高中物理-《动量守恒定律》章末测试题
人教版高中物理选修3-5章末测试题及答案全套
人教版高中物理选修3-5章末测试题及答案全套阶段验收评估(一) 动量守恒定律(时间:50分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
1~5小题只有一个选项符合题目要求,6~8小题有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分) 1.做平抛运动的物体,在相等的时间内,物体动量的变化量()A.始终相同B.只有大小相同C.只有方向相同D.以上说法均不正确解析:选A做平抛运动的物体,只受重力作用,重力是恒力,其在相等时间内的冲量始终相等,根据动量定理,在相等的时间内,物体动量的变化量始终相同。
2.下列情形中,满足动量守恒的是()A.铁锤打击放在铁砧上的铁块,打击过程中,铁锤和铁块的总动量B.子弹水平穿过放在光滑水平桌面上的木块过程中,子弹和木块的总动量C.子弹水平穿过墙壁的过程中,子弹和墙壁的总动量D.棒击垒球的过程中,棒和垒球的总动量解析:选B铁锤打击放在铁砧上的铁块时,铁砧对铁块的支持力大于系统重力,合外力不为零;子弹水平穿过墙壁时,地面对墙壁有水平作用力,合外力不为零;棒击垒球时,手对棒有作用力,合外力不为零;只有子弹水平穿过放在光滑水平面上的木块时,系统所受合外力为零,所以选项B正确。
3.如图1所示,光滑圆槽的质量为M,静止在光滑的水平面上,其内表面有一小球被细线吊着恰位于槽的边缘处,如将细线烧断,小球滑到另一边的最高点时,圆槽的速度为()图1A.0 B.向左C.向右D.无法确定解析:选A小球和圆槽组成的系统在水平方向上不受外力,故系统在水平方向上动量守恒,细线被烧断的瞬间,系统在水平方向的总动量为零,又知小球到达最高点时,小球与圆槽水平方向有共同速度,设为v′,设小球质量为m,由动量守恒定律有0=(M+m)v′,所以v′=0,故A正确。
4.在光滑的水平面上有a、b两球,其质量分别为m a、m b,两球在t时刻发生正碰,两球在碰撞前后的速度图像如图2所示,下列关系正确的是()图2A .m a >m bB .m a <m bC .m a =m bD .无法判断解析:选B 由v -t 图像可知,两球碰撞前a 球运动,b 球静止,碰后a 球反弹,b 球沿a 球原来的运动方向运动,由动量守恒定律得m a v a =-m a v a ′+m b v b ′,解得m a m b =v b ′v a +v a ′<1,故有m a <m b ,选项B 正确。
动量守恒定律测试题(含答案)
... .word.zl.第16章?动量守恒定律?测试题一、单项选择题〔每题只有一个正确答案〕1.质量为m ,速度为v 的棒球,与棒相互作用后以被原速率弹回,那么小球动量的变化量为〔取作用前的速度方向为正方向〕〔〕A .0B .-2mvC .2mvD .mv2.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,那么碰撞前的瞬间〔 〕A .A 车的动量一定大于B 车的速度 B .A 车的速度一定大于B 车的动量C .A 车的质量一定大于B 车的质量D .A 车的动能一定大于B 车的动能3.将质量为m 的铅球以大小为v 0、仰角为θ的初速度抛入一个装着沙子的总质量为m '的静止小车中,如以下图,小车与地面间的摩擦力不计,那么最后铅球与小车的共同速度等于〔〕A .0cos mv m m θ+'B .0sin mv m m θ+'C .0mv m m+' D .0tan mv m m θ+' 4.物体在恒定合力F 作用下做直线运动,在1t ∆速度由0增大到1E ,在2t ∆速度由v 增大到2v.设2E 在1t ∆做功是1W ,冲量是1I ;在2t ∆做功是2W ,冲量是2I ,那么( )A .1212I I W W <=,B .1212I I W W <<,C .1212,I I W W ==D .1212I I W W =<,5.沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图象如以下图。
