基因工程在疾病治疗方面的应用教学提纲

基因工程在疾病治疗方面的应用教学提纲
基因工程在疾病治疗方面的应用教学提纲

基因工程在疾病治疗方面的应用

浅谈基因工程药物

基因工程药物是指用现代基因重组高科技对基因进行克隆,通过重组DNA导入大肠杆菌、酵母或动物细胞成功构建工程菌株或细胞株,在工程菌株、细胞中所表达生产的新型药物包括细胞因子、多肽类激素、溶血栓药物、疫苗、抗体、反义RNA及基因治疗药物等等多种难治疾病的基因工程药物.

基因工程药物因其疗效好、应用范围广泛、副作用小的特点成为新药研究开发的新宠。也是发展最迅速和最活跃的领域。自1982年美国Lilly公司上市了第一个基因工程产品——人胰岛素以来,至今已有基因工程药物大约140多种上市,尚处于临床试验或申报阶段的基因工程药物有500多种。当传统制药业的增长速度减慢时,基因工程制药正在加速发展,全世界基因工程药物持续6年销售额增长率都在l5%~33%,基因工程制药已成为制药业的一个新亮点[1-2]。

一.目前药物治疗的主要类型

1.胰岛素至今仍是临床上治疗糖尿病最有效的方法。

过去,胰岛素主要从猪等大家畜胰腺中提取。从一头猪的胰腺中只能提取出300单位胰岛素,而一个病人每天就需要40单位胰岛素,因此远远不能满足需要。

基因工程技术一问世,科学家就想到利用该技术来解决胰岛素药源不足的问题。他们首先要找到胰岛素基因,在人的胰岛细胞里有一段特定结构的DNA分子指挥着胰岛素的合成,然后又找到在人的大肠里存在对人体无害的大肠杆菌。把人的胰岛素基因转入到大肠杆菌的细胞中,随着大肠杆菌的繁殖,胰岛素基因也一代代的遗传下去。大肠杆菌繁殖速度相当快,大约20分钟就能繁殖一代,把它放到大型的发酵罐里进行人工培养,就可以大量繁殖,并且生产出大量人的胰岛素。

1981年,基因重组人胰岛素产品正式投入市场,大肠杆菌成了名副其实的生产胰岛素的“活工厂”,胰岛素供不应求的问题彻底解决了

胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题

2.干扰素:

是哺乳动物细胞在诱导下产生的一种淋巴因子,能够加强巨噬细胞的吞噬作用和对癌细胞的杀伤作用,抑制病毒在细胞内的增殖,用于肿瘤和其他病毒病的治疗。

基因工程干扰素干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。基因工程人干扰素α-2b(安达芬)是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。

生长激素人体生长激素能够治疗侏儒症和促进伤口愈合,动物生长激素能够加速畜禽生长发育。目前,人和动物的生长激素基因都已经在大肠杆菌中成功表达.在医学和畜牧业领域取得了很好的应用效果。

红细胞生成素是一种肾脏产生的作用于肾髓的造血相关细胞因子,使原始红细胞的成熟期缩短,调节。肾髓中的造血细胞含量,用于。肾功能不全引起的贫血、放射化疗引起的贫血以及其他一些罕见的贫血症的治疗.还可用于外科手术前准备自体输血的病人。红细胞生成素目前是在培养的哺乳动物细胞中表达,但成本较高,生产过程复杂。

白细胞介素是一种抗肿瘤免疫因子.可促进T细胞的生长、增殖和分化,也可促进B细胞的生长和增殖,同时能够增强杀伤性淋巴细胞的功能,也用于癌症的治疗。

集落刺激因子分为2类:一类为粒细胞集落刺激因子,另一类为巨噬细胞集落刺激因子。二者都可促进体内白细胞的增殖,增强粒细胞的功能,调控造血功能,用于肿瘤病人化疗后白细胞下降等的治疗[19-2o]。

3.DNA重组技术为新一代疫苗——

基因工程疫苗的研制提供了全新的方法。基因:I=程疫苗是指应用DNA重组技术,通过基因组改造,降低病原微生物的致病性,提高免疫原性,进而达到防治传染病的目的。迄今为止,基因工程疫苗是最先进的疫苗,相比传统疫苗而言它有巨大的优势。

基因工程疫苗种类

应用基因工程技术开发的已经使用和正在研制的新型疫苗种类主要有基因工程亚单位疫苗、基因工程活载体疫苗、核酸疫苗、合成肽疫苗、转基因植物可食疫苗等。展望疫苗开发具有安全性、有效性、价廉性、易推广性等特点。基因工程疫苗具有传统疫苗无可比拟的优点,是疫苗产品开发的主要方向。研制多联或多价疫苗是基因工程疫苗的主要发展方向

蔬菜水果为“天然药物”我国科学家,他们也正在为西红柿做着各式各样的“基因手术”,使蔬果成为“天然药物”功能食品,可用来治病。生病了,也许不必打针,也用不着吃药,只要随口来上几个水果就行。研究人员首先要将某种特定蛋白植入普通西红柿,经多代繁殖,使被转入的基因逐步稳定化,并最终成为一个独立的番茄品系。这时,这些番茄家族新成员就可以从实验室大

步走向田间大规模繁衍。首批问世的药物西红柿将分别用于治疗高血压、血蔬果为“天然药物”友病和骨质疏松症。对于一些重症患者,西红柿疗法也许还不能完全替代传统药物治疗,但它们至少能起到“神奇”的辅助疗效。

一种名为抗乙肝的西红柿也已在中国农科院生物技术研究中心培育成功,目前正处于环境释放阶段。虽然它不能治愈乙肝,但只要一年吃上几个,就能完全代替乙肝疫苗注射。预计~U2004年底,这种“疫苗水果”将首先亮相于全国20个大城市的超市,每个西红柿售价约为2元。可以预见,用不了很长时间,酸甜可口的番茄就将正式升格为人见人爱的“天然药物”。对于病人而言,吃药将变成一种品尝美味的享受

二.基因治疗(从基因方面着手)

1.非病毒载体递送微小RNA治疗肿瘤:

微小RNAs(microRNAs,miRNAs)是一种转录后水平调控基因表达的非编码小RNAs。已有大量研究显示,miRNAs在肿瘤发生发展过程中发挥重要调控作用,如肿瘤细胞的增殖、转移、凋亡和耐药性等方面。因此,miRNAs可作为肿瘤基因治疗的重要潜在靶标。然而,由于miRNAs分子本身的特性而存在以下几方面不足:①极不稳定,在血浆中易被核酸酶降解;②由于带负电荷,它很难穿过脂质双分子层构成的细胞膜以及在胞内不能释放,造成生物利用度低;③全身性给药要求miR—NAs必须具有靶向性。因此,选择安全高效的递送载体是miRNAs分子肿瘤基因治疗成功的关键所在。

