同步辐射科普.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步辐射及其应用

一、同步辐射

世间万物都是由原子组成的,而原子是由原子核和核外电子构成的。原子核带正电荷,核外电子带负电荷,并且正电荷和负电荷的数值相等,因此原子是呈中性的。原子中的电子以很快的速度绕原子核旋转,如同行星绕太阳运动一样。原子的尺寸是很小的,只有一亿分之一厘米;原子核的尺寸更小,只有十万亿分之一厘米,但原子的绝大部分质量都集中在原子核中。

原子的激发会产生光。红外光、可见光、紫外光,是原子的外层电子受到激发后产生的;X 光是原子的内层电子受到激发后产生的;伽傌光是原子核受到激发后产生的。由于每一种元素的原子发出的光都有它自己的特征光谱,因此可以根据物体发射的光谱来分析它的化学组分。

运动着的电子具有加速度时,它会放出电磁辐射,或者说它会发光。因为光也是一种电磁辐射。当电子在磁场中作圆周运动时,因为有向心加速度,所以也会发光。电子在同步加速器中绕着磁场作圆周运动时发出的电磁辐射叫同步加速器辐射,简称同步辐射,或叫同步光。其实电子在电子感应加速器,或电子回旋加速器中作圆周运动时也会发出这种电磁辐射。但是因为这种辐射是1947年在美国通用电器公司的一台70MeV的电子同步加速器上首先发现的,所以大家都叫它同步辐射,而不叫它感应辐射,或回旋辐射。

现代的同步辐射光源是一台电子储存环。电子储存环也是一种同步加速器,因此它也能发出同步辐射,而且是一种更稳定、性能更好的同步辐射。接近光速的电子在储存环中作回旋运动,同时不断的发出同步光。电子储存环并不能直接把电子从很低的速度加速到接近光速,而需要一台、有时需要两台较低能量的加速器把电子的速度提高到接近光速,然后注入到储存环中。譬如我们合肥光源(HLS)就有一台200MeV的电子直线加速器作为注入器,把电子从80keV(速度为0.5倍的光速,光速为每秒30万公里)加速到200MeV(速度达到0.999997倍的光速),再注入到储存环中,然后电子再在储存环中从200MeV加速到800MeV(速度达到0.9999998倍的光速)。加速器其实是加能器,速度越高的电子能量也越高。粒子的速度可以无限地接近光速,但永远不会等于光速。当电子的能量很低时(几十keV到1MeV),速度随能量的变化很明显;但电子的能量很高时(几百MeV以上),电子在加速过程中,能量增长很快而速度变化不大。因此人们常常喜欢用能量代替速度来表示电子加速的情况。电子在储存环中运行时,能量是保持不变的(也就是速度保持不变)。我们的合肥光源,电子在储存环中每回旋一圈要辐射16.3keV的能量,因此在储存环中有一个高频加速腔给它每圈补充16.3keV的能量,使它的能量始终维持不变。在加速器和高能物理领域中,粒子的能量常用电子伏作单位来表示,1电子伏为电子经过1伏特的电位差所获得的能量,用符号eV 表示,keV(103电子伏)表示千电子伏,MeV(106电子伏)表示兆电子伏,GeV(109电子伏)表示吉电子伏。

一台能量较高的加速器,一般都是由几台加速器串联组成的。如我们合肥光源,是由电子直线加速器和电子储存环组成的。有时在电子直线加速器和电子储存环之间还有一台增强器(增强器也是同步加速器)。在同步辐射加速器中,增强器的最高能量(通常说加速器的能量都是指它的最高能量)和储存环的能量是相同的,这样就可以做到满能量注入,以提高同步辐射光源的性能。此外在每两台加速器之间还有一段束流输运线,它的作用是把电子束从一台能量较低的加速器传输到一台能量较高的加速器中去。如合肥光源,从电子直线加速器