那么以下判断错误的选项是〔〕A .碰撞前后A 的运动方向相反B .A 、B 的质量之比为1:2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前B 的动量较大6.如以下图,质量M=3kg 的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动。
质量m=2kg 的小球(视为质点)通过长L=0.5m 的轻杆与滑块上的光滑轴O 连接,开场时-滑块静止,轻杆处于水平状态,现让小球从静止开场释放,取g=10m/s2,以下说确的的是〔〕A.小球m从初始位置到第一次到达最低点的过程中,轻杆对小球的弹力一直沿杆方向B.小球m从初始位置到第一次到达最低点时,小球m速度大小为C.小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.2mD.小球m上升到的最高位置比初始位置低7.蹦极是一项刺激的极限运动,如图,运发动将一端固定的弹性长绳绑在腰或踝关节处,从几十米高处跳下(忽略空气阻力)。
2020高中物理 第一章 碰撞与动量守恒 章末过关检测(含解析)教科版-5
章末过关检测(时间:90分钟,满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
1~5题为单项选择题,6~8题为多项选择题.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.某物体受到一个-6 N·s的冲量作用,则()A.物体的动量一定减小B.物体的末动量一定是负值C.物体动量增量的方向一定与规定的正方向相反D.物体原来动量的方向一定与这个冲量的方向相反解析:根据动量定理知合外力的冲量等于动量的变化量,动量定理为矢量式,合外力冲量的方向与动量变化量的方向相同,冲量的方向为负方向说明动量的增量方向与规定的正方向相反,所以C项正确;动量的增量为负值,有可能物体的末动量方向为负方向,所以A项错误;若物体的末动量比初动量小,动量的变化量就为负值,所以B项错误;正方向的规定是人为的,与物体原来动量的方向可以相同也可以不同,所以D项错误.答案:C2.在不计空气阻力作用的条件下,下列说法中不正确的是( ) A.自由下落的小球在空中运动的任意一段时间内,其增加的动能一定等于其减少的重力势能B.做平抛运动的小球在空中运动的任意相同的时间内,其速度的变化量一定相同C.做匀速圆周运动的小球在任意一段时间内其合外力做的功一定为零,合外力的冲量也一定为零D.单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零解析:不计空气阻力,自由下落的小球,其所受合外力为重力,则小球在运动的过程中机械能守恒,其增加的动能一定等于其减小的重力势能,故A正确;做平抛运动的小球所受合外力为重力,加速度的大小与方向都不变,所以小球在空中运动的任意相同的时间内,其速度的变化量一定相同,故B正确;做匀速圆周运动的小球,其所受合外力的方向一定指向圆心,小球在任意一段时间内其合外力做的功一定为零,但由于速度的方向不断变化,所以速度的变化量不一定等于0,合外力的冲量也不一定为零,故C错误;经过一个周期,单摆的小球又回到初位置,所有的物理量都与开始时相等,所以单摆在一个周期内,合外力对摆球做的功一定为零,合外力的冲量也一定为零,故D正确.答案:C3.在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反,则碰撞后B 球的速度大小可能是( )A.0。
高中物理动量守恒定律题20套(带答案)含解析
高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理选修3-5 第1章《动量守恒定律研究》章节测试题含答案解析
绝密★启用前2019鲁科版高中物理选修3-5第1章《动量守恒定律研究》章节测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