在基因治疗中,病毒载体由于其对人体具有潜在的致病威胁,因此近来非病毒载体受到瞩目关注。与病毒载体相比较,非病毒载体具有低毒、低免疫原性,而且所携带的基因不整合至宿主细胞基因组等优点,有着病毒载体不可替代的作用。因此,更深入地探讨非病毒基因递送载体及其聚合物在肿瘤基因治疗中的作用,具有重要的临床意义。目前,非病毒递送载体主要包括脂质载体、聚合物载体、无机纳米载体等类型:脂质载体(Lipid—basedcarriers)是递送miR.NAs分子最常用的载体。研究表明,脂质载体可通过包裹miRNAs分子,

保护其免受血清中核酸酶的降解,并维持该分子的完整性和生物活性,还具有良好的生物相容性以及可与细胞膜融合增加细胞摄取率J。此外,脂质载体还具有可应用荧光示踪技术及对靶基因化学修饰等优点J

2.重组人5型腺病毒注射液在肝癌介入治疗中的疗效探讨

重组人5型腺病毒是一种溶瘤病毒,它是利用基因重组技术将人腺病毒加以修饰而来,而修饰后的腺病毒可以在人类肿瘤细胞中选择性增殖【1],大量复制,从而杀死肿瘤细胞。肝动脉灌注化疗栓塞(transcatheterhepaticarterialchemoembolization,TACE)联合多种方法综合治疗已经成为肝癌治疗的发展趋势

重组人5型腺病毒(H101)是基因工程改造后的缺失Elb55ku蛋白的腺病毒[3]。H101感染突变型P53的肿瘤细胞后,由于P53蛋白功能缺失,可以在肿瘤细胞内复制并发挥溶瘤作用,细胞死亡后,释放的病毒感染周围肿瘤细胞,进一步杀灭肿瘤。它是世界上第一个被批准用于治疗肿瘤的溶瘤病毒,而且有报道[4称经改造的重组人5型腺病毒(H101)对肿瘤细胞有杀伤作用,但对健康人体细胞的损害微乎其微。临床试验显示其对头颈部肿瘤有很好的疗效。

证明了重组人5型腺病毒联合TACE治疗中晚期肝癌是一种安全的治疗方法。重组人5型腺病毒作为一种新生的抗肿瘤药物,要想完全替代传统放、化疗方法,目前还有一定距离。但可以肯定的是经肝动脉直接注人重组人5型腺病毒,提高其在靶器官的浓度,增加感染率;与碘油混合,让其在肿瘤局部释放,提高了转染率,从而能够提高肝癌治疗的疗效。

3.乳腺癌基因治疗研究进展

近年来我国女性乳腺癌的发病率以及病死率均呈直线上升的态势,乳腺癌已成为威胁妇女生命和健康的头号杀手而倍受世界各国瞩目[】]。传统的治疗方式已经远远不能满足人们对于乳腺癌治疗后的生活质量的要求,因此基因治疗这种新型的方法应运而生。基因治疗不只是从基因水平上彻底纠正细胞的遗传缺陷,更是大大减轻了病人的痛苦

1抑制癌基因的活性

癌基因是指人类或其他动物细胞固有的一类基因,癌基因正常的生物学功能是刺激细胞正常的生长,以满足细胞更新的要求。当癌基因受到激活发生突变后,会在没有接收到生长信号的情况下仍然不断地促使细胞生长或使细胞免于死亡,最后导致细胞癌变。针对癌基因的治疗策略主要是抑制其表达,目前常用的方法有:(1)反义核苷酸核酸或siRNA阻止癌基因mRNA转录和翻译。李玉强等_z]研究发现NUP88基因沉默,可抑制MCF_7细胞系的增殖、侵袭和促进其凋亡

2恢复抑癌基因活性

抑癌基因同样也是正常细胞中存在的基因。在正常情况下,当细胞生长到一定程度时,会自动产生反馈抑制,抑癌基因表达增高,癌基因则不表达或低表达。但在某些特殊情况下被抑制或丢失以后可减弱甚至消除抑癌作用。目前针对乳腺癌治疗应用较多的抑癌基因主要有P53、BRCA1、Ki67等。近年来,除了上述传统的抑癌基因的研究,越来越多新型的抑癌基因进入人们的视野,WWOX(WWdomain-containingoxi—doreductase)表达的失活和乳腺癌等肿瘤有着

密切的关系[5]。GeF等研究发现WWOX针对乳腺癌的抑癌作用和另一种癌基因KLF5(Kriippel-liketranscriptionfactor5)有着密切的关系,wwOX通过抑制KLF5蛋白的翻译水平的表达,从而抑制肿瘤细胞的增殖L6j。

3.自杀基因治疗

自杀基因是指将某些病毒或细菌的基因导入靶细胞中,其表达的酶可催化无毒的药物前体转变为细胞毒物质,从而导致携带该基因的受体细胞被杀灭。乳腺癌治疗研究中应用较多的有:(1)单纯疱疹病毒胸苷激酶(Hsv.TK)基因/更昔洛韦(GCV)系统引人肿瘤细胞后,无毒的GCV通过TK编码的胸苷激酶磷酸化成有毒的三磷酸化GCV(GCVTP)终止DNA复制,进而促进癌细胞的死亡[1。

问题与展望

乳腺癌基因治疗已取得了很大的进步,但要使其真正应用于临床综合治疗仍有众多问题亟待解决,但是相信随着相信随着分子生物学、免疫学技术、细胞生物学等基础学科的的飞速发展,以及与临床医生的密切合作,将会出现更多更有效的基因治疗方法,乳腺癌基因治疗前景将更加广阔。

基因工程药物研究未来的发展方向

基因工程药物目前的研究方向是通过关键技术的突破性研究,研发具有自主知识产权,对治疗人类重大疾病能够产生确切的疗效,毒副作用较小,可以进行大型规模化生产,质量较为稳定的、功能可控的基因工程药物,并且在原有基因工程药物的基础上,开发系列制剂,满足不同患者的需求,扩大临床治疗效果和应用范围.

