统计物理讲义

平衡态统计物理

李定平

2017

北京大学物理学院

参考书:

1.王竹溪, 统计物理学导论

2. Greiner, Neise, Stocker, Thermodynamics and Statistical Mechanics

3. Landau, Lifshitz, Statistical Physics, Part 1

4. K. Huang, Statistical mechanics. New York: Wiley,(1987)

5. M. Plischke and B. Bergersen, Equilibrium Statistical Physics

6. A History of Thermodynamics, Ingo Müller, Springer-Verlag Berlin Heidelberg (2007)

7.Statistical physics of particles, Kardar, Cambridge University Press (2007)

科普读物:

Short History of Heat,J.B.Fenn

边缘奇迹:相变和临界现象,于渌,郝柏林,陈晓松

课程内容

见文件,可下载

统计物理和现代物理研究

凝聚态物理是当今物理的一个最主要的方向。其生命力是在不断发现的新物态,新材料,及其相关的新的物理现象。历史上,是新的观测到的物理现象推动了物理学的发展。如果一个物理学分支,没有新实验发现,这个学科就得不到任何发展。没有纯理论的物理学科(如果理论完全脱离实验论证)。

研究凝聚态物理的主要工具之一是统计物理,用来研究大量粒子在相关外界条件下(比如一定温度,外场),系统所处在的状态(比如超导,固态,液态,量子液态,拓扑绝缘,拓扑超导状态等等),和相关物理特性(其导电性能,热传导等等).

大学的统计物理课程是量子统计物理(或称为量子多体理论)的先修课程。学好这门课程将为你们进入相关研究生课程打好扎实的基础。

课程进度:

热力学部分

第一至第四周:简要复习热力学的基本定律、相变热力学、多元系的热力学.渐进引入平衡态统计的基本概念,方法.

系综理论及其在量子理想气体的应用

第五至第八周: 讲授平衡态物理的基本概念和基本方法.介绍统计的系综理论(微正则系综、正则系综、巨正则系综).

讲授理想量子气体的概念(理想波色气体, 波色-爱因斯

坦凝聚,光子气体,声子气体,理想费米气体)

系综理论在非理想气体的应用

第九至第十二周:系综理论的一些应用,经典理想气体,非理想气体的统计理论

相变的平均场理论

第十三周到第十六周:经典自旋模型的相变理论(临界现象概述,Ising模型的平均场理论,临界点附近的涨落与关联)

课程大纲

热力学统计物理历史回顾布莱克(Joseph Black,1728-1799, 英国)

发现冰融化时,吸收热量,但温度不变。发

现潜热(1761)

瓦特(James Watt,1736-1819,英国)

改进蒸汽机,使工业效率大大提(1765)

汤姆逊(Benjamin Thompson, 1753-1814,又称拉姆福德伯爵(Count Rumford), 美裔英国人)发现热-功转换,热是能量的一种形式(1798)

卡诺(Sadi Carnot,1796-

1832, 法国)卡诺循环,蒸汽

机效率(1824).热力学之父

迈尔(Julius Robert Mayer, 1814-1878,荷兰)能量守恒和转化定律(1842)

焦耳(James Prescott Joule, 1818-1889,英国) 热力学第一定律(1843)

威廉·汤姆生(开尔文爵士,William Thomson (Lord Kelvin),1824-1907,英国) 开尔文温标(1848),发现绝对零度(1851)。

亥姆霍兹(Hermann Ludwig Ferdinand von Helmholtz, 1821-1894,德国)创立能量守

恒的数学定律(1847)。

克劳修斯(Rudolf Clausius, 1822-88,德国)

提出热力学第二定律(1850), 首次引入平均自由

程概念(1858),首次定义“热温熵”(1865)。

麦克斯韦(James Clerk Maxwell, 1831-79,英国)创立电磁场理论,对气体分子运动论有很大贡献。提出气体分子速率分布定律(1872)。

玻尔兹曼(Ludwig Boltzmann, 1844-1906,奥地利)统计力学奠基人。提出“各态遍历”原理(1871),给出熵的微观状态方程(玻尔兹曼方程) (1877).

吉布斯(Josiah Willard Gibbs, 1839-1903,美国)合并能和熵,引入(Gibbs)自由能概念(1876).统计力学奠基人.

能斯特(Walther Nernst, 1864-1941,

德国)提出热力学第三定律(1906).

朗道(Landau,1908-1968,俄国) 1937 发表了相变的一般理论

Onsager (1903-1976,挪威)1944 得到二维易欣模型的精确解.

Kenneth Geddes Wilson(1936 –2013,美国) 1971年发表了重整化群的文章来解释二级相变临界指数的普适性

平衡态统计物理简介

热力学和统计物理是研究热运动的规律及热运动对物质宏观性质的影响.

热力学是热运动的宏观理论, 不能给出具体物质的具体物性,和不能解释涨落现象.

宏观物质系统是由大量微观粒子组成. 物质的宏观性质是大量微观粒子运动的集体表现.

统计物理是描述热运动(量子统计包括量子涨落)的微观理论. 宏观物理量是微观量的统计平均.统计物理是从微观模型出发,用来得到具体物质的具体宏观物性的理论.

一热力学基本概念

1.热力名词的定义

2.热平衡定律和温度:

热平衡定律(第零定律):

3.热力学状态描述

态函数

最重要的特别系统: 理想气体

均匀系统热力学量分类:

环境对系统的影响.其中一个基本概念是:功的概念准静态过程描述:

微功表达式:

一热力学基本概念

热力名词:

热力学系统---宏观系统,由大量微观粒子组成.虽然粒子数目巨大,但它在热力学平衡态可以用几个参量来描述系统的特性.

