内蒙古自治区阿盟一中2018-2019年11月高考数学模拟题
阿巴嘎旗一中2018-2019学年高三上学期11月月考数学试卷含答案

阿巴嘎旗一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .42. 已知函数f (x )的定义域为[﹣1,4],部分对应值如下表,f (x )的导函数y=f ′(x )的图象如图所示.x ﹣10234f (x )12020当1<a <2时,函数y=f (x )﹣a 的零点的个数为()A .2B .3C .4D .53. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( )A .在[﹣7,0]上是增函数,且最大值是6B .在[﹣7,0]上是增函数,且最小值是6C .在[﹣7,0]上是减函数,且最小值是6D .在[﹣7,0]上是减函数,且最大值是64. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为()A .y=±xB .y=±3xC .y=±xD .y=±x5. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( )A .1B .2C .3D .6. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e u r u u r 12AB e ke =-u u u r u r u u r 123CD e e =-u u u r u r u u r,,A B D ( )A .1B .2C .-1D .-27. i 是虚数单位, =()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i8. 下列命题正确的是( )A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()(2xf x x =-11(,32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥9. 设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .10.i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i11.集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=()A .{x|x <1}B .{x|﹣1≤x ≤2}C .{x|﹣1≤x ≤1}D .{x|﹣1≤x <1}12.如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是()A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣3二、填空题13.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= .14.若与共线,则y= .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x﹣lnx 的单调减区间为 .16.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .17.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 18.已知角α终边上一点为P (﹣1,2),则值等于 .三、解答题19.求函数f (x )=﹣4x+4在[0,3]上的最大值与最小值.20.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.21.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.22.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.23.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2: =1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.24.(本题10分)解关于的不等式2(1)10ax a x -++>.阿巴嘎旗一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C DDDBDCBD题号1112答案DD二、填空题13. .14. ﹣6 .15.(0,1)16. ±(7﹣i ) .17. . 18. .三、解答题19. 20. 21. 22. 23.24.当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想.。
阿鲁科尔沁旗第一中学2018-2019学年高三上学期11月月考数学试卷含答案

阿鲁科尔沁旗第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,b=,c=3,B=30°,则a=( ) A.B .2C.或2D .22.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=3. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .34. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( ) AB .2 CD5. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2 6.定义运算,例如.若已知,则=( )A.B.C.D.7. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 8. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°9. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .250 10.已知向量=(2,1),=10,|+|=,则||=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B. C.5 D.2511.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)12.设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3 B.4 C.5 D.6二、填空题13.抛物线y=4x2的焦点坐标是.14.在(x2﹣)9的二项展开式中,常数项的值为.×的值为_______.15.如图所示,圆C中,弦AB的长度为4,则AB AC【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.16.S n=++…+=.17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n}为“斐波那契数列”.若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2016项的值是.,对任意的m∈[﹣2,2],f(mx 18.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.三、解答题19.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.20.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M.(I)求椭圆Γ的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
阿尔山市一中2018-2019学年高三上学期11月月考数学试卷含答案

阿尔山市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=2. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 3. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .44. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β5.函数的定义域为( ) A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}6. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③7. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆8. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .1 9. =( ) A .2B .4C .πD .2π班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .611.圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 512.“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件二、填空题13.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0).正确命题的个数是 .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .16.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 . 17.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 . 18.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .三、解答题19.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.20.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值; (Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ) 设a >,g (x )=﹣5+ln ,∃x 1,x 2∈(0,e],使得|f (x 1)﹣g (x 2)|<9成立,求a 的取值范围.21.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]22.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式 (2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。