基因工程药物开发研究是一个系统工程,技术含量高,决策管理风险大。但是只要在具体的研发过程中充分注意并解决好其内在问题,所投入的人力、财力就会发挥最大作用,成功的可能性就越大。相信随着基因组学、蛋白质组学的发展,人们对基础医学、基础药学、基础药理学、分子生物学、生物信息学等的认识也越来越深入,特别是对许多疾病的发病机理的认识越来越清楚,越来越多的基因产物将成为基因工程药物开发的目标,基因工程药物开发将会迎来一个美好的明天阻埘。

基因工程技术的运用使药品开发发生了根本性的转变,治疗性蛋白质分子设计与工程化已取得突破性进展,如今基因工程药物已进入第三代蛋白质治疗药物发展阶段。通过基因工程手段可以使过去一些生产困难的产品,如激素、酶、抗体等生物活性物质明显提高产品质量与收率,同时大幅度降低生产成本,提高患者的用药水平和生活质量。基因工程技术应用于药物研制是一项造福于人类的宏伟工程,随着科学技术的发展,基因工程药品必将会给人类带来巨大的经济效益和社会效益。

参考文献:

NaganoN,TaokaY,HondaD,HayashiM.Optimization Ofcultureconditionsforgrowthanddocosahexaenoicacid productionbyamarinethraustochytrid,Aurantiochytrium

JenssenH,HamillP,HancockRE.PeptideAntimicrobialA

gents[J].ClinMicrobialRev.2006,19(3):49卜511.

梁志刚,刘锡麟,李江,等.重组人生长激素对重度烧伤后细胞因子的影响[J].中华烧伤杂志,2002,18:49—51.

夏脊,刘泮,汗明一新亚型及干扰索麟的克隆与表达及≥抗病活性[A】

杨,Jq·I:Pql~i;,f·阁甜牧兽青年科技l作者学术研讨会论文集2001163.167 梁斌.国内动物干扰素的研究进展[J】.综述与专论,2005,35,(2):39-42 郭小宇,杨兰,李宪臻,等.提高微生物油脂生产能力的研究进展?.微生物学通报,20l3,4O(12):2295—2305.

李哲.转基因技术在我国生物制药领域的应用与发展[J].中国医药技术经济与管理.2008.Vol.2,No.6,49-52.

兰欣.我国生物制药的开发现状与展望[J].菏泽学院学报,2007,

4.Vol29.No.2.92-95.

GaoM,YinH,FeiZW.Clinicalapplicationofmi—croRNAingastriccancerinEasternAsianarea[J].

WorldJGastroenterol,2013,19(13):2019—2027.

[2]OzpolatB,SoodAK,Lopez—BeresteinG.Liposomal siRNAnanocarriersforcancertherapy[J].AdvDrugDe—

livRev,2014,66:110—116.doi:10.1016/;addr.2012.

12.008.

[3]HatakeyamaH,MurataM,SatoY,eta1.Thesystemic administrationofananti——miRNAoligonucleotideencap-- sulatedpH—sensitiveliposomeresultsinreducedlevelof

hepaticmicroRNA一122inmice[J].JControlRelease,

2014.173:43—50.

普通生物学教学大纲

《普通生物学》教学大纲 课程代码: 课程名称:普通生物学 英文名:Essential Biology 课程性质:普通教育选修课 适用对象:非生物科学类专业 学时:48学时 学分:3学分 考核方式:考查 先修课程:无特别要求 编写人: 审定人: 编写日期: 2012.1.12 一、课程的教学目的和教学要求 (一)教学目的 《普通生物学》是非生物科学类专业的一门普通教育选修课,其目的是让学生了解整个生物界和生命科学的概况,拓宽知识面,提高整体素质。在整个教学过程中,以生物体的基本结构和生命活动的基本规律为重点,以生物的演化为主线贯穿始终,以期让学生了解整个生命世界的发生、发展及演化规律,了解生命科学对人类的重要贡献以及对未来社会发展的重要作用,同时树立辨证的、发展的和普遍联系的观点,有利于提高学生独立思考问题、分析问题的能力。帮助学生树立环境意识和生态观念以及自然界和人类社会可持续发展的思想,为全面提高学生的素质服务。 (二)教学要求 1、拓宽学生知识面,掌握生物学的基础知识,了解生命科学不同领域的最新研究成果及其对人类社会发展的重要贡献。 2、掌握动、植物个体发育中组织、器官的形态建成及其对机能和环境适应的基本理论和基本知识。 3、了解生物界各大类群的主要特征及其演化规律。 4、了解生物与环境间的相互关系。

二.教学内容、课时分配与教学手段 三、主要参考书 《普通生物学》(面向21世纪课程教材),顾德兴主编.北京:高等教育出版社,2000

教学内容 绪论 本章教学基本要求: 掌握:什么是生命理解:生命的结构层次。 了解:关于生命本质的一些理论。 一、什么是生命 二、关于生命本质的一些理论 三、生物学的研究方法 四、生物学的分科 五、生命的结构层次 第一章细胞的形态、结构与功能 本章教学基本要求: 掌握:细胞结构:细胞膜和细胞壁、细胞核、细胞质和细胞器;生物膜——流动镶嵌模型 理解:细胞大小和数目,物质的穿膜运动:扩散、渗透、主动运输、内吞作用、外排作用。 了解:细胞连接 一、细胞大小和数目 二、细胞结构:细胞膜和细胞壁、细胞核、细胞质和细胞器 三、生物膜——流动镶嵌模型 四、物质的穿膜运动:扩散、渗透、主动运输、内吞作用、外排作用 五、细胞连接 第二章细胞分裂和细胞周期 本章教学基本要求 掌握:有丝分裂的概念及其生物学意义。 了解:癌细胞及其细胞分裂特点。

分子生物学实验课程教学大纲

分子生物学实验课程教学大纲 课程名称:分子生物学(Molecular Biology) 课程编号:1313072215 课程类别:专业课 总学时数:68实验时数:18 学分:3.5 开课单位:生命科学学院生物综合教研室 适用专业:生物技术 适用对象:本科(四年) 一、课程的性质、类型、目的和任务 分子生物学实验是生物技术专业一门必修的专业课,涵盖了分子与细胞生物学的许多内容,并与结构基因组学、功能基因组学、蛋白质组学、生物信息学、生物医学、分子病毒学、 分子免疫学等学科有着重要的联系。分子生物学实验课程教学以理论课教学为基础,理论与 实践相结合,加深对所学知识的理解,对实验仪器要求较高,因此开设本课程的目的是使学 生掌握分子生物学实验设备的操作方法,使学生更加牢固地掌握基础知识,更重要的是培养 学生的动手能力和科学研究能力,为学生学习生命科学中的其他相关课程作好基础准备。同 时也使学生具备分子生物学基本的实验技能,学会发现问题和解决问题的能力,为毕业后从 事生物学相关的科研和教学工作奠定基础。 本课程的任务是通过实验教学,使学生了解和初步掌握分子生物学实验技术的基本原理 和方法,教学内容包括植物基因组DNA的提取、琼脂糖凝胶电泳检测、PCR扩增目的基因 及聚丙烯酰胺凝胶电泳等。在实验内容和方法、技术上进行合理安排,力争让学生在有限的 课时中尽可能多地了解和掌握现代分子生物学基本理论和有关实验的基本方法和技术原理,并尽可能多地引进、介绍新的、先进的实验方法和技术,以开阔学生视野,提高学生的动手 能力和创造性思维能力,培养高素质的生命科学人才。 二、本课程与其它课程的联系与分工 学习和研究分子生物学的目的在于阐明生命活动的化学物质基础,并与其它学科配合,来揭示生命活动的本质和规律。《生物化学》、《细胞生物学》和《遗传学》是先修课程。 三、课程内容及教学基本要求 [1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”; 实验一植物基因组DNA的提取 植物基因组DNA的提取的目的及原理[1];植物基因组DNA的提取的实验步骤及操作方 法[3]; 作业:提取的DNA呈褐色的原因及解决办法? 实验二琼脂糖凝胶电泳 琼脂糖凝胶电泳的原理及操作步骤[1],琼脂糖电泳的实验方法[3]; 作业:琼脂糖凝胶电泳中电压如何设置? 实验三聚合式酶联反应(PCR)扩增目的基因