外界----与系统发生相互作用的其它物体.

孤立系统---与其它系统没有任何相互作用的系统.

闭系----与外界有能量交换, 没有物质交换的系统.

开系-----与外界有能量交换, 也有物质交换的系统.

热力学平衡态---系统的个个部分的宏观性质在长时间内不发生变化, 称该系统处在平衡态.

例如:

一种分子组成的简单液体(均匀各项同性).此热力学平衡态系统可

用粒子数,体积和内能来描述.

如果是多种分子组成的液体,描述此系统的参量为(第i 种分子

的粒子数目),等等.

虽然系统粒子数目是天文数字,但描述热力学系统的参量数目是有

限的数目.

孤立系统不管初态如何, 经过足够长时间后, 将达到平衡态.

i N

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

统计热力学基础复习整理版汇总

统计热力学基础 一、单选题 1) 统计热力学主要研究(A )。 (A) 平衡体系(B) 近平衡体系(C) 非平衡体系(D) 耗散结构(E) 单个粒子的行为 2) 体系的微观性质和宏观性质是通过( C)联系起来的。 (A) 热力学(B) 化学动力学(C) 统计力学(D) 经典力学(E) 量子力学 3) 统计热力学研究的主要对象是:( D) (A) 微观粒子的各种变化规律(B) 宏观体系的各种性质 (C) 微观粒子的运动规律(D) 宏观系统的平衡性质 (E) 体系的宏观性质与微观结构的关系 4) 下述诸体系中,属独粒子体系的是:(D ) (A) 纯液体(B) 理想液态溶液(C) 理想的原子晶体(D) 理想气体(E) 真实气体 5) 对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:(B ) (A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理(E) 能量均分原理 6) 在台称上有7个砝码,质量分别为1g、2g、5g、10g、50g、100g,则能够称量的质量共有:(B ) (A) 5040 种(B) 127 种(C) 106 种(D) 126 种 7) 在节目单上共有20个节目序号,只知其中独唱节目和独舞节目各占10个,每人可以在节目单上任意挑选两个不同的节目序号,则两次都选上独唱节目的几率是:(A ) (A) 9/38 (B) 1/4 (C) 1/180 (D) 10/38 8) 以0到9这十个数字组成不重复的三位数共有(A ) (A) 648个(B) 720个(C) 504个(D) 495个 9) 各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:(B ) (A)?ε t > ?ε r > ?ε v > ?ε e(B)?ε t < ?ε r < ?ε v < ?ε e (C) ?ε e > ?ε v > ?ε t > ?ε r(D)?ε v > ?ε e > ?ε t > ?ε r (E)?ε r > ?ε t > ?ε e > ?ε v 10) 在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:(C ) (A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系 (C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系 11) 对于定域子体系分布X所拥有的微观状态t x为:( B)

第三章 统计热力学基础 (2)

第三章统计热力学基础 返回上一页 1. 设有一个体系,由三个定位的单维简谐振子所组成,体系能量为11/2 hν,这三个振子在三个固定的位置上振动,试求体系全部的微观状态数。 2. 当热力学体系的熵函数S增加0.418 J/K时,则体系的微观状态数增加多少?用ΔΩ/Ω1表示。 3. 对于双原子分子,证明:U r=NkT U v=NkT 设基态振动能为零,≈1+x 。 4.将N2气在电弧中加热,从光谱中观察到处于第一激发态的相对分子数 N(v=1)/N(v=0)=0.26,式中ν为振动量子数N(v=0)为基态占有的分子数,N(v=1)为第一激发振动态占有的分子数,已知N2的振动频率ν= 6.99×,

(1) 计算气体温度。 (2) 计算振动能量在总能量(包括平动,转动和振动)中所占的百分数。 5.设某理想气体A,其分子的最低能级是非简并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级。 (1)写出A分子的总配分函数的表达式。 (2)设ε=kT,求出相邻两能级上最概然分子数之比n1/n0。 (3)设ε=kT,试计算1 摩尔该气体的平均能量是多少? 6.某气体的第一电子激发态比基态能量高400 kJ/mol,试计算 (1)在300 K时,第一激发态分子所占的百分数? (2)若要使激发态的分子数占10%,则需多少温度?

7.零族元素氩(Ar)可看作理想气体,相对分子量为40,取分子的基态(设其简并度为1)作为能量零点,第一激发态(设其简并度为2)与基态能量差为ε,忽略其它高能级。 (1)写出氩分子的总的配分函数表达式。 (2)设ε=5kT,求在第一激发态上最可几分布的分子数占总分子数的百分数。(3)计算1 mol Ar气在标准状态下的统计熵值。设Ar 的核和电子的简并度均等于1。 8. Na原子气体(设为理想气体)凝聚成一表面膜 (1)若Na原子在膜内可自由运动(即二维平动),试写出此凝聚过程的摩尔平动熵变的统计表达式。 (2)若 Na原子在膜内不动,其凝聚过程的摩尔平动熵变的统计表达式又将如何? (要用相对原子质量Ar,体积V,表面积A,温度T等表示的表达式)