到电子储存环之间就有一条长88米的束流输运线。

电子直线加速器主要由电子枪、加速管、微波功率系统、真空系统等组成。电子枪是产生被加速电子的电子源;加速管是加速电子的地方,沿着加速管的轴线方向有微波电场,电子在微波电场中得到加速,获得能量;微波功率系统由速调管和调制器组成,它的作用是产生微波功率,并通过波导饋送到加速管中建立起微波电场,供加速电子之用;真空系统由真空泵及其电源组成,它的功能是抽掉加速管中的气体,使加速管处在高真空状态,以便电子在其中作加速运动不致丢失。因为在电子直线加速器中电子是走直线轨道的,所以人们称它为电子直线加速器。

电子直线加速器中被加速的电子是从一个电子枪中发射出来的。电子枪是由阴极、栅极和阳极构成的电子源。阴极用发射电子好、并能耐高温的材料做成,如钨、钼、硼化镧、氧化钡、氧化鍶等。因为要使阴极发射电子,需要把它加热到上千度甚至几千度,使电子获得足够大的动能以克服逸出功从阴极表面释放出来;栅极是用来控制电子束的;阳极的作用是把电子从阴极表面拉出来,并使电子加速到合适的初始速度,以便注入到直线加速器的加速管中。我们合肥光源所用的电子枪中,阳极和阴极之间的电位差是80千伏(kV)。也就是说,电子从电子枪出来时已被加速到能量为80keV。实际上电子枪也可看成是一台小小的加速器。

电子储存环是储存高速运行的电子束流的设备。它主要由磁铁系统、真空系统和高频系统等组成。磁铁系统由电磁铁及其电源构成。储存环的磁铁主要有二极磁铁(弯转磁铁)、四极磁铁。所有的二极磁铁、四极磁铁都被安装在一个环形的轨道上。二极磁铁的二极磁场用来弯转电子束,使电子束走环形的闭合轨道;四极磁铁的四极磁场用来聚焦电子束,使电子束沿着设计的电子轨道运动。所有的二极磁铁、四极磁铁都有相应的电源供电,以产生相应的磁场。真空系统由真空室和抽气泵组成。真空室是环形的管道,也被安装在设计的电子轨道上,插入磁铁的间隙中。真空室是电子束运行的通道,如同运动场上的跑道一样,运动员只能在跑道上跑步,电子也只能在束流轨道上运动。为了使束流在真空室中运动不会因为与真空室中的气体碰撞而丢失,要把真空室中的气体抽掉,使真空室成为超高真空状态。一般要求储存环真空室中的气压达到1万亿分之一的大气压。真空室中的气体是靠沿真空室安装的超高真空泵抽掉的。高频系统由高频腔和高频发射机组成。高频腔也是安装在束流轨道上的,它在沿电子轨道方向产生高频电场用来加速电子。当电子束流储存时,用来补充电子由于同步辐射而损失的能量。高频腔中的高频电场是由高频发射机馈送到高频腔中的高频功率建立起来的。

光是我们认识世界的重要手段。人们认识世界是靠他们的观察、聆听、触摸、嗅闻、品尝,其中用眼睛的观察得到的信息最多。人们借助光来观察世界,首先是用波长为400纳米-800纳米(1纳米=10-9米)的可见光来观察世界,最常用的就是太阳光了。人的肉眼借助太阳光在远处能看到山峦、河流、房舍、车船;近处能看见桌椅、书画、文字,最细小也只能看到毛发。1609年望远镜的发明,使人类能把视野延伸到广袤的宇宙空间;1590年显微镜的发明,使人们把视觉深入到微生物世界。无论是望远镜,还是显微镜,所使用的光都是可见光。一个重要的原理是:人们使用光来观察微小物体时,所用光的波长应当大致与被观察的对象的尺度相同。可见光的最短波长为0.4微米(1微米=10-6米),这就是说人们利用可见光,最小的也只能看见微米量级的物体。生物细胞的尺度是20-30微米,细胞里的细胞核的尺度是5微米,细胞器的尺度是1微米。因此人们用光学显微镜也只能看到细胞的结构。如果要深入到分子、原子领域,可见光就无能为力了。X光的发现,使人们能够把视野扩展到微观世界,人们借助仪器利用X光可以观察到分子的结构、生物遗传基因及其结构。因为生物大分子的尺度是几十纳米,X光的波长为纳米的量级甚至更短,所以用X光可以研究生物分子。

相关文档
最新文档