基因工程教学大纲

基因工程教学大纲 课程简介:基因工程技术是现代生物技术的核心技术。以生物化学、微生物学、细胞生物学、遗传学、分子生物学等学科为基础,引入工程学的概念,通过周密的设计,进行精确的实验操作,高效率地达到目的。本课程主要为本科生讲述基因工程技术中的基本原理和设计思路以及一些常用的实验方法。 教学目的:通过对基因工程的系统学习,使本科生对这门已经对社会经济发展产生了巨大影响,并已被誉为本世纪最具发展潜力的学科之一的新兴起的学科有所了解,清楚它的基本原理和工作思路,适应社会对高新技术的要求,为毕业生走向社会参加相关领域的生产和科研或报考研究生进行相关课题研究打下基础。 教学基本要求:基因工程是建立在生物化学、微生物学、细胞生物学、遗传学;分子生物学的基本原理和知识的基础之上的应用性科学。所以要求学生有扎实的上述课程基础。在听课的过程中随时复习所涉及的分子生物学基本原理,对没有听懂的知识点及时提问,以免影响对后面知识点的理解与掌握。在课程结束前要求每位学生在课余查阅相关的文献资料,并写一篇专题报告。 对讲述本门课程的教师要求有比较丰富的基因工程研究实践经验和阅读大量的相关参考书和科研文献,认真备课,根据基因工程技术的发展及时更新讲稿或课件。 课程基本内容及学时分配: 绪论(introduction to genetic engineering )(2 学时) 本章要点:掌握基因工程的含义和基因工程诞生的理论基础与技术突破。了解基因工程的发展和在社会生产中的应用。 第一节基因工程的诞生 一、基因工程的定义 二、基因工程诞生的理论基础 三、基因工程诞生的技术突破 四、基因工程的诞生 五、基因工程的特征 六、基因工程的主要操作内容 第二节基因工程的安全性 一、基因工程的安全隐患 二、重组DNA 研究的安全准则 第三节基因工程的应用 一、基因工程在农业生产中的应用 二、基因工程在工业中的应用 三、基因工程在医药上的应用 四、基因工程在环境保护中的应用第四节基因工程技术的商业化发展 一、商业投资支持现代生物技术研究 二、基因工程商业化特点 第一章基因操作的主要技术原理(4 学时) 本章要点:掌握DNA 提取、DNA 电泳、分子杂交、PCR 扩增和DNA 序列测定的技术原理。了解酵母双杂交系统的原理。 第一节DNA 的提取与纯化 一、质粒DNA 的提取 二、基因组或其他DNA 的提取 三、DNA 的定量和纯度测定 四、DNA 分子量的估计 第二节DNA 的凝胶电泳 一、电泳的基本原理

遗传学教学大纲

教学大纲 《遗传学》教学大纲 学时数:101 学分:4 适用专业:生命科学 一、课程的性质、目的和任务 课程性质:遗传学是生物科学专业的一门重要的专业基础课程,是研究遗传物质的结构、功能与变异,遗传信息的传递、表达与调控的科学,是当今自然科学领域中发展最为迅猛、最活跃的学科之一,是生命科学各门学科的核心。 教学目的:掌握遗传学的基本原理和系统的遗传学知识,了解其发展历程和最新进展;理解遗传学的基本技术、研究方法和手段,并了解遗传学在工、农业等生产领域中的应用;学会利用遗传学的基本原理、基本技术、研究方法和手段分析、阐述有关遗传现象,为今后进一步深造和工作打下必要的基础。 主要任务:全面系统地讲授遗传学的基本原理和遗传学分析的基本方法,同时介绍现代遗传学发展的最新成就,使学生对遗传物质的本质、遗传物质的传递、遗传物质的变异等基本规律有比较全面的、系统的认识,并能应用其基本原理分析遗传学数据,解释遗传学现象,同时对遗传信息的表达与调控、遗传工程有一个较为全面的了解。 二、课程教学的基本要求 通过本课程学习,要求学生掌握遗传学的基本原理,掌握对动、植物和微生物进行遗传分析的一般方法,掌握基本的实验操作技术,为进一步学习有关专业课程和遗传学的分支学科奠定较好的遗传学基础知识。 三、课程教学内容 第一章绪论 ㈠教学基本要求: 1. 掌握遗传、变异的概念和遗传学的概念; 2. 理解遗传学研究内容和任务; 3. 了解遗传学发展的主要阶段,以及有哪些重要的科学家做出了重大贡献; 4. 了解遗传学在国民经济中的地位,从工、农、医、环境保护等方面介绍遗传学的应用。 重点:遗传学发展里程碑 ㈡讲授内容: 第一节遗传学的研究对象和任务 遗传和变异;遗传、变异与环境的关系;遗传、变异与选择在生物进化与新品种选育中的作用;遗传学的任务。 第二节遗传学的发展简史 古代遗传学知识的积累;近代遗传学的奠基;遗传学的建立和发展:遗传学的建立及各分支学科的发展。 第三节遗传学在科学研究和生产实践中的作用 遗传学在生命科学,生物进化领域,动植物、微生物遗传改良及人类医药卫生中的应用。 第二章孟德尔定律 ㈠教学基本要求: 1. 掌握分离规律、自由组合规律的遗传实验、解释和验证方法; 2. 掌握分离规律、自由组合规律的实质; 3. 掌握单位性状、相对性状、分离线项、基因型和表现型的概念; 4. 掌握单位性状、相对性状、基因型和表现型的概念;