阿拉善左旗高中2018-2019学年高三上学期11月月考数学试卷含答案

阿拉善左旗高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________姓名__________ 分数__________一、选择题1. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( )A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定2. 若复数z=2﹣i ( i为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .3. 设函数f (x )=,则f (1)=( )A .0B .1C .2D .34. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .5. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <6. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( )A .8B .1C .5D .﹣17. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)++∞C. (1,3)D .(3,)+∞8. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是()A.B.C.D.9.若函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有()A.a>1且b<1B.a>1且b>0C.0<a<1且b>0D.0<a<1且b<010.A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,它是一条弦,它的长度大于等于半径长度的概率为()A.B.C.D.11.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5B.4C.4D.212.函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 14.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.15.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(16.已知函数,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是 .17.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC ②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .三、解答题19.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.20.函数f (x )=sin (ωx+φ)(ω>0,|φ|<)的部分图象如图所示(Ⅰ)求函数f (x )的解析式(Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,其中a <c ,f (A )=,且a=,b=,求△ABC的面积.21.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n 项的乘积为,求的最大值.22.(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上12,F F C 22221(0)x y a b a b+=>>P成等差数列.1122|,|||PF F F PF (1)求椭圆的标准方程;、C (2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得l F C A B 、x Q 716QA QB ⋅=-恒成立?若存在,求出点的坐标;若不存在,请说明理由.Q23.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?24.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x )件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?阿拉善左旗高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.2.【答案】A【解析】解:∵z=2﹣i,∴====,∴=10•=4+2i,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.3.【答案】D【解析】解:∵f(x)=,f(1)=f[f(7)]=f(5)=3.4.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
阿拉善左旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

阿拉善左旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合(其中为虚数单位),,则( )23111{1,(,,}122i A i i i i -=-+-+2{1}B x x =<A B =I A .B .C . {1}-{1}{-D .2. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=()A .(1,2)B .[1,2]C .[1,2)D .(1,2]3. 函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A . B . C .D .[2,)+∞[]2,4(,2]-∞[]0,24. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于()A .0.1B .0.2C .0.4D .0.65. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .6. 抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)7. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x8. 在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是()A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)10.已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(02πϕ<<y (0,1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π11.满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个12.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A .B .C .D .二、填空题13.已知直线:()被圆:所截的弦长是圆心到直线的043=++m y x 0>m C 062222=--++y x y x C 距离的2倍,则.=m 14.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 . 15.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.18.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]三、解答题19.(本题满分12分)已知数列的前项和为,且,().}{n a n n S 332-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)记,是数列的前项和,求.nn a n b 14+=n T }{n b n n T 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能n 力的考查,属于中档难度.20.(本题满分14分)已知两点与是直角坐标平面内两定点,过曲线上一点作)1,0(-P )1,0(Q C ),(y x M y轴的垂线,垂足为,点满足,且.N E ME =0=⋅(1)求曲线的方程;C (2)设直线与曲线交于两点,坐标原点到直线的距离为,求面积的最大值.l C B A ,O l 23AOB ∆【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.21.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少? 22.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.23.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C 相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.24.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.阿拉善左旗第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算2.