计算物理学

计算物理学 1、书名:计算物理学第2版 书名(英文):Computational Physics 2nd ed. 作/译者:J. M. Thijssen 定价:89.00 现价:89.00 ISBN:978-7-5100-3290-5 《计算物理学(英文版)(第2版)》是一部理论物理研究的计算方法的教程。这是第二版,在第一版的基础上做了大量的更新,内容更加全面。新增加的部分包括,有限元方法,格点boltzmann模拟,密度函数理论,量子分子动力学,monte carlo 模拟和一维量子系统的对角化。书中囊括了了物理研究的很多不同方面和不同计算方法论。如monte carlo方法和分子模拟动力学以及各种电子结构方法论,偏微分方程解方法,格点规范理论。全书都在强调不同物理场中的方法之间的关系,内容较为简洁明快,具有基本编程,数值分析,场论以及凝聚态理论和统计物理的本科知识背景就可以完全读懂《计算物理学(第2版)》。不管是理论物理,计算物理还是实验物理专业的研究生还是科研人员,《计算物理学(第2版)》都相当有参考价值。目次:导论;具有球对称势的量子散射;schrdinger方程的变分大法;hartree-fock方法;密度函数理论;周期性固态schr.dinger方程解法;经典平衡态统计力学;分子动力学模拟;量子分子动力学;monte carlo方法;变换矩阵和自旋链的对角化;量子monte carlo方法,偏微分方程的有限元方法,流体力学的lattice boltzmann方法,格点场论的计算方法;高效能计算和并行法;附:数值法;随机数发生器。 读者对象:物理专业,包括理论物理,计算物理,实验物理的高年级本科生,研究生和相关的科研人员。 2、书名:计算物理学导论第2版 书名(英文):An Introduction to Computational Physics 2nd ed. 作/译者:Tao Pang 定价:69.00 现价:69.00 ISBN:978-7-5100-3520-3 出版时间:2011.08 《计算物理学导论(第2版)》是一部本科生和低年级研究生学习计算物理的教程。这是第二版,将第一版做了全面的更新和修订,改进后的课程不仅提供了学习计算物理学的基本方法,也全面介绍了计算科学领域的最新进展。书中讲述了许多具体例子,包括现代物理和相关领域的数值方法实践计算。每章末有练习题。《计算物理学导论(第2版)》不仅是一部教程,更是相关计算领域的一本很好的参考书。目次:绪论;函数逼近;数值微积分;基础数值法;常微分方程;矩阵数值法;光谱分析法;偏微分方程;分子动力学模拟;模拟连续系统;蒙特卡罗模拟;遗传算法和程序;数值重正化。 ,易于理解。

计算物理基础

装订线 北京师范大学2007 ~2008 学年第二学期期末考试试卷(A卷) 课程名称计算物理基础任课教师姓名:彭芳麟 卷面总分: 100 分考试时长: 100 分钟考试类别:闭卷□√开卷□其他□院(系):物理专业:物理年级: 06 姓名:学号: 阅卷教师(签字): 一.选择题(10分) (对下面语句加以判断) 1. W = [ ]; ( 对) 2. a=5, A=7, Aa=9; ( 对) 3. x=0:0.1:6; A=[x; 4*x]; B=sin(A); plot(x,B) ( 对) 4. u = 1E-4 ( 对 ) 5. syms x, y, z, a, b ( 错 ) 二.填空题(10分) 列举冒号:的各种功能. 表示取从x到y的数值,如 x = 1:5; % x = 1 2 3 4 5 还可以设置步进 x = 1:2:10; % x = 1 3 5 7 9 表示取全部行/列及其它维数 A为矩阵, 则B=A(:,2:3)表示截取A矩阵中“所有行”的“2~3”列的元素,并组成数组B。 2.程序中将长的语句分行书写时应该在分行处加上的符号是:。。。 3.在语句后面加上分号;的作用是:结束语句 4.方括号[ ]的功能有:矩阵运算

5.花括号{ }功能:用于单元阵列的赋值、定义字符串数组、引用结构数组元素 三.说明下列指令的用法与功能(10分) 1.pause :停顿:例如:pause (0.5); 2.sphere 画三维球体:例如sphere(0.5); 3.polar 极坐标画图:th=0:0.01:pi; polar (th,sin(th*pi).*cos(th)) 4.demo 查看示例 5.format 改变显示方式 四.简答题(20分) 1. 叙述调试程序的方法 对于很简单的程序,直接运行皆可,MATLAB 会自动检测有错误的语句。 对于和复杂的程序,可以逐句运行,看看每句执行的情况,如果有错,随时修正。 更复杂的程序,可以分块设置间断点,然后分块调试,调试一部分程序在调试下一部分程序。 2.实时动画有两种,简单叙述它们的画法. MATLAB 用图像句柄来控制图形对象。通过查看图形句柄的所包含的图形属性,并通过改变其中的函数值及线形来改变图形。 五.程序题(20分) 1. 已知 24210.2;( 1.6 1.6)2y x x x +-=-≤≤,这是一个隐函数, a) 用隐函数作图指令可以直接画它图形,请写出相应的语句。 ezplot('y^2+0.5*x^4-x^2=0.2',[-1.6,1.6]) b) 如果不用这种指令作图,则很烦琐,为了对比,请再编一个程序画图,不得用隐函数作图的指令。 y=solve('y^2+0.5*x^4-x^2-0.2','y'); 解出y 关于x 的函数在用x=-1.6:0.1:1.6; 在求出y ;plot (x ,y ); 2. 高斯—勒让德积分公式是 11 1()()N n n n f x dx w f x =-=∑?,取N=3, 1321321/20.774597;00.555556;0.88888935()2 2x x x w w w f x x =-=====??=+ ??? 编出计算程序,要求不得用for 循环语句 。 f=@(x)(1.5*x+2.5).^0.5; w1=0.555556;w3=w1;w2=0.888889;