基因工程的课程教学大纲设计

《基因工程》课程教学大纲 一、课程基本信息 课程代码:250380 课程名称:基因工程 英文名称:Gene Engin eeri ng 课程类别:专业课(必修课) 学时:45学时,27学时理论讲授,18学时实验,开课学期第五学期。 学分:2.0 适用对象:生物技术专业 考核方式:考试(平时成绩占总成绩的30% 先修课程:生物化学,分子生物学,遗传学,细胞工程。 二、课程简介 “基因工程”是生命科学的重要学科,课程的主要内容包括基因工程的基本原理和方法:目的基因的获得,基因克隆的工具酶、载体,重组分子、重组子的鉴定与表达。课程的主要目的在于使学生掌握基因工程的意义、基因工程操作的基本理论,技术和应用,为今后开展基因工程研究打下理论基础。 Gene Engin eeri ng is one of the most importa nt courses for life scienee students. The main content includes general theories and tech niq ues: obta inment of the target gene, tool en zymes and vectors, molecule recomb in ati on, and its expressi on and test. The main purpose of the course is let students know significant, general theories, techniques and applications of GeneEngineering, so to makesolidity knowledge base for further research. 三、课程性质与教学目的 基因工程是4年制生物技术专业的专业课。本课程是现代生物技术中最主要的一门技术,同时与其他工程技术相辅相成。通过本课程学习将使学生了解基因工程的研究内容,掌握基因工程的操作流程与基因工程研究的基本技术路线和原理,并熟悉基因工程在植物、动物及医药工业等方面的应用。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握基因工程的概念及其与生物工程的关系 2.掌握基因工程的操作流程与基因工程研究的基本技术路线 3.了解基因工程的研究内容 (二)教学内容 第一节

(完整版)生物工程概论教学大纲

《生物工程概论》教学大纲 课程名称:生物工程概论 英文名称:Introduction to Bioengineering 课程编码: 学分:2 总学时:36 理论学时:36 学时 实验学时:0 学时 适用专业:非生物类本科专业 执笔人: 审核人: 一、课程的性质、地位与任务生物工程概论是生物类院校一些非生物学专业的必修课程之一。 20 世纪以来生命科学的研究迅速发展,从而推动了农业、林业、工业、医药卫生等多个领域的发展。本课程介绍各项生物工程技术的基本原理和基本知识,使非生物专业的学生能够了解生物工程的基本知识框架,促进其他学科的学生对生命科学的关注,为他们了解生物工程相关的基础知识提供平台,对促进学科交叉、拓宽学生知识面,提高学生的高科技意识和创新思维方式,增强学生适应社会能力及择业机遇,都有着重要的现实意义。 二、教学目的与要求本课程为全校非生物专业学生的必修课。通过本课程的学习,了解生物技术和生物工程的概念、研究对象、研究内容及与日常生产、生活的关系。掌握五大生物工程技术的原理与方法, 并对生物工程的学科发展情况有初步的认识。 三、教学学时分配表

第一章 绪论 本章教学目的和要求: 通过本章的教学,让学生了解生物工程的概念、学科发展情况的基本内容,激发学生的学 习兴趣,了解本学科学习的大致内容。 重点: 1. 生物技术的概念; 2. 生物技术的种类及其相互关系; 3. 传统生物技术与现代生 物技术的区别。 难点:生物技术的概念及其包含的内容 教学目的和要求: 学习基因工程的概念、主要步骤和相关的分子生物学基础知识(基因工程诞生的三大理论 和三大技术) 。了解常用工具酶的催化反应机制及主要用途,三种常用基因克隆载体(质粒、λ 噬菌体和粘粒)的一般生物学特性、结构及其应用,目的基因的制备方法,重组体的构建及导 入受体细胞的方法,重组子的筛选与鉴定方法。通过学习为进一步掌握生物技术相关知识和从 事基因工程工作打下基础,并对基因工程的发展动态有初步的了解。 重点:基因工程的主要操作步骤,主要工具酶的催化机理和用途,三类常用载体的特点和 主要用途,目的基因克隆的主要方法,重组 DNA 的导入受体细胞的途径,重组克隆的筛选与鉴 定方法。 难点:目的基因的克隆策略,基因表达载体构建的策略和方法,重组克隆筛选鉴定方法。 教学内容: 、 DNA 的化学组成和分子结构 2 学时) 教学内容: 第一节 生物工程与生物技术的含义 第二节 生物技术的产生 一、传统生物技术 二、近代生物技术 三、现代生物技术 第三节 生物工程的基本内容 一、基因工程 二、细胞工程 三、酶工程 四、发酵工程 五、蛋白质工程 六、五大生物工程技术之间的联系 第 四节 生物技术涉及的学科及其技术 第 五节 现代生物技术的应用与产业化 一、 生物技术在各个领域的应用 二、应用生物技术的产业化及其基本特 征 第六节 现代生物技术的发展现状 0.25 学时 0.25 学时 0.5 学时 0.25 学时 0.25 学时 0.25 学时 第七节 现代生物技术对于人类生活、社会生存的重要影响 第二章 基因工程 第一节 基因工程的概念 第二节 DNA 的结构与功0.5 0.5 学时 学时 0.25 学时 4 学

基因工程综合实验教学大纲

《基因工程综合实验》教学大纲 学时:54学时学分:3学分课程性质:必修 实验个数:7个适用专业:生物技术,生物工程大纲执笔人:朱常香大纲审定人:郑成超 一、实验课的性质与任务 本课程是一门专业实验课。该课程以植物基因工程的研究程序为主线,综合了目的基因的分离、克隆,载体的构建,目的基因转化、转基因植株的鉴定等方面的实验内容,在注重专业性和可操作性的前提下突出先进性和系统性,加强教学内容的选择性。通过本课程的学习和实践,使学生对基因工程的全过程有系统、明确的认识,达到熟识、理解并掌握基因工程的实验原理和操作方法,提高分析问题和解决问题的能力,开拓创新能力,为从事生物技术及其相关领域的科学研究工作打下基础。 二、实验的目的与要求 本课程的目的是培养高年级本科生及研究生进行基因操作的能力。教学中,要求调动教学双方的主观能动性,组织学生参加实验准备,让学生和教师共同讨论理论和实验问题,指导学生分析总结实验结果,学会正确书写科学报告(论文)。

三、实验项目及内容提要

四、实验报告的格式 实验报告的撰写要求使用专用实验报告纸。实验报告的内容应包括:实验目的,实验的基本原理,实验用的仪器设备及试剂,实验操作程序,实验结果,实验应注意事项。 五、本课程考核方式、方法及实验成绩评定方法 考核可采取闭卷、开卷、课程论文等形式,或多种形式相结合,对学生的学习情况做出全面科学的评价。 成绩评定把学生的实际动手能力放在重要地位。根据考试情况、实验报告撰写情况及平时表现给予综合评定。 六、实验应配套的主要仪器设备及台(套)数