【答案】D【解析】解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],要使函数y=有意义,则x﹣1>0,即x>1,∴函数的定义域B=(1,+∞),则A∩B=(1,2],故选:D.【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础3.【答案】B【解析】m m 试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知m[]2,4的右端点为,故的取值范围是.考点:二次函数图象与性质.4.【答案】A【解析】解:∵随机变量ξ服从正态分布N(2,o2),∴正态曲线的对称轴是x=2P(0<X<4)=0.8,∴P(X>4)=(1﹣0.8)=0.1,故选A.5.【答案】C【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.6.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.7.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.8.【答案】B【解析】解:由余弦定理得cosC=,把cosC代入a=2bcosC得:,∴a2=a2+b2﹣c2,∴c2=b2.又b和c都大于0,则b=c,即三角形为等腰三角形.故选B【点评】此题考查了余弦定理,以及三角形的形状判定,利用余弦定理表示出cosC是本题的突破点.9.【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k∈(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A10.【答案】A【解析】考点:三角函数的图象性质.11.【答案】D【解析】解:由{0,1}∪A={0,1}易知:集合A ⊆{0,1}而集合{0,1}的子集个数为22=4故选D【点评】本题考查两个集合并集时的包含关系,以及求n 个元素的集合的子集个数为2n 个这个知识点,为基础题. 12.【答案】C 【解析】考点:三视图.二、填空题13.【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=14.【答案】 (﹣2,0)∪(2,+∞) .【解析】解:设g (x )=,则g (x )的导数为:g ′(x )=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).15.【答案】116.【答案】 cm2 .【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,O1C1==,∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.17.【答案】 75 【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.18.【答案】8cm【解析】考点:平面图形的直观图.三、解答题19.【答案】【解析】(1)当时,;………………1分1=n 323321111=⇒=-=a a a S 当时,,2≥n 332,33211-=-=--n n n n a S a S ∴当时,,整理得.………………3分2≥n n n n n n a a a S S 2)(32211=-=---13-=n n a a ∴数列是以3为首项,公比为3的等比数列.}{n a ∴数列的通项公式为.………………5分}{n a nn a 3=20.【答案】【解析】(1)依题意知,∵,∴),0(y N )0,32()0,(32x x ME -=-==),31(y x E 则, …………2分)1,(-=y x QM )1,31(+=y x PE ∵,∴,即0=⋅PE QM 0)1)(1(31=+-+⋅y y x x 1322=+y x ∴曲线的方程为 …………4分C 1322=+y x21.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C 103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P (ξ=240)=,P (ξ=60)=P (ξ=30)=,P (ξ=0)=1﹣∴变量的分布列是ξξ03060240P∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B (4,)∴D η=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.22.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n =﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n .则所求和为6分12nn 23.【答案】 【解析】解:(1)∵四边形AA 1C 1C 为平行四边形,∴AC=A 1C 1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.24.【答案】【解析】【分析】(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE;(Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF 和平面BDE的法向量,代入向量夹角公式,即可求出二面角F﹣BE﹣D的余弦值;(Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)。
阿拉善右旗第一中学2018-2019学年高三上学期11月月考数学试卷含答案

阿拉善右旗第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .42. (理)已知tan α=2,则=( )A.B.C.D.3. 已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.4. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 115. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20486.设集合( )A. B.C.D.7. 若a >b ,则下列不等式正确的是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .a 3>b 3C .a 2>b 2D .a >|b|8. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 9. 如图是一个多面体的三视图,则其全面积为( )A .B .C .D .10.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .11.已知α是三角形的一个内角,且,则这个三角形是( )A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形12.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.二、填空题13.已知关于 的不等式在上恒成立,则实数的取值范围是__________14.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= .15.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .16.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .17.计算sin43°cos13°﹣cos43°sin13°的值为 .18.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .三、解答题19.(本小题满分12分)如图,在直二面角C AB E --中,四边形ABEF 是矩形,2=AB ,32=AF ,ABC ∆是以A 为直角顶点的等腰直角三角形,点P 是线段BF 上的一点,3=PF . (1)证明:⊥FB 面PAC ;(2)求异面直线PC 与AB 所成角的余弦值.20.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7}, (1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.21.已知f (x )是定义在[﹣1,1]上的奇函数,f (1)=1,且若∀a 、b ∈[﹣1,1],a+b ≠0,恒有>0,(1)证明:函数f (x )在[﹣1,1]上是增函数; (2)解不等式;(3)若对∀x ∈[﹣1,1]及∀a ∈[﹣1,1],不等式f (x )≤m 2﹣2am+1恒成立,求实数m 的取值范围.PCABEF22.(本小题满分12分)从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:上一年的出险次数 0 1 2 3 4 5次以上(含5次) 下一年保费倍率85% 100% 125% 150% 175% 200%连续两年没有出险打7折,连续三年没有出险打6折经验表明新车商业车险保费与购车价格有较强的线性相关关系,下面是随机采集的8组数据(,)x y (其中x (万元)表示购车价格,y (元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由这8组数据得到的回归直线方程为:1055y bx =+.(1)求b ;(2)广东李先生2016年1月购买一辆价值20万元的新车, (i )估计李先生购车时的商业车险保费;(ii )若该车今年2月已出过一次险,现在又被刮花了,李先生到4S 店询价,预计修车费用为800元,保险专员建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)23.设极坐标与直角坐标系xOy 有相同的长度单位,原点O 为极点,x 轴坐标轴为极轴,曲线C 1的极坐标方程为ρ2cos2θ+3=0,曲线C 2的参数方程为(t 是参数,m 是常数).(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;(Ⅱ)若C 1与C 2有两个不同的公共点,求m 的取值范围.24.