关于计算物理习题

第一章绪论 1. 什么是计算物理?计算物理与计算数学有何不同? 答:计算物理学是以计算机及计算机技术为工具和手段,运用计算数学的方法解决复杂物理问题的一门应用科学。计算物理是用计算机作为实现手段的实验物理或“计算机实验”,计算数学则是解决物理问题的理论基础。 2. 试阐述计算机模拟方法与理论、实验方法相比有什么特殊的优点和局限性。 答:优点:1.省时省钱 2.具有更大的自由度和灵活性 3.能够模拟极端条件下的实验 缺点:1、不能获得物理定律和理论公式 2、计算结果缺乏严格的论证,其结果仍需实验验证 3. 试阐述计算物理学和实验物理及理论物理的关系?计算物理在物理学研究中 主要用于什么方面? 答: 计算物理在物理学研究中主要用于模拟实验并提供数据,用于验证理论方程还可以与实验结果对照或作为实验的参考数据。 4. 利用计算物理解决问题时,不同计算方法的选取会有什么影响?数值计算的 误差包括哪些方面?在计算中如何减小误差? 答:不同的方法选取会影响到计算的时间长短和计算结果的正确性。数值计算的误差包括:模型误差、观测误差、方法误差、舍入误差。减小误差的方式有:1.两个相近的近似数相减

时,有效数字会严重损失,实际计算时要尽量避免;2.保护重要的物理参量;3.注意计算步骤的简化,减少算术运算的次数。 5.计算物理有哪些工作步骤? 答:1.物理机理,2.数学提法,3.离散模型,4.算法程序,5.上机计算,6.结果分析。 6. 离散化与逼近的含义是什么?收敛性与稳定性的含义。 答:离散化是为了能让计算机处理数据所做的必要步骤,逼近则是为了让结果尽量接近真值的方式。收敛性是指通过数值计算得到的近似解是否逼近数学模型的的真解这样一个性质,稳定性是指在数值计算中,误差的传播能否得到控制这样一个性质。 第二章随机数和蒙特卡洛方法 1. 随机数列的类型和产生方法?任意分布的伪随机变量的抽样方法有哪些? 答:随机数的类型有真随机数、准随机数、伪随机数,产生方法有:物理方法和数学方法。伪随机变量的抽样方法有:直接抽样法(反函数法)、变换抽样法、舍选抽样法、复合抽样法、特殊抽样法。 2. 采用线性同余法(参见公式(2.2.3))产生伪随机数。取a=5,c=1,m=16和x0=1 记录下产生出的前20 数,它产生数列的周期是多少? 答:6、31、156、781、3906、19531、97655、 3. 简要叙述蒙特卡洛方法的基本思想。 答:针对待求问题,根据物理现象本身的统计规律,或人为构造一合适的依赖随机变量的概率模型,使某些随机变量的统计量为待求问题的解,进行大统计量N→∞的统计实验方法或计算机随机模拟方法。 4.蒙特卡洛方法对随机数有较高的要求,然而实际应用的随机数通常都是通过某些数学公式计算而产生的伪随机数,但是,只要伪随机数能够通过随机数的一系列的统计检验,我们就可以把它当作真随机数放心使用。在产生伪随机数的方法中,有比较经典的冯·诺曼平方取中法和线性同余法,请分别写出它们的递推关系式?对于伪随机数一般需要做哪些统计检验(至少写出四个)? 答:平方去中法:X n+1=[X n2/2r](mod22r) ξn=X n/22r 线性同余法:X i+1=a·X i+c (mod M) ξi+1=X i+1/M 伪随机数的统计检验:独立性检验和均匀性检验。 5.蒙特卡洛方法计算中减少方差的技术有哪些?

计算物理学复习题整理资料

第一章绪论 1.1 计算物理的性质是什么?试举例说明计算物理在哪些学科中有重要应用? 计算物理是指以计算机及计算机技术为工具和手段,运用计算数学的方法解决复杂物理问题的一门应用科学。(1)计算物理是用计算机作为实现手段的实验物理或“计算机实验”。(2)计算物理是一门新型的边缘学科,物理学、数学、计算机科学三者结合的产物。计算物理在物理学中有很多应用,概括起来主要有四个方面:(1)计算机数值分析:通常在物理研究中,我们从已知的物理规律出发得到描写物理过程的抽象数学公式后,最后或许要作数值求解以便与实验结果对照或作为实验的参考数据。例如:中子输运问题(2)计算机符号处理:利用计算机的符号处理系统进行解析计算、公式的推导和高精度的数值计算。例如:多重不定和定积分;(4)计算机实时控制:使物理实验可以在没有人在场的情况下自己监测设备的正常运行,自动采集和分析实验数据。(4)计算机模拟,利用计算机进行的物理实验或“计算机模拟实验”,例如:第一性原理、分子动力学模拟、蒙特卡罗模拟。 1.2 试阐述计算机模拟方法与理论、实验方法相比有什么特殊的优点和局限性。: 优点:1.省时省钱 2. 具有更大的自由度和灵活性 3. 能够模拟极端条件下的试验。缺点:1.不能获得物理定律和理论公式 2. 计算结果缺乏严格的论证,其结果仍需要试验验证。 1.3 试阐述计算物理学和实验物理及理论物理的关系? 计算物理方法是除理论方法和实验方法之外的第三种研究手段,计算物理现已成为物理学研究的三大支柱之一,它与实验物理和理论物理的关系如下图:

1.5并行计算有什么优点? 1.并行计算可以大大加快运行速度,即在短的时间内完成相同的计算量,或解决原来不能计算的非常复杂的问题,2. 提高传统的计算机的速度一方面受到物理上光速极限和量子效应的限制,另一方面计算机器件的产品和材料的生产受到加工工艺的限制,其尺寸不可能做得无限小,因此我们只能转向并行算法。3. 并行计算对设备的投入比较低,既可以节省开支又能完成任务。 1.6 计算物理基本方法,基建原理 第一原理方法是基于量子力学基本原理建立起来的;分子动力学方法是基于经典力学基本原理建立起来的;蒙特卡罗方法是基于统计力学基本原理建立来的。 第二章随机数和蒙特卡洛方法 2.1 简要叙述蒙特卡洛方法的基本思想。 对求解问题本身就具有概率和统计性的情况,蒙特卡洛方法是按照实际问题所遵循的概率统计规律,用计算机进行直接的抽样试验,然后计算其统计参数。