第Ⅰ卷一、单选题(共20小题,每小题3.0分,共60分)1.关于物体的动量,下列说法中正确的是()A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.动量越大的物体,其质量一定越大2.如图所示,质量为M的物体P静止在光滑的水平桌面上,另有一质量为m(M>m)的物体Q以速度v0正对P滑行,则它们相碰后(设桌面足够大)()A.Q物体一定被弹回,因为M>mB.Q物体可能继续向前C.Q物体的速度不可能为零D.若相碰后两物体分离,则过一段时间可能再碰3.试管开口向上,管内底部有一小昆虫,试管自由下落时,当昆虫停在管底和沿管壁加速上爬的两种情况下,试管在相等时间内获得的动量大小是()A.小昆虫停在管底时大B.小昆虫向上加速上爬时大C.两种情况一样大D.小昆虫加速度大小未知,无法确定4.如图所示,质量相等的A、B两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s,B球的速度是-2 m/s,不久A、B两球发生了对心碰撞.对于该碰撞之后的A、B两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是()A.v A′=-2 m/s,vB′=6 m/sB.v A′=2 m/s,vB′=2 m/sC.v A′=1 m/s,vB′=3 m/sD.v A′=-3 m/s,vB′=7 m/s5.光子的能量为hν,动量大小为,如果一个静止的放射性元素的原子核在发生γ衰变时只放出一个γ光子,则衰变后的原子核()A.仍然静止B.沿着与光子运动方向相同的方向运动C.沿着与光子运动方向相反的方向运动D.可能向任何方向运动6.如图所示,a、b、c三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同一高度分别开始做自由下落和平抛运动.它们从开始到到达地面,下列说法正确的有()A.它们同时到达地面B.重力对它们的冲量相同C.它们的末动能相同D.它们动量变化的大小相同7.如图所示,质量为M的斜劈置于光滑的水平地面上,一质量为m的滑块以初速度v0沿斜劈向上滑行,它们在相互作用的过程中,当斜劈的速度达到最大值时,对应的是下列情况中的()A.滑块在到达斜劈的最高位置时B.滑块从斜劈上开始下滑时C.滑块与斜劈速度相等时D.滑块与斜劈开始分离时8.一同学在地面上立定跳远的最好成绩是x(m),假设他站在车的A端,如图所示,想要跳上距离为l(m)远的站台上,不计车与地面的摩擦阻力,则()A.只要l<x,他一定能跳上站台B.只要l<x,他有可能跳上站台C.只要l=x,他一定能跳上站台D.只要l=x,他有可能跳上站台9.物体沿粗糙的斜面上滑,到最高点后又滑回原处,则()A.上滑时重力的冲量比下滑时小B.上滑时摩擦力冲量比下滑时大C.支持力的冲量为0D.整个过程中合外力的冲量为零10.下列关于动量的说法中,正确的是()A.物体的动量改变,其速度大小一定改变B.物体的动量改变,其速度方向一定改变C.物体运动速度的大小不变,其动量一定不变D.物体的运动状态改变,其动量一定改变11.如图所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动;设甲同学和他的车的总质量为150 kg,碰撞前向右运动,速度的大小为4.5 m/s;乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为 4.25 m/s,则碰撞后两车共同的运动速度为(取向右为正方向)()A. 1 m/sB. 0.5 m/sC.-1 m/sD.-0.5 m/s12.手持铁球的跳远运动员起跳后,欲提高跳远成绩,可在运动到最高点时,将手中的铁球() A.竖直向上抛出B.向前方抛出C.向后方抛出D.向左方抛出13.一炮艇在湖面上匀速行驶,突然从船头和船尾同时水平向前和向后各发射一发炮弹,设两炮弹质量相同,相对于地的速率相同,船的牵引力和阻力均不变,则船的速度的变化情况是 ()A.速度不变B.速度减小C.速度增大D.无法确定14.如图所示,自行火炮连同炮弹的总质量为M,当炮管水平,火炮车在水平路面上以v1的速度向右匀速行驶中,发射一枚质量为m的炮弹后,自行火炮的速度变为v2,仍向右行驶.则炮弹相对炮筒的发射速度v0为()A.B.C.D.15.“娱乐风洞”是一项将科技与惊险相结合的娱乐项目,它能在一个特定的空间内把表演者“吹”起来.假设风洞内向上的风量和风速保持不变,表演者调整身体的姿态,通过改变受风面积(表演者在垂直风力方向的投影面积),来改变所受向上风力的大小.