附:教学参考书目 1、使用实验指导 《基因工程综合实验》操作手册。温孚江,朱常香,宋云枝等,2003。 2、参考书目 (1)《分子克隆实验指南》(第三版)。J·萨姆布鲁克,D·W·拉塞尔著,黄培堂等译。科学出版社,2002。 (2)《基因工程原理与技术》。王关林,方宏筠主编,科学出版社,1998。

基因工程原理与技术思考题

Chapter I Introduction 1)什么是基因?基因有哪些主要特点? 基因是一段可以编码具有某种生物学功能物质的核苷酸序列。 ①不同基因具有相同的物质基础.②基因是可以切割的。③基因是可以转移的。④多肽与基因之间存在 对应关系。⑤遗传密码是通用的。⑥基因可以通过复制把遗传信息传递给下一代。 2)翻译并解释下列名词 genetic engineering遗传工程 gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。 gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。 recombinant DNA technique重组DNA技术 gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。 molecular cloning分子克隆 3)什么是基因工程?简述基因工程的基本过程?p2 p4 4)简述基因工程研究的主要内容?p5 5)简述基因工程诞生理论基础p2和技术准备有哪些p3? 6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 否,密码子简并性 7)举例说明基因工程技术在医学、农业、工业等领域的应用。 医学:人胰岛素和疫苗 农业:抗虫BT农药 工业:工程酿酒酵母

Chapter ⅡThe tools of trade 1)什么是限制性核酸内切酶?简述其主要类型和特点? 是一种核酸水解酶,主要从细菌中分离得到。类型特点p11 2)II型核酸内切酶的基本特点有哪些p12-14?简述影响核酸内切酶活性的因素有哪些 p14? 3)解释限制酶的信号活性?抑制星号活性的方法有哪些? 4)什么是DNA连接酶p15?有哪几类p16?有何不同p16? 5)什么叫同尾酶、同裂酶p12?在基因工程中有何应用价值? 同裂酶:识别位点、切割位点均相同,来源不同。在载体构建方面往往可以取得巧妙的应用。应用较多的同裂酶比如Sma1和Xma1,它们均识别CCCGGG,但前者切后产生钝末 同尾酶:来源各异,识别序列各不相同,但切割后产生相同的粘性末端。由同尾酶(isocaudomer)产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。 6)什么是DNA聚合酶?根据DNA聚合酶使用的模板不同,可将其分为哪两类?各有什么活 性?p17-18 聚合酶:在引物和模板的存在下,把脱氧核苷酸连续地加到双链DNA分子引物链的3‘-OH 末端,催化核苷酸的聚合作用。 ①依赖于DNA的DNA聚合酶 ②依赖于RNA的DNA聚合酶 7)Taq DNA聚合酶:是一种从水生嗜热菌中分离得到的一种耐热的dna聚合酶,具有5-3聚 合酶活性和3-5外切酶活性,在分子中主要用于PCR。 逆转录酶:RNA指导的DNA聚合酶, 8)Klenow片段的特性和用途有哪些?举例说明。p17 9)名词解释:S1核酸酶、核酸外切酶、磷酸化酶激酶、 甲基化酶

分子生物学教学大纲--老版DOC

分子生物学 Molecular Biology 课程编号:0622013B 学分:3.5 学时:61(其中:讲课学时: 48实验学时:13上机学时: 先修课程:生物化学、遗传学、微生物学 适用专业:生物科学(本科) 教材:《基础分子生物学教程》(第二版)赵亚华编著科学出版社 2004 一、课程的性质与任务 课程的性质:分子生物学是一门近年来发展迅速并且在生命科学领域里应用越来越广泛、影响越来越深远的一个学科。本课程是生物科学专业主干课。分子水平的生物学研究,正在越来越多地影响各个传统生物科学领域。 课程的任务:通过学习本课程,要求学生能进一步加深对生命本质的认识,引导他们进入生物科学发展的前沿,并理解有关基础理论的实践意义和应用前景,使学生的学科知识由广度向纵深延伸。 为今后从事研究或教学工作打好基础。要求学生掌握基因概念在分子水平上的发展与演变、基因的分子结构和特点、基因的复制、基因表达(在转录、翻译水平)的基本原理、基因表达调控的基本模式、分子生物学技术等。另外,将介绍人类基因组计划、基因芯片、分子杂交等分子生物学前沿知识。 二、课程的基本内容及要求 第一章绪论 1.课程教学内容

(1)十九世纪和二十世纪生命科学的回顾 (2)分子生物学的概念 (3)二十一世纪分子生物学展望 2.课程重点、难点 分子生物学的概念、研究内容和发展历史 3.课程教学要求 (1)理解分子生物学研究的内容; (2)掌握分子生物学领域一些具有里程碑意义的事件。 第二章核酸的结构和功能 1.课程教学内容 (1)细胞内的遗传物质 (2)核酸的化学组成和共价结构 (3)DNA的二级结构 (4)DNA分子的高级结构 (5)真核生物的染色体及其组装 (6)RNA的结构和功能 (7)核酸的变性、复性和分析杂交 2.课程重点、难点 DNA分子的高级结构、RNA的结构与功能。

普通遗传学 教学大纲

1、课程概况 课程学时:讲课56 课程学分:3.5 课程分类:必修 适用专业:植物生产类各专业 课程负责人:刘庆昌 2、课程内容与结构 遗传学是研究生物遗传和变异的一门科学,是生物科学中一门体系十分完整、发展十分迅速的理论科学,同时又是一门紧密联系生产实际的基础科学。《普通遗传学》是植物生产类各专业的骨干基础课程,在这些专业的本科生教学计划中占有极为重要的地位。 本课程全面系统地介绍遗传物质的结构与功能、遗传物质的传递、遗传物质的表达与调控、遗传物质的进化等,包括遗传的细胞学基础、遗传物质的分子基础、孟德尔遗传、连锁遗传和性连锁、基因突变、染色体结构变异、染色体数目变异、数量性状的遗传、近亲繁殖和杂种优势、细菌和病毒的遗传、细胞质遗传、基因工程、基因组学、基因表达的调控、遗传与发育、群体遗传与进化等16章。通过本课程学习,使学生全面掌握遗传学的基本概念、基本原理、基本分析方法,了解遗传学的最新发展,学会应用遗传学基本原理分析一般遗传问题,为进一步学习育种学及其他有关课程奠定理论基础。 3、教学大纲 绪言(2学时) 1、遗传学研究的对象,遗传、变异、选择 2、遗传学的发展, 遗传学的发展阶段,主要遗传学家的主要贡献 3、遗传学的重要作用 第一章遗传的细胞学基础(3学时) 1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体 2、染色体的形态、结构和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析 3、细胞的分裂:细胞周期、有丝分裂过程及遗传学意义、细胞的减数分裂:减数分裂过程及遗传学意义 4、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖 5、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期 第二章遗传物质的分子基础(4学时)