计算物理学常用方法与应用

计算物理学常用方法与应用 计算物理学(Computational Physics)是物理学、数学、计算机科学三者结合的产物,与理论物理和实验物理有着密切的关系。定义为以计算机及计算机技术为工具和手段,运用计算数学的方法,解决复杂的物理现象问题的一门应用型学科。计算物理学诞生于20世纪40年代,第二次世界大战时期,美国在研制核武器的工作中,迫切需要解决在瞬时间内发生的复杂的物理过程的数值计算问题。然而,采用传统的解析方法求解或手工数值计算是根本办不到的。这样,计算机在物理学研究中的应用就成为不可避免的事了,计算物理学因此得以产生。 其性质与任务从原则上说,凡是局部瞬时的物理规律为已知或已被假设,那么要想得到大范围长时间的物理现象的发展过程都可以借助于计算机这一先进工具来实现。具体地说,从局部关系联合成大范围关系依赖于计算机的大存贮量,由瞬时规律发展为长时过程依赖于计算机的高速度。因此在大存贮和快速度的基础上,计算机便能对物理过程起到一种数值模拟的作用。 计算物理常用软件有Matlab,Mathematica和Maple等。 计算物理学常用的方法很多,如何将计算物理的方法分类也比较复杂。比如有按照研究对象的时间和空间尺度划分;按照使用目的(检验理论、处理实验结果、对理论和实验进行模拟)划分;按照所属的物理学分支学科划分等等。 本文将介绍几种常用的方法及应用。如实第一性原理、分子动力学、验数据处理、蒙特卡罗、实验数据处理、有限元、神经网络等方法。 1.第一性原理(First-Principles)方法: 根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一原理。第一性原理就是从头计算,不需要任何参数,只需要一些基本的物理常量,就可以得到体系基态的基本性质的原理。第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

计算物理习题

第一章绪论1. 什么是计算物理计算物理与计算数学有何不同 答:计算物理学是以计算机及计算机技术为工具和手段,运用计算数学的方法解决复杂物理问题的一门应用科学。计算物理是用计算机作为实现手段的实验物理或“计算机实验”,计算数学则是解决物理问题的理论基础。 2. 试阐述计算机模拟方法与理论、实验方法相比有什么特殊的优点和局限性。答:优点:1.省时省钱 2.具有更大的自由度和灵活性 3.能够模拟极端条件下的实验 缺点:1、不能获得物理定律和理论公式 2、计算结果缺乏严格的论证,其结果仍需实验验证 3. 试阐述计算物理学和实验物理及理论物理的关系计算物理在物理学研究中 主要用于什么方面 答: 计算物理在物理学研究中主要用于模拟实验并提供数据,用于验证理论方程还可以与实验结果对照或作为实验的参考数据。 4. 利用计算物理解决问题时,不同计算方法的选取会有什么影响数值计算的 误差包括哪些方面在计算中如何减小误差 答:不同的方法选取会影响到计算的时间长短和计算结果的正确性。数值计算的误差包括:模型误差、观测误差、方法误差、舍入误差。减小误差的方式有:1.

两个相近的近似数相减时,有效数字会严重损失,实际计算时要尽量避免;2. 保护重要的物理参量;3.注意计算步骤的简化,减少算术运算的次数。 5.计算物理有哪些工作步骤 答:1.物理机理,2.数学提法,3.离散模型,4.算法程序,5.上机计算,6.结果分析。 6. 离散化与逼近的含义是什么收敛性与稳定性的含义。 答:离散化是为了能让计算机处理数据所做的必要步骤,逼近则是为了让结果尽量接近真值的方式。收敛性是指通过数值计算得到的近似解是否逼近数学模型的的真解这样一个性质,稳定性是指在数值计算中,误差的传播能否得到控制这样一个性质。 第二章随机数和蒙特卡洛方法 1. 随机数列的类型和产生方法任意分布的伪随机变量的抽样方法有哪些 答:随机数的类型有真随机数、准随机数、伪随机数,产生方法有:物理方法和数学方法。 伪随机变量的抽样方法有:直接抽样法(反函数法)、变换抽样法、舍选抽样法、复合抽样法、特殊抽样法。 记录下产生出的前20 数,它产生数列的周期是多少 答:6、31、156、781、3906、19531、97655、 3. 简要叙述蒙特卡洛方法的基本思想。 答:针对待求问题,根据物理现象本身的统计规律,或人为构造一合适的依赖随机变量的概率模型,使某些随机变量的统计量为待求问题的解,进行大统计量N →∞的统计实验方法或计算机随机模拟方法。

计算物理课程教学大纲

计算物理课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:计算物理 所属专业:物理学 课程性质:必修 学分:4 (二)课程简介、目标与任务; 计算物理学是以计算机及计算机技术为工具和手段,运用计算数学的方法,解决复杂物理问题的一门应用科学。是一门发展中的前沿学科,与理论物理、实验物理并列作为物理学的三大支柱,具有很强的实践性,因此在教学过程中,需要综合物理学理论、数值计算方法和计算机程序设计这三方面的知识,并且充分调动和发挥学生的主动性,培养学生使用计算工具软件、熟练地编程计算的实践能力。并且在教学中让学生多了解相关的前沿科技动态。计算物理课程的教学目的是,使学生系统地了解物理模型和数学模型的建立方法,掌握基本的数值计算方法以及物理学中常用的数值计算方法;使学生获得通过数值计算和计算机模拟,分析和处理一些物理问题的基本方法,具备基本的解决问题的能力,提高逻辑推理和抽象思维的能力,为独立解决科学研究中的实际问题打下必要的数学物理基础。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程要有一定的物理和数学基础,以便熟悉解决的相关物理问题及用到的数值计算方法;要熟练掌握一门计算机语言(如Fortran, Matlab语言),以便能独立完成上机实践;为以后解决科学研究中的实际数值计算问题打下必要的基础。 (四)教材与主要参考书。 教材:计算物理学 S.E.Koonin著,秦克诚译,高教出版社,1992年11 月第1版; Computational Physics, Fortran Version, S.E.Koonin and D.C.Meredith. 教学参考书: 1.《计算物理学》马文淦著,科学出版社(2005) 2.《计算物理学讲义》彭芳麟编写,北师大物理系(2000)