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .阿拉善右旗第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:根据题意,M ∩N={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R}∩{(x ,y )|x 2﹣y=0,x ∈R ,y ∈R}═{(x ,y )|} 将x 2﹣y=0代入x 2+y 2=1, 得y 2+y ﹣1=0,△=5>0,所以方程组有两组解,因此集合M ∩N 中元素的个数为2个, 故选B .【点评】本题既是交集运算,又是函数图形求交点个数问题2. 【答案】D【解析】解:∵tan α=2,∴ ===.故选D .3. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a ,解得a=.故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.4. 【答案】C 【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C5. 【答案】D 【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 6. 【答案】B【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,集合B 中的解集为x >,则A ∩B=(,+∞). 故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.7. 【答案】B【解析】解:∵a >b ,令 a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1, =﹣,显然A 不正确.a3=﹣1,b3=﹣6,显然B正确.a2 =1,b2=4,显然C不正确.a=﹣1,|b|=2,显然D 不正确.故选B.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.8.【答案】C【解析】考点:等差数列的通项公式.9.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.10.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.11.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.12.【答案】C二、填空题13.【答案】【解析】因为在上恒成立,所以,解得答案:14.【答案】1.【解析】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.15.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有: {2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.16.【答案】【解析】试题分析:因为ABC ∆中,2,60AB BC C ===︒2sin A=,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,12ABCS AB BC ∆=⨯⨯= 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abcR等等.17.【答案】 .【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,故答案为.18.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.三、解答题19.【答案】【解析】(1)证明:以A 为原点,建立空间直角坐标系,如图,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C,(0,0,F .∵4BF ==,3PF =,∴3(,0,22P,(2,0,FB =-, (0,2,0)AC =,3(,0,22AP =. ∵0FB AC ⋅=,∴FB AC ⊥.∵0FB AP ⋅=,∴FB AP ⊥.∵FB AC ⊥,FB AP ⊥,ACAP A =, ∴FB ⊥平面APC .(2)∵(2,0,0)AB =,3(,2,2PC =-, 记AB 与PC 夹角为θ,则3cos =142AB PC AB PC θ⋅-==.【方法2】(1)4FB =,cos cos 2PFA BFA∠=∠=,PA ===∵2223912PA PF AF +=+==,∴PA BF ⊥.∵平面ABEF ⊥平面ABC ,平面ABEF 平面ABC AB =,AB AC ⊥,AC ⊂平面ABC ,∴AC ⊥平面ABEF .∵BF ⊂平面ABEF ,∴AC BF ⊥.∵PA AC A =I ,∴BF ⊥平面PAC .(2)过P 作//,//PM AB PN AF ,分别交,BE BA 于,M N 点,MPC ∠的补角为PC 与AB 所成的角.连接MC ,NC .2PN MB ==,32AN =,52NC ==,BC =PC ==,MC ==135744cos 11422MPC +-∠===-⋅. ∴异面直线PC 与AB所成的角的余弦值为14.20.【答案】【解析】解:(1)∵A={x|3≤x <10},B={x|2<x ≤7},∴A ∩B=[3,7];A ∪B=(2,10);(C U A )∩(C U B )=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x >a},∴若A ⊆C ,则a <3,即a 的取值范围是{a|a <3}.21.【答案】【解析】解:(1)证明:任取x 1、x 2∈[﹣1,1],且x 1<x 2,则f (x 1)﹣f (x 2)=f (x 1)+f (﹣x 2)∵>0,即>0,∵x 1﹣x 2<0,∴f (x 1)﹣f (x 2)<0.则f (x )是[﹣1,1]上的增函数;(2)由于f (x )是[﹣1,1]上的增函数,不等式即为﹣1≤x+<≤1,解得﹣≤x <﹣1,即解集为[﹣,﹣1);(3)要使f (x )≤m 2﹣2am+1对所有的x ∈[﹣1,1],a ∈[﹣1,1]恒成立,只须f (x )max ≤m 2﹣2am+1,即1≤m 2﹣2am+1对任意的a ∈[﹣1,1]恒成立,亦即m 2﹣2am ≥0对任意的a ∈[﹣1,1]恒成立.令g (a )=﹣2ma+m 2,只须,解得m ≤﹣2或m ≥2或m=0,即为所求.22.【答案】【解析】(1)1200(811182525313745)2588x =+++++++==万元, 13200(21502400314037504000456055006500)400088y =+++++++==元, 直线1055y bx =+经过样本中心(,)x y ,即(25,4000). ∴105540001055117.825y b x---===. (2)(i )价值为20万元的新车的商业车险保费预报值为:117.82010553411⨯+=元.(ii )由于该车已出过一次险,若再出一次险,则保费增加25%,即增加341125852.75⨯%=元.因为852.75800>,若出险,明年的保费已超800,故接受建议.23.【答案】【解析】解:(I )曲线C 1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos 2θ﹣sin 2θ)+3=0,可得直角坐标方程:x2﹣y 2+3=0.曲线C 2的参数方程为(t 是参数,m 是常数),消去参数t 可得普通方程:x ﹣2y ﹣m=0.(II )把x=2y+m 代入双曲线方程可得:3y 2+4my+m 2+3=0,由于C 1与C 2有两个不同的公共点,∴△=16m 2﹣12(m 2+3)>0,解得m <﹣3或m >3,∴m <﹣3或m >3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.24.【答案】(1)A B ⊆;(2){}5,3,0=C .【解析】考点:1、集合的表示;2、子集的性质.。
内蒙古阿拉善盟数学高三普通高等学校招生理数模拟考试试卷

内蒙古阿拉善盟数学高三普通高等学校招生理数模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一上·眉山期末) 设U={1,2,3,4,5},A={1,2,5},B={2,3,4},则B∩∁UA=()A . ∅B . {2}C . {3,4}D . {1,3,4,5}2. (2分) (2020高二下·南宁期末) 设为虚数单位,复数z满足,则在复平面内,对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)函数f(x)=cosx的一个单调递增区间是()A . (0,)B . (﹣,)C . (﹣π,0)D . (0,π)4. (2分)已知,若向区域上随机投1个点P,则点P落入区域A的概率为()A .B .C .D .5. (2分) (2018高一下·六安期末) 已知数列中,,则等于()A .B .C .D .6. (2分)设,则“”是“”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件7. (2分) (2019高一上·长春期中) 设函数,若,则的取值范围是()A . (,1)B . (,)C . (,)(0,)D . (,)(1,)8. (2分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润为()A . 4650元B . 4700元C . 4900元D . 5000元9. (2分)(2018·东北三省模拟) 如图所示的程序框图是为了求出满足的最小偶数,那么在空白框中填入及最后输出的值分别是()A . 和6B . 和6C . 和8D . 和810. (2分) (2016高一下·卢龙期中) 已知 =(2,3), =(﹣4,7),则在上的投影为()A .B .C .D .11. (2分)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A .B .C .D .12. (2分)侧棱长a为的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则球的表面积为()A .B .C .D .