveIet transform,which is one of the modern signaI processing technigues for image edge detection.in order to have a much cIearer Iook at the effect of every aIgorithm,we give the resuIts of the eXperiments in which the common aIgorithms are used to detect image edge of the same standard testing image Lena.at Iast,we bring forward our viewpoint about the probIems the image edge detection technoIogy is facing and where is its deveIopmentaI direction. Keywords:edge detection,waveIet transform,muItiscaIe anaIysis,image edge detection 作者简介:季虎(1972-),男,工程师,博士研究生,主要研究方向为计算机视觉、图像处理、模式识别。孙即祥(1946-),男,教授,博士生导师,现已出版专著三部,并正在撰写另外一部专著,已发表论文十数篇。主要感兴趣的研究方向为计算机视觉、图像处理、模式识别等。 70 2004.14计算机工程与应用

相关文档
最新文档