经典物理与量子物理的区别和联系

经典物理与量子物理的区别和联系 作者:阿布都哈力克--201211141946 单位:北京师范大学物理系师范班 摘要: 经典物理和量子之间存在很多联系与区别。它们的适用范围、适用对象、物理理论、数学表达都有很大的区别,但同时也有很大的联系,本文主要述说经典物理和量子物理的相关思想和各自的发展,阐明经典物理学和量子物理学之间的区别和联系。 关键词:经典物理、量子物理、区别、联系 引言: 经典物理发展了很多年,有了很深厚的基础,量子物理是经典物理独立于经典物理而存在,两者之间既有很多联系,也有很多区别。自从16世纪以来物理学飞速发展,进过伽利略、胡克、牛顿等人的变革,物理学的很多领域都得到了很大的提高和充实,物理学逐渐成为一门独立的学科展现给世人。牛顿的经典力学体系是物理学的基础,对物理学领域具有举足轻重的地位,其对前期物理学的影响非常深厚。近代随着光电效应、黑体辐射、以太假说等实验和黑体辐射理论的困难,牛顿力学显得越来越局限,在这种条件下普朗克提出了量子假说,认为能量是分立的,一份一份存在的。爱因斯坦很好地解释了光电效应,并提出了波粒二象性,后来德布罗意又提出了物质波的概念。认为自然界的任何物体都具有粒子性和波动性,奠定了量子物理学的基础。后来经过玻恩、海森堡、薛定谔、狄拉克等人的发展,量子力学日趋完善,与经典力学同位物理学的两大理论。 一、经典理论的发展 经典物理学的建立和发展时期是17世纪初至19世纪末,形成了比较完整的经典物理学体系。系统的观察实验和严密的数学推导相结合的方法,被引进物理学中,导致了17世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。经过18世纪的准备,物理学在19世纪获得了迅速和重要的发展。终于在19世纪末以经典力学、热力学和统计物理学、经典电磁场理论为支柱,使经典物理学的发展达到了它的顶峰。在爱因斯坦的相对论提出后,经典物理的绝对时间和绝对空间被彻底打破,经典宏观物理就进入了宇宙空间阶段。随着经典物理学的不断发展,在十九世纪末、二十世纪初,经典物理学的理论遇到了困难。有一些新的物理现象,如黑体辐射、康普顿效应、光电效应、原子的光谱线系以及固体在低温下的比热等等,都是经典物理理论所无法解释的。此时,量子理论的提出对这些现象都有了比较满意的解释。

计算物理第一章讲义PPT

Jinzhong University 计算物理 晋中学院宫建平

Jinzhong University 第1章蒙特卡罗方法的应用 1.1 蒙特卡罗方法简介 1.2 利用蒙特卡罗法求解数值积分和函数极值 *1.3 基于蒙特卡罗的电子双缝衍射的计算机模拟

1.1蒙特卡罗方法简介 蒙特卡罗方法也称随机模拟方法, 有时也称作随机抽样技术或统计实验方法. 它的基本思想是:首先建立一个概率模型或随机过程, 使它的参数等于问题的解; 然后利用计算机模拟该随机现象, 通过对大量模拟仿真试验的结果来分析计算所求参数, 得出实际问题的近似解.

蒙特卡罗方法的特点可归纳成三个方面: (1)蒙特卡罗方法及其程序结构简单. (2)蒙特卡罗方法的收敛性及收敛速度与问题的维数无关. (3) 蒙特卡罗方法的适用性强, 可用在求很多解析方法或常规数值方法难解问题的低精度解.

1.1.1蒲丰投针问题 著名的投针问题是几何概率一个早期的例子, 它是由法国科学家蒲丰(Buffon)在1777年提出的, 因而被称之为蒲丰投针问题. 蒲丰投针问题的解决不仅较典型的反映了几何概率的特征及处理方法, 而且还可以由此了解蒙特卡洛(Monte一Carlo)方法.

蒲丰投针问题: 平面上画有等距离的平行线, 每两条平行线之间的距离为d , 向平面任意投掷一枚长为()l l d <的针, 试求针与平行线相交的概率. 解:设x 表示针落下后针的中点M 到最近的一条平行线的距离, ?表示针与平行线所成的角(见图1.1.1), 则 0,02 d x ?π≤≤≤≤. 而针与一直线相交的充要条件是: sin 2 l x ?≤.