二、填空题 (共4题;共8分)13. (1分) (2017高三上·甘肃开学考) 某一排共12个座位,现甲、乙、丙三人按如下要求入座,每人左右两旁都有空座位,且三人的顺序是甲必须在另两人之间,则不同的座法共有________.14. (1分) (2018高三下·滨海模拟) 已知正实数满足且 ,则的最小值为________.15. (5分)(2018·广东模拟) 已知分别是定义在上的奇函数和偶函数,且,当时,(为常数),则 ________.16. (1分)(2020·包头模拟) 已知抛物线的焦点为F,斜率为2的直线l与C的交点为A,B,若 =5,则直线l的方程为________.三、解答题 (共7题;共70分)17. (10分) (2019高三上·郑州期中) 在中,点在边上,,,.(1)若的面积为3,求;(2)若,求 .18. (10分) (2016高二上·重庆期中) △ABC为等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分别是边AC 和AB的中点,现将△ADE沿DE折起,使面ADE⊥面DEBC,H、F分别是边AD和BE的中点,平面BCH与AE、AF分别交于I、G两点(Ⅰ)求证:IH∥BC;(Ⅱ)求直线AE与平面角GIC所成角的正弦值.19. (10分)已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.20. (10分)(2019·南昌模拟) 已知函数, .(1)讨论函数的单调区间;(2)当时,证明: .21. (10分)(2017·吉林模拟) 据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:态度应该取消应该保留无所谓调查人群在校学生2100人120人y人社会人士600人x人z人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.22. (10分)(2017·甘肃模拟) 若以直角坐标系xOy的O为极点,Ox为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程是ρ= .(1)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;(2)若直线l的参数方程为(t为参数)当直线l与曲线C相交于A,B两点,求| |23. (10分)已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共70分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:略答案:23-1、考点:解析:。
内蒙古2019届高三高考一模试卷数学(理科)试题(解析版)

2019年内蒙古高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足(1-i)z=-1+2i,则|z−|=()A. √22B. 32C. √102D. 122.设集合A={-2,-1,0,1,2},B={-1,0,1},C={(x,y)|x24+y23≤1,x∈A,y∈B},则集合C中元素的个数为()A. 11B. 9C. 6D. 43.已知单位向量a⃗,b⃗ 的夹角为3π4,若向量m⃗⃗⃗ =2a⃗,n⃗=4a⃗-λb⃗ ,且m⃗⃗⃗ ⊥n⃗,则|n⃗|=()A. −2B. 2C. 4D. 64.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右顶点分别为A1、A2,点P是双曲线C上与A1、A2不重合的动点,若K PA1K PA2=3,则双曲线的离心率为()A. √2B. √3C. 4D. 25.在△ABC中,角A、B、C的对边分别为a,b,c,若a tan B=2b sin(B+C).则角B的大小为()A. π3B. π6C. π2D. π46.如图所示的茎叶图(图1)为高三某班50名学生的化学考试成绩,算法框图(图2)中输入的a1,a2,a3,…,a50为茎叶图中的学生成绩,则输出的m,n分别是()A. m=38,n=12B. m=26,n=12C. m=12,n=12D. m=24,n=107.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m 的值分别为( ) A. 20% 369 B. 80% 369 C. 40% 360 D. 60% 365 8. 函数y =xe cosx (-π≤x ≤π)的大致图象为( )A.B. C. D.9. 如图,正方体ABCD -A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF =√22,则下列结论中错误的是( ) A. AC ⊥BEB. EF//平面ABCDC. 三棱锥A −BEF 的体积为定值D. 异面直线AE ,BF 所成的角为定值10. 经过对中学生记忆能力x 和识图能力y 进行统计分析,得到如下数据:记忆能力x 4 6 8 10 识图能力y3568由表中数据,求得线性回归方程为=45x +,若某中学生的记忆能力为14,则该中学生的识图能力为( ) A. 7 B. 9.5 C. 11.1 D. 12 11. 以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A. √3−√2B. √3−1C. √22D. √3212. 已知函数f (x )=1+ln(x−1)x−2(x >2),若f (x )>kx−1恒成立,则整数k 的最大值为( ) A. 2 B. 3 C. 4 D. 5二、填空题(本大题共4小题,共20.0分)13. 已知角α的终边过点(3m ,-2),若tan (π+α)=13,则m =______.14. 设x ,y 满足约束条件{3x −y −6≤0x −y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的值是最大值为12,则2a +3b 的最小值为______.15.“雾霾治理”“延迟退休”“里约奧运”“量子卫星”“神舟十一号”成为现在社会关注的5个热点.小王想利用暑假时间调查一下社会公众对这些热点的关注度.若小王准备按照顺序分别调査其中的4个热点,则“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点的种数为______.16.如图,在三棱锥P-ABC中,PC⊥平面ABC,AC⊥CB,已知AC=2,PB=2√6,则当PA+AB最大时,三棱锥P-ABC的体积为______.三、解答题(本大题共7小题,共70.0分)17.已知等比数列{a n}的各项均为正数,a1=1,公比为q;等差数列{b n}中,b1=3,且{b n}的前n项和为S n,a3+S3=27,q=S2.a2(Ⅰ)求{a n}与{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=3,求{c n}的前n项和T n.2S n18.在某外国语学校举行的HIMCM(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按女生、男生用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求a的值,并计算所抽取样木的平均值x−(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的2×2列联表,并判断在犯错误的概率不超过0.05的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖 5 不获奖总计200附表及公式: P (K 2≥k 0) 0.100.050.025 0.010 0.005 0.001k 02.7063.841 5.024 6.635 7.879 10.828其中K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .19. 已知点B (0,-2)和椭圆M :x 24+y 22=1.直线l :y =kx +1与椭圆M 交于不同两点P ,Q .(Ⅰ)求椭圆M 的离心率; (Ⅱ)若k =12,求△PBQ 的面积;(Ⅲ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值.20. 如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 是矩形,且平面ACE ⊥平面ABCD . (Ⅰ)求证:BC ⊥平面ACFE ;(Ⅱ)当二面角C -BF -D 的平面角的余弦值为√63,求这个六面体ABCDEF 体积.21. 已知函数f (x )=2ax +bx -1-2ln x (a ∈R ).(Ⅰ)当b =0时,讨论函数f (x )的单调区间;(Ⅱ)当x >y >e -1时,求证:e x ln (y +1)>e y ln (x +1).22. 在平面直角坐标系xOy 中,已知曲线C :{x =√3cosαy =sinα(a为参数),在以原点O为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为√22ρcos(θ+π4)=−1.(1)求椭圆C 的普通方程和直线l 的直角坐标方程;(2)过点M (-1,0)且与直线l 平行的直线l 1交C 于A ,B 两点,求点M 到A ,B 两点的距离之积.23. 设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.答案和解析1.【答案】C【解析】解:由(1-i)z=-1+2i,得z=,∴.故选:C.把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】A【解析】解:根据条件得:x从-1,0,1任选一个,y从而-1,0,1任选一个,有9种选法;x=-2或2时,y=0,有两种选法,共11种选法;∴C中元素有11个.故选:A.由题意可得出:x从-1,0,1任选一个,y从而-1,0,1任选一个,有9种选法;x 从-2,2任选一个,y只能为0,有2种选法,共有11种选法,从而得出集合C 中元素个数为11.考查列举法、描述法的定义,以及组合的知识.3.【答案】C【解析】解:单位向量,的夹角为,∴==-.∵向量=2,=4-,且⊥,∴•=2•(4-)=8-2λ=0,∴8-2λ×=0,解得λ=-4.则||==4.故选:C.单位向量,的夹角为,可得==-.由向量=2,=4-,且⊥,可得•=2•(4-)=0,解得λ.进而得出.