已知人体所受风力大小与受风面积成正比,人水平横躺时受风面积最大,设为S0,站立时受风面积为S0;当受风面积为S0时,表演者恰好可以静止或匀速漂移.如图所示,某次表演中,人体可上下移动的空间总高度为H,表演者由静止以站立身姿从A位置下落,经过B位置时调整为水平横躺身姿(不计调整过程的时间和速度变化),运动到C位置速度恰好减为零.关于表演者下落的过程,下列说法中正确的是()A.B点距C点的高度是HB.从A至B过程表演者克服风力所做的功是从B至C过程表演者克服风力所做的功的C.从A至B过程表演者所受风力的冲量是从A至C过程表演者所受风力的冲量的D.从A至B过程表演者所受风力的平均功率是从B至C过程表演者所受风力平均功率的16.两个具有相等动能的物体,质量分别为m1和m2,且m1>m2,比较它们动量的大小,则有()A.m2的动量大一些B.m1的动量大一些C.m1和m2的动量大小相等D.哪个的动量大不一定17.在距地面高为h处,同时以相同速率v0分别平抛、竖直上抛、竖直下抛质量相等的物体m,当它们落地时,比较它们的动量的增量Δp,有()A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大18.质量分别为2m和m的A、B两个质点,初速度相同,均为v1.若他们分别受到相同的冲量I作用后,A的速度为v2,B的动量为p.已知A、B都做直线运动,则动量p可以表示为( )A.m(v2-v1)B. 2m(2v2-v1)C. 4m(v2-v1)D.m(2v2-v1)19.质量为m的小球A,在光滑水平面以初动能E k与质量为2m的静止小球B发生正碰,碰撞后A 球停下,则撞后B球的动能为()A. 0B.C.D.E k20.如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑斜面由静止自由滑下,下滑到达斜面底端的过程中()A.两物体所受重力做功相同B.两物体所受合外力冲量相同C.两物体到达斜面底端时时间相同D.两物体到达斜面底端时动能不同第II卷二、计算题(共4小题,每小题10.0分,共40分)21.如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为M,绳长为L,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.22.如图所示,质量为m的摆球用长为l的轻质细绳系于O点,O点正下方的粗糙水平地面上静止着一质量为M的钢块.现将摆球向左拉起,使细线水平,由静止释放摆球,摆球摆动至最低点时与钢块发生正碰,碰撞时间极短,碰后摆球反弹上升至最高点时与最低点的竖直高度差为l.已知钢块与水平面间的动摩擦因数为μ,摆球和钢块均可视为质点,不计空气阻力,水平面足够长.求:钢块与摆球碰后在地面上滑行的距离.23.质量为60 kg的人,不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知安全带长5 m,其缓冲时间是1.2 s,求安全带受到的平均冲力大小为多少?(取g=10 m/s2)24.如图所示是某游乐场过山车的娱乐装置原理图,弧形轨道末端与一个半径为R的光滑圆轨道平滑连接,两辆质量均为m的相同小车(大小可忽略),中间夹住一轻弹簧后连接在一起,两车从光滑弧形轨道上的某一高度由静止滑下,当两车刚滑入圆环最低点时连接两车的挂钩突然断开,弹簧将两车弹开,其中后车刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最高点,求:(1)前车被弹出时的速度;(2)前车被弹出的过程中弹簧释放的弹性势能;(3)两车从静止下滑时距最低点的高度h.答案解析1.【答案】A【解析】动量具有瞬时性,任一时刻物体动量的方向,即为该时刻的速度方向,A正确;加速度不变,物体的速度均匀变化,故其动量也均匀变化,B错误;物体动量的大小由物体质量及速度的大小共同决定,物体的动量大,其速度不一定大,动量大,其质量也并不一定越大,C、D错误.2.【答案】B【解析】因为相碰后Q、P有获得相同速度的可能,所以A错.只有M=m且M、m发生了弹性正碰时,m才可能将动量全部传给M.若M、m发生非弹性碰撞,尽管M>m,但碰后速度仍有可能为零,所以C错.若Q被反向弹回,则Q、P不再相碰,所以D错.3.