第三章量子统计理论 从经典统计到量子统计 量子力学对经典力学的改正

第三章 量子统计理论 第一节 从经典统计到量子统计 量子力学对经典力学的改正 波函数代表状态 (来自实验观测) 能量和其他物理量的不连续性 (来自Schroedinger 方程的特征) 测不准关系 (来自物理量的算符表示和对易关系) 全同粒子不可区分 (来自状态的波函数描述) 泡利不相容原理 (来自对易关系) 正则系综 ρ不是系统处在某个()q p ,的概率,而是处于某个量子 态的概率,例如能量的本征态。 配分函数 1E n n Z e k T ββ-== ∑ n E 为第n 个量子态的能量,对所有量子态求和 (不是对能级求和)。 平均值 1 E n n e Z β-O = O ∑ O 量子力学的平均值

第二节 密度矩阵 量子力学 波函数 ∑ψΦ=ψn n n C , 归一化 平均值 ∑ΦO Φ=ψO ψ=O *m n m n m n C C ,?? 统计物理 系综理论:存在多个遵从正则分布的体系 ∴ ∑ΦO Φ= O *m n m n m n C C ,? 假设系综的各个体系独立,m n C C m n ≠=* ,0 理解:m n C C * 是对所有状态平均,假设每个状态出现的概率为 ...)(...m C ρ,对固定m ,-m C 和m C 以相同概率出现,所以 ∑ΦO Φ=O *n n n n n C C ? 如果选取能量表象,假设n n C C *按正则分布,重新记n n C C * 为n n C C * 1E n n n C C e Z β-*= 这里 n n n E H Φ=Φ? 引入密度矩阵算符ρ ? [ ]n n n C H Φ=Φ=2 ?0?,?ρ ρ 显然 ∑ΦΦ=n n n n C 2 ?ρ , ??,0H ρ??=??

第二章 量子物理学基础

第二章 量子物理学基础 思 考 题 2.1 什么是光的波粒二象性? 2.2 有人认为微观客体的波动性表示粒子运动的轨迹是一条正弦或余弦的曲线,这种看法对吗? 2.3 对于运动着的宏观实物粒子,德布罗意关系式也适用,为什么我们不考虑它们的波动性? 2.4 有哪些实验证实了微观粒子的波动性? 2.5 德布罗意波和经典波有何区别? 2.6 汤姆孙原子模型有什么缺点? 2.9 从经典物理看来,卢瑟福原子的核式模型遇到些什么困难? 2.8 在玻尔的氢原子理论中,势能为负值,而且在数值上比动能大,这个结果有什么含义? 2.9 试根据玻尔的氢原子能级公式,说明当量子数n 增大时,能级怎么变化.能级间的距离怎样变化? 2.10 若氢原于和氦离子都是从4=n 的轨道跃迁到2=n 的轨道,问两个原子发出的光的波长是否相同? 2.11 对应原理的内容是什么? 2.12 试从原子核运动引起的修正这一角度解释里德伯常数的理论值与实验值的区别。 2.13 弗兰克—赫兹实验证明了什么? 1.14 为什么说玻尔理论是半经典半量子的混合?它有什么局限性? 2.15 为什么说波函数是描述粒子的统计行为的一个物理量? 2.16 若) (t z y x ,,,ψ表示波函数,则dxdydz t z y x 2)(,,,ψ和1)(2=???dxdydz t z y x ,,,ψ各表示什么物理意义? 2.17 波函数的标准条件是什么? 2.18 波函数为什么要归一化? 2.19 薛定谔方程在量子力学中的地位怎样?试写出定态薛定谔方程. 2.20 什么是隧道效应? 2.21 描写氢原子中电子的状态需要几个量子数? 习 题 2.1 试求出质量为0.01kg 、速度为s m 10的一个小球的德布罗意波长. 2.2 一个质子从静止开始,通过lkV 的电压受到加速,试求它的德布罗意波长.(质子的质量为 kg 1067.127-?) 2.3 电子和光子的波长都是 A 2,它们的动量和总能量都相等否? 2.4 设卢瑟福散射用的α粒子动能为eV 1068.76?,散射物质是原子序数79=Z 的金箔.试求散射角尹 150=φ所对应的瞄准距离b 多大? 2.5 试计算氢原子帕邢系第二条谱线的波长. 2.6 已知氢原子莱曼系的最长波长是 A 1216,里德伯常量是多少? 2.7 用巴耳末公式计算巴耳末系中三条最长的波长. 2.8 将氢原子从1=n 激发到4=n 的能级. (1)计算氢原子所吸收的能量; (2)当它从4=n 的能级向低能级跃迁时,可能发出哪些波长的光子(17m 10097.1-?取R )?画出能级跃迁图.

计算物理

《计算物理》 (丁泽军)
概论
概论
0.1 0.1.1 计算物理学概貌 计算物理学的意义
计算物理学是随着计 理论物理学 实验物理学 算机技术的飞跃进步而不 断发展的一门学科,在借 助各种数值计算方法的基 础上,结合了实验物理和 理论物理学的成果,开拓 计算物理学 了人类认识自然界的新方 法。传统的观念认为,理 图 0.1.1-1 现代物理学三大类别之间的关系。 论是理论物理学家的事, 而实验是实验物理学家的事,两者之间不见得有必然的联系,但现代的计算机实 验已经在理论和实验之间建立了很好的桥梁。 一个理论是否正确可以通过计算机 模拟并于实验结果进行定量的比较加以验证, 而实验中的物理过程也可通过模拟 加以理解。当今,计算物理学在自然科学研究中的巨大威力的发挥使得人们不再 单纯地认为它仅是理论物理学家的一个辅助工具,更广泛意义上,实验物理学、 理论物理学和计算物理学已经步入一个三强鼎立的“三国时代” ,它们以不同的 研究方式来逼近自然规律(图 0.1.1-1) 。 计算机数值模拟可以作为探索自然规律的一个很好的工具,其理由是,纯理 论不能完全描述自然可能产生的复杂现象, 很多现象不是那么容易地通过理论方 程加以预见。说明这个观点的一个最好的例子是,20 世纪 50 年代初,统计物理 学中的一个热点问题是, 一个仅有强短程排斥力而无任何相互吸引力的球形粒子 体系能否形成晶体。计算机模拟确认了这种体系有一阶凝固相变,但在当时人们 难于置信,在 1957 年一次由 15 名杰出科学家参加的讨论会上,对于形成晶体的 可能性,有一半人投票表示不相信。其后的研究工作表明,强排斥力的确决定了 简单液体的结构性质,而吸引力只具有次要的作用。另外一个著名的例子是粒子 穿过固体时的通道效应就是通过计算机模拟而偶然发现的,当时,在进行模拟入 射到晶体中的离子时,一次突然计算似乎陷入了循环无终止地持续了下去,消耗 了研究人员的大量计算费用。之后,在仔细研究了过程后,发现此时离子运动方 向恰与晶面几乎一致,离子可以在晶面形成的壁之间反复进行小角碰撞,只消耗 很少的能量。 因此,计算模拟不仅仅是一个数学工具。作为工具,我们至少知道结果应该 如何,哪怕不了解具体过程。但是,在做计算模拟研究工作时,研究者经常偏离 他们原来的目标,这是因为计算产生了新的发现,该发现不是研究者预先所能料 到的。有时人们会说, “对啊,当然应该如此,我怎么没有事先想到呢?”事实
0-1