本题考查了向量数量积运算性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.4.【答案】D【解析】解:设P(x0,y0),A1(-a,0),A2(a,0),∵k k=3,∴•=3,即y02=3x02-3a2,①又-=1,②,由①②可得(b2-3a2)x02=a2(b2-3a2),∵x0≠±a,∴b2-3a2=0,∴b2=3a2=c2-a2,∴c=2a,即e=2,故选:D.设P(x0,y0),A1(-a,0),A2(a,0),根据k k=3可得y02=3x02-3a2,①,再根据又-=1,②,由①②可得(b2-3a2)x02=a2(b2-3a2),可得c=2a,即可求出离心率.本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.5.【答案】A【解析】解:∵atanB=2bsin(B+C)=2bsinA,∴由正弦定理可得:sinAtanB=2sinBsinA,∵sinA>0,∴tanB=2sinB,∵B∈(0,π),sinB>0,∴cosB=,∴B=.故选:A.由正弦定理化简已知等式可得sinAtanB=2sinBsinA,结合sinA>0,可得tanB=2sinB,结合范围B∈(0,π),可得sinB>0,可得cosB=,即可得解B的值.本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.6.【答案】B【解析】解:由程序框图知:算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,由茎叶图得,在50名学生的成绩中,成绩大于等于80的人数有80,80,81,84,84,85,86,89,90,91,96,98,共12人,故n=12,由茎叶图得,在50名学生的成绩中,成绩小于60的人数有43,46,47,48,50,51,52,53,53,56,58,59,共12人,则在50名学生的成绩中,成绩小于80且大于等于60的人数有50-12-12=26,故m=26故选:B.算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,根据茎叶图可得本题借助茎叶图考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键7.【答案】A【解析】解:设“衰分比”为a,甲衰分得b石,由题意得,解得b=125,a=20%,m=369.故选:A.设“衰分比”为a,甲衰分得b石,由题意列出方程组,由此能求出结果.本题考查等比数列在生产生活中的实际应用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8.【答案】A【解析】解:f(-x)==-=-f(x),y=x是奇函数,函数f(x)(x∈[-π,π])是奇函数,所以C、D不正确,f(π)==πe,所以f(x)经过(π,πe)点,故排除B,故选:A.通过奇偶性以及函数在y=x的单调性,即可判断选项本题考查函数的奇偶性与函数的单调性的综合应用,函数的图象的判断,考查分析问题解决问题的能力.9.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A-BEF的高,∴三棱锥A-BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选:D.利用证线面垂直,可证AC⊥BE;判断A正确;根据正方体中上下面平行,由面面平行的性质可证,线面平行,从而判断B正确;根据三棱锥的底面面积与EF的位置无关,高也与EF的位置无关,可判断C正确;例举两个特除位置的异面直线所成的角的大小,根据大小不同判断D错误.本题考查了异面直线所成的角及求法,考查了线面垂直、面面平行的性质,考查了学生的空间想象能力及作图分析能力.10.【答案】C【解析】解:x的平均数=(4+6+8+10)==7,y的平均数=(3+5+6+8)===5.5,即回归方程过点(,),即(7,5.5)则5.5=0.8×7+得=-0.1,则=0.8x-0.1,则当x=14时,y=0.8×14-0.1=11.2-0.1=11.1,即该中学生的识图能力为11.1,故选:C.根据数据求出样本中心(,),代入求出=-0.1,然后令x=14进行求解即可.本题主要考查回归方程的应用,根据回归方程必过样本中心(,)的性质求出样本中心(,)是解决本题的关键.11.【答案】B【解析】解:设椭圆的两个焦点为F1,F2,圆与椭圆交于A,B,C,D四个不同的点,设|F1F2|=2c,则|DF1|=c,|DF2|=c.椭圆定义,得2a=||DF1|+|DF2|=c+c,所以e===-1,故选:B.设椭圆的两个焦点为F1,F2,圆与椭圆交于A,B,C,D四个不同的点,设|F1F2|=2c,则|DF1|=c,|DF2|=c.由椭圆的定义知2a=||DF1|+|DF2|=c+c,根据离心率公式求得答案.本题主要考查了椭圆的简单性质.特别是椭圆定义的应用.12.【答案】B【解析】解:当k=5,x=3时,f(x)=f(3)==1+ln2,==,∴f(x)<,故k=5不成立;当k=4,x=3时,f(x)=f(3)=1+ln2<=2,所以k=4也不成立;当k=3时,f(x)>(x>2)⇔1+ln(x-1)-(1-)×3>0,令g(x)=1+ln(x-1)-3+,x>2则g′(x)=-=,∴2<x<4时,g′(x)<0;x>4时,g′(x)>0,∴g(x)在(2,4)上递减,在(4,+∞)上递增,∴g(x)min=g(4)=ln3-1>0,∴k=3时,f(x)>在(2,+∞)上恒成立,符合题意.故整数k的最大值为3.故选:B.先排除k=5,k=4,然后当k=3时,证明不等式恒成立.说明答案是k=3.本题考查了特值排除法、利用导数研究函数的最值.属难题.13.【答案】-2【解析】解:∵角α的终边过点(3m,-2),∴tanα==-,若tan(π+α)==tanα,则-=,∴m=-2,故答案为:-2.由题意利用任意角的三角函数的定义,诱导公式,求得m的值.本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.14.【答案】256【解析】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=.故答案为:.先根据条件画出可行域,设z=ax+by,再利用几何意义求最值,将最大值转化为y轴上的截距,只需求出直线z=ax+by,过可行域内的点(4,6)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.本题主要考查了基本不等式在最值问题中的应用、简单的线性规划,以及利用几何意义求最值,属于基础题.15.【答案】72【解析】解:根据题意,分2步进行分析:①,小王准备把“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点,则“量子卫星”可以安排在后面的三个位置,有3种安排方法,②,在剩下的4个热点中任选3个,安排在剩下的3个位置,有A43=24种安排方法,则有3×24=72种不同的安排方法;故答案为:72根据题意,分2步进行分析:①,由题目的限制条件分析易得“量子卫星”有3种安排方法,②,在剩下的4个热点中任选3个,安排在剩下的3个位置, 本题考查排列、组合的应用,注意优先分析受到限制的元素,属于基础题. 16.【答案】4【解析】解:PC ⊥平面ABC ,可得PC ⊥AC ,PC ⊥BC , 设PA=x ,AB=y ,在直角三角形PAC 中,可得:PC 2=PA 2-AC 2=x 2-4, 在直角三角形ABC 中,可得:BC 2=BA 2-AC 2=y 2-4, 在直角三角形PBC 中,可得:PB 2=PC 2+BC 2, 即为24=x 2-4+y 2-4,即有x 2+y 2=32, 由≥()2, 则x+y≤==8,当且仅当x=y=4时,取得等号,即取得最大值8, 此时PC==2,BC==2, 则三棱锥P-ABC 的体积为V===4.故答案为:4.由线面垂直的性质和三角形的勾股定理,设PA=x ,AB=y ,求得x ,y 的关系式,由基本不等式可得x+y 的最大值,再由三角形的面积公式计算即可得到所求值.本题考查线面垂直的性质定理,直角三角形的勾股定理以及基本不等式的运用,考查运算求解能力,考查函数与方程思想,是中档题. 17.【答案】解:(1)设数列{b n }的公差为d ,∵a 3+S 3=27,q =S2a 2,∴q 2+3d =18,6+d =q 2,q =3,d =3•…(4分) a n =3n−1,b n =3n ,•…(6分) (2)由题意得:S n =n(3+3n)2,c n =32S n=32⋅23(1n(n+1))=1n −1n+1T n =1−12+12−13+13−14+⋯+1n −1n+1=1−1n+1=nn+1•…(12分). 【解析】(1)利用等差数列与等比数列的关系式,列出方程,即可求出通项公式. (2)表示出c n ,利用裂项求和,求解即可.本题考查数列的通项公式以及求和的方法的应用,考查计算能力. 18.【答案】解:(Ⅰ)a =110×[1-(0.01+0.015+0.03+0.015+0.005)×10]=0.025,x −=45×0.1+55×0.15+65×0.25+75×0.3+85×0.15+95×0.05=69. (Ⅱ)由频率分布直方图知样本中获奖的人数为40,不获奖的人数为160, 2×2列联表如下:因为K 2=200×(5×115−35×45)240×160×50×150≈4.167>3.841,所以在犯错误的概率不超过0.05的前提下能认为“获奖与女生,男生有关.” 【解析】(Ⅰ)根据概率的性质知所有矩形的面积之和等于1列式可解得;(Ⅱ)由频率分布直方图知样本中获奖的人数为40,不获奖的人数为160,从而可得2×2列联表,再计算出K 2,与临界值比较可得. 本题考查了独立性检验,属中档题.19.【答案】解:(Ⅰ)因为a 2=4,b 2=2,所以a =2,b =√2,c =√2,所以离心率e =ca =√22.(Ⅱ)设P (x 1,y 1),Q (x 2,y 2), 若k =12,则直线l 的方程为y =12x +1, 由{x 24+y 22=1y =12x +1,得3x 2+4x -4=0, 解得 x 1=−2,x 2=23,设A (0,1),则 S △PBQ =12|AB|(|x 1|+|x 2|)=12×3×(23+2)=4. (Ⅲ)法一:设点C (x 3,y 3),因为P (x 1,y 1),B (0,-2),所以{x 3=x 12y 3=−2+y 12, 又点P (x 1,y 1),C (x 3,y 3)都在椭圆上,所以{x 124+y 122=1(x 12)24+(−2+y 12)22=1, 解得{x 1=√142y 1=−12或{x 1=−√142y 1=−12, 所以 k =−3√1414或k =3√1414.