高效率PWM音频功率放大器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效率PWM音频功率放大器
本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放大器部分采用D类功率放大器确保高效,在5V供电情况下输出功率大于1W,且输出波形无明显失真,低频输出噪声电压很低(输出频率为20kHz以下时,低频噪声电压约1mV);信号变换部分采用差分放大电路,将双端输出信号变为1∶1的单端输出信号;输出功率显示部分用乘法器电路及带A/D转换的电压表头显示功率值,电路简单合理;保护电路部分采用电流互感器监控,实现输出短路保护。
1、题目分析及设计方案论证与比较
根据题目要求,整个系统由D类PWM功率放大器、信号转换电路及功率测量显示装置组成。其中核心部分为D类PWM功率放大器。之所以选择此方案是因为D类PWM功放能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高频干扰,从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图3.1所示。下面我们分别论述框图中各部分设计方案。
图3.1 系统组成框图
2、总体设计思路
根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器(即D类功率放大器)。脉宽调制电路(PWM)的脉宽调制原理如图3.2所示。
图3.2 脉宽调制原理图
一般的D类放大器电路的工作原理是用“振荡发生器”输出的三角波与来自外部的模拟音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。在音频信号的前半周
(正电压),脉宽调制方波的占空比小于50%,使高端MOS管饱和导通,输出瞬间脉冲电压V ec-0=V cc。在音频信号的后半周(负电压),低端MOS饱和导通,电压0-V ec=-V cc。将输出的脉宽调制电压经LC低通网络滤除高频成分,在负载端得到与输入模拟信号相似但被放大了的电压。
D放大器虽有较大难度但可大大提高效率,且失真很小,波形放大效果良好,而且配合以较好的滤波网络克服了高频干扰。
系统原理框图如图3.3所示。可采用AD521实现双端输入变单端输出的信号变换。在测试部分采用乘法器将变换电路输出的信号电压加以平方,经分压送至表头显示。
图3.3 系统原理框图
第1节PWM功率放大器
实验一三角波发生器及误差放大器用555芯片构成三角波发生电路,如图3.4所示。
图3.4 三角波发生电路
本设计利用555组成的多谐振荡器的C4充放电特性加以改进,实现C4的线性充放电获得三角波。利用VT1、VT2和R6构成的恒流源对C4实现线性充电,利用VT3、VT4和R7构成的恒流源实现对C4的放电,电容C4的三角波经VT5射极跟随器输出该振荡器的震荡频率f=0.33/(116+R7)C4。按图中各元件的参数,我们得到了一个线性很好、频率约为100kHz、峰峰值为2.18V的三角波,将其输入到脉宽调制比较器的一个输入端。
该部分的作用是将输入信号按比例放大以便与三角波比较,通过以OP-37运算放大器为核心加上相关元件形成反向比例放大电路,电路如图3.5所示。
图3.5误差放大器电路
R2、R4共同分压将OP-37③脚的电压抬至2.5V,这样可使放大后的波形中点在2.5V处,且是下对称无失真,放大比例系数由R3和R1决定,即A=R3/R1,C1、C3起隔直作用,电容C2的作用是用来限制通频带的宽度。C2越大,频带越窄;C2越小,频带越宽。
实验二脉宽调制比较器及死区时间控制
该部分的作用是将误差放大器输出的波形与三角波发生器输出的波形进行比较。输出一个脉宽与误差放大器输入信号幅值成比例的可变脉宽方波。三角波频率远远高于输入信号频率,相当于对输入信号采样点大大增加,从而保证还原后的波形不失真。
其中核心器件为LM139,该芯片为四比较器集成电路。这里所要注意的是必须使三角波和音频信号的电压中心线重合,即LM139的④、⑤管脚的静态电位相同,否则脉宽调制信号的占空比将不能在要求的范围内变化。我们通过可调电阻R12来实现这一要求。脉宽调制比较器电路如图3.6所示。
图3.6 脉宽调制比较器电路
提示:死区时间不应超过调制脉冲的1/10,否则输出的波形将出现明显的失真;另外,死区时间也不可过短,否则桥路管子将会共同导通,在极短的时间内大电流将从MOS1、MOS2和MOS3、MOS4同时流过,造成电能的损耗,使整体的效率下降,甚至烧毁管子。所以死区时间的建立是整个D类放大器性能提高的关键之一。电路如图3.7所示。
图3.7 时间建立电路
实验三高速门开关和滤波网络
高速门开关和滤波网络电路如图3.8所示。驱动电路除注意其驱动能力外,还应注意要使其反应尽量快,提高对窄脉冲的反应,以保证对波形的完整还原。在高速低耗的MOS管的D极和S极间反向并联上高速二极管(VD1~VD4),使电感(L1、L2)上产生的电流在死区时间内快速泄放,以保证下一个调制脉冲的电流正常工作,否则桥臂会出现电流的停滞,输出波形将会出现失真、幅值过小等。
滤波网络的主要功能是滤除高次谐波,还原调制波中所带载的低频信号。滤除效果的好坏主要取决于与负载相并联的电容的大小,电容越大,滤波效果越好,但是电容越大,放大器的频带宽度、放大倍数及频率都会受到影响。通过反复实验,我们选择了4.7μF的电容,使上述三者达到了较好优化。此外,电感大小也是影响这三者的重要因数,电感相对小时,会大大提高三者的指标,但过小又会降低高次谐波的滤除效果,实验证明选择20μF的电感较为合适。
图3.8 高速门开关和滤波网络
第2节功率测量与保护
实验四信号变换电路及保护电路
信号变换电路如图3.9所示。精密放大器AD521有高输入阻抗、悬浮输入、高共模抑制比、高精度、低漂移和低噪声的特点。联入网络之前,应首先对AD521进行调零,即输入短路时,调整④、⑤、⑥管脚间10kΩ的滑动变阻器,使输出为零。接入网络后,1MΩ电阻和100kΩ电阻的分压比为1/10,所以放大器的放大倍数应为10才能使变换电路总的放大倍数为1。通过调整5kΩ的滑动变阻器使放大器的放大倍数为10。这样就得到了一个放大倍数为1的信号变换电路,将功率放大器双端输出信号转换为单端输出。
图3.9 信号变换电路
保护电路如图3-10所示。用电流互感器取主电路电流,经变换后送到滞回电压比较器,形成短路保护信号,送至高速开关电路,锁定脉宽调制信号输出,达到可靠的输出短路保护功能。
图3-10 保护电路