基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

基因工程药物教学大纲

基因工程药物教学大纲 课程名称:基因工程药物课程编号:0235203 学分: 1.5 学时数:28 考核方式:N+2。笔记10%,考试成绩占40%,过程成绩N占50%。 先修课程:生物化学、微生物学、基因工程等。 课程说明:专业选修课。 一、课程的性质 基因工程技术, 不仅使整个生命科学的研究发生了前所未有的深刻变化, 而且也给工农业生产和国民经济发展带来了巨大的经济和社会效益, 给人类进步带来了新的契机。目前,基因工程学正以新的势头继续向前迅猛发展, 成为当今生物科学研究诸领域中最具生命力、最引人注目的前沿学科之一, 特别是基因工程在医药生物技术领域中的研究和应用,其意义深远、潜力之巨大。 二、课程的目的与教学基本要求课程目的:为了适应生物工程技术的迅速发展、拓宽专业面, 为了使学生对当今世界生物工程领域日新月异地发展的高新技术有更多的了解, 进一步扩大学生的知识面和视野,同时为他们今后从事这方面的工作和研究打下一定理论基础, 特开设该课程。 课程任务: 通过讲授基因工程制药的概貌及国内外研究进展、基因工程制药常用的工具酶和克隆载体、基因工程药物无性繁殖系的组建以及基因工程药物的生产和质量控制等, 使学生对基因工程的基本理论、基本步骤和操作技术以及基因工程药物的生产技术原理和方法有比较系统的了解, 初步掌握基因工程制药有关基本知识。 三、课程适用专业

本课程适用于生物技术专业等相关专业。 四、教学内容、要求与学时分配 第一章基因工程制药概述( 2 学时) 第一节:基因工程的概貌简述基因工程的诞生和兴起,基因工程的定义、特点与基本步骤,基因工程早期的开创性研究成就,基因工程的应用与发展趋势等。第二节:基因工程与生物制药简述基因工程药物的研究和发展概况,介绍应用基因工程和蛋白质工程技术研究开发的几种新型基工药物。 第二章基因工程制药常用的工具酶( 2 学时) 第一节:限制性核酸内切酶简述限制酶的发现、限制酶的种类、限制酶的命名和限制酶的特性与用途等。 第二节DNA 连接酶重点介绍DNA 连接酶连接作用的特点,基因工程中常用的连接酶( T4 噬菌体DNA 连接酶、大肠杆菌DNA 连接酶)的酶活性和用途,DNA 连接酶连接作用的分子机理。 第三节DNA 聚合酶重点介绍大肠杆菌DNA 聚合酶1、Klenow 大片段酶、T4 噬菌体DNA 聚合酶、TaqDNA 聚合酶及、反转录酶等的酶活性和用途。 第四节DNA 修饰酶重点介绍末端脱氧核苷酸转移酶、碱性磷酸酶、T4 噬菌体多核苷酸激酶等的酶活性和用途。 第五节单链核酸内切酶重点介绍S1核酸酶、Bal31核酸酶等的酶活性和用途。 第三章基因工程制药常用的克隆载体( 4 学时) 第一节质粒载体内容:质粒的定义、质粒DNA 分子的特性、质粒载体的改造及构建。重点介绍基因工程制药中常用的几种质粒载体的结构和用途,主要包括 pBR322 及其衍生栽体、pUC 系列载体。 第二节入噬菌体载休内容:入噬菌体的基本特性、入噬菌体基因组的结构与功能、

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

《基因工程原理与技术》标准答案及评分标准.0001

精品文档 《基因工程原理与技术》标准答案及评分标准 一、名词解释(本大题共5小题,每题2分,总计10分) 限制性内切酶的Star活性:限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH 等条件下才表现最佳切割能力和位点的专一性。如果改变反应条件就会影响酶的专一性和切割效率,称为星号(*)活性。 受体细胞:又称为宿主细胞或寄主细胞等,从试验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从试验目的讲是有应用价值和理论研究价值的细胞 T-DNA是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA 该DNA片段上的基因与肿瘤的形成有关。 克隆基因的表达:指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过 程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。 a -互补:3 -半乳糖苷酶(B -gal)是大肠杆菌lacZ基因的产物,当培养基中的一种色素元(X-gal )被3 -gal切割后,即产生兰色。大肠杆菌的3一半乳糖苷酶由1021个氨基酸构成,只有在四聚体状态下才有活性。大肠杆菌lacZ基因由于a区域缺失,只能编码一种在氨基端截短的多肽,形成无活性的不完全酶,称为a受体;如果载体的lacZ 基因在相反方向缺失,产生在羧基端截短的多肽,这种部分3 -半乳乳糖苷酶也无活性。 但是这种蛋白质可作为a供体。受体一旦接受了供体(在体内或体外),即可恢复3 -半乳糖苷酶的活性,这种现象称为a互补. 由载体产生的a供体能够与寄主细胞产生 的无活性的a受体互作形成一种八聚体,从而恢复3 -半乳糖苷酶的活性。如果培养基 中含有X-gal的诱导物IPTG时,凡是包含有3 -半乳糖苷酶活性的细胞将转变为蓝色,反之不含有这种酶活性的细胞将保持白色。 、填空题(本大题共7小题,每空1分,总计20 分) 1、质粒按自我转移的能力可分为—接合型—质粒和—非接合型—质粒;按复制类型可分为松 弛性质粒和严紧型质粒。 2、为了防止DNA的自身环化,可用碱性磷酸酶除去双链DNA 5'—端的磷酸基团 。 3、人工感受态的大肠杆菌细胞在温度为_0匸—时吸附DNA在温度为_42乜__ 时摄人 DNA 4、仅克隆基因(DNA片段)用途而言,最简单的质粒载体也必需包括三个组成部分: 复制区:含有复制起点__、选择标记:主要是抗性基因 ________ 、__克隆位点:便于外源_ DNA的插入_。另外,一个理想的质粒载体必须具有低分子量。 5、Southern blotting 杂交能够检测外源基因是否整合进受体细胞基因组;外源基 因的转录表达需要通过—northern_杂交或_ RT-PCR_来揭示;而外源基因_____ 翻 译—水平的表达则需通过免疫学检测或Western杂交才能揭示,其使用的探针是 —蛋白质____ 。 6、外源蛋白在大肠杆菌中的表达部位有—细胞质_、_ —周质_、一细胞外 _。 7、Vir区基因的激活信号有三类,它们是—酚类化合物_、_中性糖和酸性糖_、— _ pH 值_。 简答题(本大题共7 小题,总计50 分) 1欢迎下载