法二:设C (x 3,y 3),显然直线PB 有斜率,设直线PB 的方程为y =k 1x -2, 由{x 24+y 22=1y =k 1x −2,得 (2k 12+1)x 2−8k 1x +4=0,所以{△=16(2k 12−1)>0x 1+x 3=8k 12k 12+1x 1x 3=42k 12+1, 又x 3=12x 1,解得{x 1=−√142k 1=−3√1414或 {x 1=√142k 1=3√1414,所以 {x 1=−√142y 1=−12或 {x 1=√142y 1=−12, 所以 k =3√1414或k =−3√1414.【解析】(Ⅰ)利用已知条件求出a ,c ,然后求解椭圆的离心率即可. (Ⅱ)设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为,与椭圆联立,求出坐标,然后求解三角形的面积.(Ⅲ)法一:设点C (x 3,y 3),P (x 1,y 1),B (0,-2),结合椭圆方程求出P (x 1,y 1),然后求解斜率.法二:设C (x 3,y 3),显然直线PB 有斜率,设直线PB 的方程为y=k 1x-2,与椭圆联立,利用韦达定理求出P 的坐标,求解斜率即可.本题考查椭圆的简单性质以及直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.20.【答案】解:(Ⅰ)在梯形ABCD 中,∵AB ∥CD ,AD =CB ,∴∠BAD =∠ABC =60°, ∴∠ADC =∠BCD =120°,∵AD =DC =1,∴∠CAD =∠ACD =30°,∴∠ACB =90°, ∴BC ⊥AC ,∵平面ACEF ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,∴BC ⊥平面ACFE .解:(Ⅱ)在△ADC 中,AC 2=AD 2+DC 2-2AD •DC •cos ∠ADC =3, ∴AC =√3,分别以CA ,CB ,CF 为x ,y ,z 轴,建立空间直角坐标系,设CF =h ,则C (0,0,0),A (√3,0,0),B (0,1,0),D (√32,-12,0),F (0,0,h ),则BD ⃗⃗⃗⃗⃗⃗ =(√32,-32,0),BF ⃗⃗⃗⃗⃗ =(0,-1,h ), 设平面BDF 的法向量n⃗ =(x ,y ,z ), 则{n ⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,即{√32x −32y =0−y +ℎz =0,取z =1,得n⃗ =(√3ℎ,ℎ,1), 平面BCF 的一个法向量m⃗⃗⃗ =(1,0,0), ∵二面角C -BF -D 的平面角的余弦值为√63,∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m⃗⃗⃗ |⋅|n ⃗⃗ |=√3ℎ√4ℎ2+1=√63, 解得h =√2,即CF =√2,∴六面体ABCDEF 体积为:V ABCDEF =V B -ACFE +V D -ACFE =13×S 矩形ACFE ×BC +13×S 矩形ACFE ×|y 0| =13×√3×√2×1+13×√3×√2×12=√62.【解析】(Ⅰ)推导出∠BAD=∠ABC=60°,∠ADC=∠BCD=120°,∠CAD=∠ACD=30°,∠ACB=90°,从而BC ⊥AC ,由此能证明BC ⊥平面ACFE . (Ⅱ)分别以CA ,CB ,CF 为x ,y ,z 轴,建立空间直角坐标系,利用向量法求出CF=,六面体ABCDEF 体积为:V ABCDEF =V B-ACFE +V D-ACFE ,由此能求出结果.本题考查线面垂直的证明,考查六面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 21.【答案】解:(Ⅰ)当b =0时,f ′(x )=2a -2x =2(ax−1)x,(x >0),当a ≤0时,f ′(x )<0在(0,+∞)上恒成立.∴函数f (x )在(0,+∞)单调递减; 当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a , ∴f (x )的单调递减区间为(0,1a ),单调递增区间为(1a ,+∞), 综上,当a ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间, 当a >0时,f (x )的单调递减区间为(0,1a ),单调递增区间为(1a ,+∞). (II )证明:∵x >y >e -1,∴x +1>y +1>e ,即ln (x +1)>ln (y +l )>1, 欲证e x ln (y +1)>e y ln (x +1). 即证明e x ln(x+1)>e yln(y+1), 令g (x )=e xln(x+1), 则g ′(x )=e x [ln(x+1)−1x+1]ln 2(x+1),显然函数h (x )=ln (x +1)-1x+1在(e -1,+∞)上单调递增,∴h (x )>l -1e >0,即g ′(x )>0, ∴g (x )在(e -l ,+∞)上单调递增,∴x >y >e -1时,g (x )>g (y ),即e xln(x+1)>e yln(y+1), ∴当x >y >e -1时,e x ln (y +1)>e y ln (x +1)成立. 【解析】(Ⅰ)求函数的导数,结合函数单调性和导数之间的关系进行求解即可. (Ⅱ)将不等式进行等价转化为>,构造函数g (x )=,求函数的导数,研究函数的单调性,利用函数的单调性证明g (x )>g (y )即可.本题主要考查导数的综合应用,结合函数的单调性和导数之间的关系,以及利用构造函数,将不等式进行转化是解决本题的关键.22.【答案】解:(1)曲线C :{x =√3cosαy =sinα(a 为参数),化为普通方程为:x 23+y 2=1, 由√22ρcos(θ+π4)=−1,得ρcosθ-ρsinθ=-2,所以直线l 的直角坐标方程为x -y +2=0.(5分)(2)直线l 1的参数方程为{x =−1+√22t y =√22t.(t 为参数),代入x 23+y 2=1,化简得:2t 2−√2t −2=0,得t 1t 2=-1,∴|MA |•|MB |=|t 1t 2|=1.(10分)【解析】(1)利用三种方程的转化方法,求圆C 的普通方程和直线l 的直角坐标方程; (2)利用参数的几何意义,即可求点M 到A ,B 两点的距离之积.本题考查三种方程的转化,考查参数方程的运用,考查参数的几何意义,属于中档题.23.【答案】解:(1)当a =1时,f (x )=5-|x +1|-|x -2|={2x +4,x ≤−12,−1<x <2−2x +6,x ≥2.当x ≤-1时,f (x )=2x +4≥0,解得-2≤x ≤-1,当-1<x <2时,f (x )=2≥0恒成立,即-1<x <2, 当x ≥2时,f (x )=-2x +6≥0,解得2≤x ≤3, 综上所述不等式f (x )≥0的解集为[-2,3], (2)∵f (x )≤1, ∴5-|x +a |-|x -2|≤1, ∴|x +a |+|x -2|≥4,∴|x +a |+|x -2|=|x +a |+|2-x |≥|x +a +2-x |=|a +2|, ∴|a +2|≥4,解得a ≤-6或a ≥2,故a 的取值范围(-∞,-6]∪[2,+∞). 【解析】(1)去绝对值,化为分段函数,求出不等式的解集即可, (2)由题意可得|x+a|+|x-2|≥4,根据据绝对值的几何意义即可求出 本题考查了绝对值的不等式和绝对值的几何意义,属于中档题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古自治区阿盟一中2018-2019年11月高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)34意在考查学生空间想象能力和计算能为棱中点,点在侧面内运动,若11A B Q 11DCC D A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.3. 设公差不为零的等差数列的前项和为,若,则( ){}n a n n S 4232()a a a =+74S a = A .B .C .7D .1474145【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.n4. 已知实数,,则点落在区域 内的概率为( )[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………A.B.C.D.34381418【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.5. 函数(,)的部分图象如图所示,则 f (0)的值为( )()2cos()f x x ωϕ=+0ω>0ϕ-π<<A. B. C. D. 32-1-【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.6. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .07. 执行如图所示的程序框图,如果输入的t=10,则输出的i =()A .4B .5C .6D .78. 已知函数,且,则( )x x x f 2sin )(-=)2(),31(log ),23(ln 3.02f c f b f a ===A .B .C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.9. 已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i 10.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( )A .80+20πB .40+20πC .60+10πD .80+10π二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .12.已知圆,则其圆心坐标是_________,的取值范围是________.22240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.13.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.14.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.15.,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=若______________.12PF F ∆【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题(本大共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