苏汝铿统计物理答案

苏汝铿统计物理答案

苏汝铿统计物理答案 【篇一:125本物理学名著精编版】 >1 爱因斯坦文集 2 费曼物理学讲义(原声录音) 出国留学必备书之一! 3 费曼物理学讲义_卷一 4 费曼物理学讲义_卷二 5 费曼物理学讲义_卷三 6 费曼物理学讲义习题集 7 别闹了,费曼先生! 8 泡利物理学讲义(共六卷) 出国留学必备书之一! 9 faraday(法拉第)_lectures on the forces of matter 10 faraday(法拉第)_the chemical history of a candle 11 从抛物线谈起—混沌动力学引论 12 多粒子系统的量子理论 13 量子力学与路径积分(费曼)出国留学必备书之一!14 物理力学讲义(钱学森) 15 物理学家用微分几何出国留学必备书之一! 16 相对论(索末菲) 17 相对论的意义 18 算法大全 19 相对论量子场

20 相对论量子力学 21 引力论与宇宙论 22 自然哲学之数学原理宇宙体系 23 物理学进展2001 24 history of modern physics 25 nobel lectures(1998--2001) 26 numerical recipes in c 27 phy question 28 physics review letter(vol74-vol86) 29 thermal physics 30 topics appl. phys vol 80 carbon nanotubes 31 trends in colloid and interface science xiv 32 relativity the special and general theory 33 interact(斯坦福直线加速器实验室) 34 introduction to tensor calculus and continuum mechanics 35 lect statistic 36 mathematicalhandbook 37 relativity the special and general theory -by albert einstei 38 gre物理sub试题(爆全) 39 北大物理类研究生入学考题 40 大学物理课件 41 概率统计课件 42 核辐射物理电子讲义

量子统计力学

量子统计力学 一、课程编码: 课内学时:48 学分:3 二、适用学科专业:理论物理、凝聚态物理、光学 三、先修课程:量子力学、热力学与统计力学 四、教学目标 通过本课程的学习,掌握量子统计力学的基本概念,包括系综、配分函数、近独立粒子体系统计分布规律以及相变的分类及其基本规律;提升运用量子统计力学基本方法来分析解决和体系的热力学性质有关的问题的能力。 五、教学方式 课堂教学 六、主要内容及学时分配 1 量子统计物理学基础8学时 1.1 引言 1.2 存粹系综与混合系综 1.3 统计算符 1.4 刘维尔定理 1.5 统计物理的基本假设微正则系综 1.6 正则系综巨正则系综 1.7 计算密度矩阵举例 1.8 从统计物理出发推导三种独立粒子系统的统计分布 1.9 熵增加定律微观可逆性与宏观不可逆性 2 系综的配分函数3学时 2.1 配分函数与统计热力学 2.2 配分函数的经典极限 2.3 由巨正则系综出发推导理想气体的统计分布及物态方程 3 玻色系统8学时 3.1 理想玻色气体性质与BEC 3.2 非理想玻色气体中的BEC 3.3 多普勒致冷和磁--光陷阱 3.4 简谐势阱中理想玻色气体的BEC 4 超流性5学时 4.1 液氦He4中的超流相变 4.2液氦He4 II相的特征 4.3 超流体的涡旋运动 4.4 朗道超流理论 4.5 简并性近理想玻色气体 5 费米系统12学时 5.1 理想费米气体 5.2 朗道抗磁性 5.3 量子霍尔效应 5.4 泡利顺磁性 5.5 正常费米液体I:元激发 5.6 正常费米液体II:准粒子相互作用

6 相变与临界现象基本概念12学时 6.1 相变及其分类 6.2 序参量 6.3 热力学函数的临界指数 6.4 关联函数标度率 6.5 响应函数及其与关联函数的联系 6.6 涨落—耗散 6.7 平均场 6.8 平均场的失效 6.9 标度假设 6.10 普适性 6.11 自发对称破缺 6.12 Goldstone定理 6.13 空间维数与涨落 七、考核与成绩评定 平时成绩(作业):30分 期终考试卷面分:70分 八、参考书及学生必读参考资料 1 必读书(教材)。作者:杨展如。书名:《量子统计物理学》。 出版地:北京。出版社:高等教育出版社。出版年:2010年 2 参考书。作者:张先蔚。书名:《量子统计力学》[第二版]。 出版地:北京。出版社:科学出版社。出版年:2008年。 九、大纲撰写人:杨帆

相关文档
最新文档