《基因工程》教学大纲

《基因工程》教学大纲 课程编号:233204 课程名称:基因工程 总学时数:48 实验学时:0 先修课及后续课:先修课为遗传学,分子生物学;后续课为酶工程 考核方式:“N+2”,其中“N”包括课程综述(10%)、期中测验(15%)、课程实验设计(10%),“2”为课堂笔记(10%)和期末考试(40%,闭卷)。 一、说明部分 1. 课程性质:生物技术专业课,必修 2. 教学目标及意义 基因工程技术是现代生物技术的核心技术。以分子遗传学、微生物学、分子生物学等学科为基础,引入工程学的概念,通过周密的设计,进行精确的实验操作,高效率地达到目的。通过对基因工程原理的系统学习,使本科生对这门已经对社会经济发展产生了巨大影响,并已被誉为本世纪最具发展潜力的学科之一的新兴起的学科有所了解,弄通它的基本原理和工作思路,适应社会对高新技术的要求,为毕业生走向社会参加相关领域的生产和科研或报考研究生进行相关课题研究打下基础。 3. 教学内容及教学要求 基因工程是建立在分子遗传学、生物化学、微生物学、细胞生物学的基本原理和知识的基础之上的应用性科学。本课程主要为本科生讲述基因工程技术中的基本原理和设计思路以及一些常用的实验方法。另外还介绍了基因工程技术在医药卫生和工农业生产中的应用,以及基因工程应用的安全性问题。 所以要求学生有扎实的上述课程基础。在听课的过程中随时复习所涉及的分子遗传学基本原理,对没有听懂的知识点及时提问,以免影响对后面知识点的理解与掌握。在课程结束前要求每位学生在课余查阅相关的文献资料,并写一篇专题报告。 对讲述本门课程的教师要求有比较丰富的基因工程研究实践经验和阅读大量的相关参考书和科研文献,认真备课,根据基因工程技术的发展及时更新讲稿或课件。 4. 教学重点,难点 重点:基因的重组;重组体的鉴定;克隆基因的表达调控 难点:克隆基因的表达调控 5. 教学方法与手段 多媒体,实物投影仪等。 6. 教材及主要参考书: 教材:马建岗主编《基因工程学原理》(第三版),西安交通大学出版社,2013. 参考书:楼士林等编著《基因工程》(第一版),科学出版社2001.(21世纪高等院校教材,国家理科基地教材) 吴乃虎《基因工程原理》上下册(第二版),科学出版社,2002. 二、正文部分 第一章绪论(introduction to genetic engineering) 一、教学要求 了解:基因工程的发展和在社会生产中的应用。 掌握:基因工程的含义和基因工程诞生的理论与技术基础。 二、教学内容: 第一节基因工程的诞生

《基因工程》课程简介

《基因工程》课程教学大纲 《Genetic engineering》outline for Lecture 一、课程简要说明 1、课程编号: 2、课程名称:基因工程 3、课程英文名称:Genetic engineering 4、修读类型:必修 5、课程层次:专业核心课 6、学分/学时:3.5学分/ 63学时 7、考核计算方式:平时成绩(10%),实验成绩(20%),期末考试(70%) 8、开课学期:三年级第六学期 9、适用专业:生物科学、生物技术 10、先修课程:微生物学、生物化学、分子生物学、植物组织培养 11、主要教学方法和教学设备要求:多媒体教学,双语教学 12、教材及主要参考书:教材选用:《An introduction to genetic engineering》,Desmond S.T. Nicholl, 2002 参考书:1)《基因工程》,楼士林,科学出版社,科学出版社2002年第一版(21世纪高等院校教材,国家理科基地教材) 2)吴乃虎《基因工程原理》上下册,科学出版社2002年第二版 13、大纲制定时间:2006年9月1日 二、课程的性质与任务 1、课程简介基因工程技术是现代生物技术的核心技术。以分子遗传学、生物化学、微生物学、细胞生物学等学科为基础,引入工程学的概念,通过周密的设计,进行精确的实验操作,高效率地达到目的。本课程主要为本科生讲述基因工程技术中的基本原理和设计思路以及一些常用的实验方法。另外还介绍了基因工程技术在医药卫生和工农业生产中的应用,以

及基因工程应用的安全性问题。 2、课程性质基因工程是生物工程的核心技术,是最具生命力和最引人注目的前沿学科之一。该技术的广泛应用必将对工业、农业、医疗卫生以及生命科学本身的研究和社会的发展产生深刻的影响。通过本课程的学习使学生掌握基因工程的基本原理和方法,内容涉及DNA 重组技术、分子克隆技术、外源基因的稳定高效表达技术以及微生物、动植物基因工程的操作方法等等,以拓宽学生生命科学的知识面,为日后熟练驾驭该技术服务于科学研究及国民经济打下坚实的基础。 基因工程是获取、整理、破译、编辑和表达生物体遗传信息(基因)的一种操作平台与技术,它以细胞生物学、分子生物学和分子遗传学的基本理论体系为指导,在基因的分离克隆、基因表达调控机制的诠释、基因编码产物的产业化、生物遗传性状的改良乃至基因治疗等方面正日益显示出愈来愈高的实用价值。本课程从基因的表达调控机制入手,将DNA 重组技术归纳为切、接、转、增、检五大基本操作单元,进而按照受体细胞的生物学分类,逐一展开各系统基因工程的原理和应用。重点讲述基因工程技术应用的策略和思路,并力求以图解的方式取代繁琐的描述,是本课程努力体现的两大特色。本课程全程采用多媒体教学手段进行。 3、教学目的通过对基因工程原理的系统学习,使本科生对这门已经对社会经济发展产生了巨大影响,并已被誉为本世纪最具发展潜力的学科之一的新兴起的学科有所了解,弄通它的基本原理和工作思路,适应社会对高新技术的要求,为毕业生走向社会参加相关领域的生产和科研或报考研究生进行相关课题研究打下基础。 4、教学基本要求基因工程是建立在分子遗传学、生物化学、微生物学、细胞生物学的基本原理和知识的基础之上的应用性科学。所以要求学生有扎实的上述课程基础。在听课的过程中随时复习所涉及的分子遗传学基本原理,对没有听懂的知识点及时提问,以免影响对后面知识点的理解与掌握。在课程结束前要求每位学生在课余查阅相关的文献资料,并写一篇专题报告。对讲述本门课程的教师要求有比较丰富的基因工程研究实践经验和阅读大量的相关参考书和科研文献,认真备课,根据基因工程技术的发展及时更新讲稿或课件。本课程从本学年开始采用双语教学。

相关文档
最新文档