)16.24.(本小题满分10分)选修45:不等式选讲.已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ).(1)若函数f (x )的最小值为3,求a 的值;(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.17.(本小题满分10分)选修:几何证明选讲41- 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相PA O A P C B ,AP CD //BC AD , 交于点,为上一点,且.E F CE EC EF DE ⋅=2(Ⅰ)求证:;P EDF ∠=∠(Ⅱ)若,求的长.2,3,2:3:===EF DE BE CE PA18.(本小题满分12分)已知函数,数列满足:,().21()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭N n *∈(1)求数列的通项公式;{}n a (2)设数列的前项和为,求数列的前项和.{}n a n n S 1n S ⎧⎫⎨⎬⎩⎭n n T 【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.19.(本小题满分12分)已知函数().()2ln f x ax bx x =+-,a b ∈R (1)当时,求函数在上的最大值和最小值;1,3a b =-=()f x 1,22⎡⎤⎢⎥⎣⎦(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求0a =b (]0,e x ∈e ()f x 出的值;若不存在,说明理由;b 20.(本题满分14分)已知函数.x a x x f ln )(2-=(1)若在上是单调递减函数,求实数的取值范围;)(x f ]5,3[a (2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 27≥b 求的最小值.)()(21x g x g -21.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.内蒙古自治区阿盟一中2018-2019年11月高考数学模拟题(参考答案)一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 【答案】D 【解析】2. 【答案】C.【解析】易得平面,所有满足的所有点在以为轴线,以所在直//BP 11CC D D 1PBD PBX ∠=∠X BP 1BD 线为母线的圆锥面上,∴点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆Q 11CC D D 锥面得到的图形是双曲线,∴点的轨迹是双曲线,故选C.Q 3. 【答案】C.【解析】根据等差数列的性质,,化简得,∴4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.1741767142732a dS d a a d d⋅+===+4. 【答案】B【解析】不等式组表示的平面区域为,其中,,,所以20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………ABC ∆(1,0)A -(1,1)B (0,2)C .不等式组表示的平面区域为矩形,其中,11113(2)1(2)122222ABC S ∆=⨯-⨯+⨯-⨯=1102x y -⎧⎨⎩-……1……ADEF (1,0)D ,,其面积为,故所求概率为,选B.(1,2)E (1,2)F -224⨯=33248=5. 【答案】D【解析】易知周期,∴.由(),得112(1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ=-+π(),可得,所以,则,故选D.k Z ∈56ϕπ=-5()2cos(2)6f x x π=-5(0)2cos(6f π=-=6. 【答案】【解析】选A.由=3+b i 得,2+a i1+i2+a i =(1+i )(3+b i )=3-b +(3+b )i ,∵a ,b ∈R ,∴,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A.{2=3-b a =3+b)7. 【答案】【解析】解析:选B.程序运行次序为第一次t =5,i =2;第二次t =16,i =3;第三次t =8,i =4;第四次t =4,i =5,故输出的i =5.8. 【答案】D9. 【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i .故选:B .10.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r ×2r +πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,12 即(8+π)r 2+(30+5π)r -(92+14π)=0,即(r -2)[(8+π)r +46+7π]=0,∴r =2,∴该几何体的体积为(4×4+π×22)×5=80+10π.12二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.12.【答案】,.(1,2)-(,5)-∞【解析】将圆的一般方程化为标准方程,,∴圆心坐标,22(1)(2)5x y m -++=-(1,2)-而,∴的范围是,故填:,.505m m ->⇒<m (,5)-∞(1,2)-(,5)-∞13.【答案】314.【答案】115.1 【解析】三、解答题(本大共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
)16.【答案】【解析】解:(1)f (x )=|x +1|+2|x -a 2|={-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,)当x ≤-1时,f (x )≥f (-1)=2a 2+2,-1<x <a 2,f (a 2)<f (x )<f (-1),即a 2+1<f (x )<2a 2+2,当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±.2(2)当a =±时,由(1)知f (x )=2{-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,)由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为×|3-(-1)|×|6-3|=6.1217.【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.18.【答案】【解析】(1)∵,∴. 211()2x f x x x +==+11(2n n na f a a +==+即,所以数列是以首项为2,公差为2的等差数列,12n n a a +-={}n a ∴.(5分)1(1)22(1)2n a a n d n n =+-=+-=(2)∵数列是等差数列,{}n a ∴,1()(22)(1)22n n a a n n n S n n ++===+∴. (8分)1111(1)1n S n n n n ==-++∴1231111n nT S S S S =++++ 11111111(()()()1223341n n =-+-+-++-+ . (12分)111n =-+1n n =+19.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当时,.0a =()ln f x bx x =-假设存在实数,使有最小值3,b ()(]()ln 0,e g x bx x x =-∈.………7分11()bx f x b x x-'=-=①当时,在上单调递减,(舍去).………8分0b ≤()f x (]0,e ()min 4()e 13,f x f be b e ==-==②当时,在上单调递减,在上单调递增,10e b <<()f x 10,b ⎛⎫ ⎪⎝⎭1,e b ⎛⎤ ⎥⎝⎦∴,满足条件.……………………………10分2min 1()1ln 3,e f x g b b b ⎛⎫==+==⎪⎝⎭③当时,在上单调递减,(舍去),………11分1e b ≥()f x (]0,e ()min 4()e e 13,ef xg b b ==-==综上,存在实数,使得当时,函数最小值是3.……………………………12分2e b =(]0,e x ∈()f x20.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵,x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=21.【答案】(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,AB 2:±=x AB 2C )1,2(2--±t A ,故,…………9分)1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得AB ,,,…………11分148221+-=+k km x x 144422221+-=k t m x x 141141222212+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2221141kk k m d ++=+=∴,综上,的面积为定值.…………15分12212-=⋅=∆t d AB S OAB OAB ∆122-t。