【答案】B【解析】选试管为研究对象,昆虫停在管中时整体做自由落体运动,试管只受重力,由动量定理mgt=p1-0.当昆虫加速上爬时,对管底产生一个向下的作用力F,根据动量定理得(mg+F)t=p2-0,所以p2>p1,故B正确.4.【答案】D【解析】两球碰撞前后应满足动量守恒定律并且碰后两球的动能之和不大于碰前两球的动能之和.即满足:mA v A+mB v B=mA v A′+mB v B′,①mA v+mB v≥mA v A′2+mB v B′2,②答案D中满足①式,但不满足②式,所以D选项错误.5.【答案】C【解析】原子核在放出γ光子的过程中,系统动量守恒,而系统在开始时总动量为零,因此衰变后的原子核的运动方向与γ光子运动方向相反.6.【答案】D【解析】球b做自由落体运动,球c的竖直分运动是自由落体运动,故b、c两个球的运动时间相同且加速度均为g,为t=;球a受重力和支持力,加速度为g sinθ<g,故a球运动时间长,A错误;由于重力相同,而重力的作用时间不同,故重力的冲量不同,B错误;初动能不全相同,而合力做功相同,根据动能定理,得末动能不全相同,C错误;b、c球合力相同,运动时间相同,故合力的冲量相同,根据动量定理,动量变化量也相同;a、b球机械能守恒,末速度相等,故末动量大小相等,初动量为零,故动量增加量的大小相等,D正确.7.【答案】D【解析】滑块和斜劈组成的系统,在水平方向上所受的合力为零,水平方向上动量守恒,根据动量守恒定律知,当滑块的速度沿斜劈向下达到最大时,斜劈向右的速度最大,此时滑块与斜劈开始分离.故D正确,A、B、C错误.8.【答案】B【解析】人起跳的同时,小车要做反冲运动,所以人跳的距离小于x,故l<x时,才有可能跳上站台.9.【答案】A【解析】上滑过程中mg sinθ+F f=ma1,下滑过程中mg sinθ-F f=ma2,a1>a2可知上滑运动时间较短,重力冲量较小,A对;同理可知上滑时摩擦力冲量比下滑时小,上滑时支持力冲量比下滑时小, B、C错;合外力不为零,合外力的冲量不为零,D错.10.【答案】D【解析】动量是矢量,有大小也有方向.动量改变是指动量大小或方向的改变,而动量的大小与质量和速度两个因素有关,其方向与速度的方向相同.质量一定的物体,当速度的大小或方向有一个因素发生变化时,动量就发生变化,故A、B、C错;物体运动状态改变是指速度大小或方向的改变,因此物体的动量一定发生变化,故D正确.11.【答案】D【解析】两车碰撞过程动量守恒,m1v1-m2v2=(m1+m2)v得v==m/s=-0.5 m/s.12.【答案】C【解析】欲提高跳远成绩,则应增大水平速度,即增大水平方向的动量,所以可将铁球向后抛出,人和铁球水平方向的总动量守恒,因为铁球的动量向后,所以人向前的动量增加.13.【答案】C【解析】因船受到的牵引力及阻力不变,且开始时船匀速运动,故整个系统动量守恒;设炮弹质量为m,船(不包括两炮弹)的质量为M,则由动量守恒可得:Mv+mv1-mv1=(M+2m)v0,可得发射炮弹后船(不含炮弹)的动量增大,速度增大,C正确.14.【答案】B【解析】将自行火炮和炮弹看做一个系统,自行火炮水平匀速行驶时,牵引力与阻力平衡,系统动量守恒设向右为正方向,发射前系统动量之和为Mv1,发射后系统的动量之和为(M-m)v2+m(v0+v2).由Mv1=(M-m)v2+m(v0+v2)解得v0=.15.【答案】B【解析】设人水平横躺时受到的风力大小为F m,由于人体受风力大小与正对面积成正比,故人站立时风力为F m.由于受风力有效面积是最大值的一半时,恰好可以静止或匀速漂移,故可以求得人的重力G=F m,即有F m=2G.从A至B过程表演者的加速度大小为a1===0.75g从B至C过程表演者的加速度大小为a2===g,由速度位移公式得:从A至B过程表演者的位移x1=,从B至C过程表演者的位移x2=,故x1∶x2=4∶3,x2=H,A错误;表演者从A至B克服风力所做的功为W1=F m·H=F m H;从B至C过程克服风力所做的功为W2=F m·H=F m H,得=,B正确;设B点的速度为v,则从A至B过程表演者的运动时间t1==.从B至C过程表演者的运动时间t2==,根据动量定理,I1=F m t1=mv,I2=F m t2=2mv,=,C错误;根据P=,又=,=,联立解得=,D错误.16.【答案】B【解析】动能E k=mv2,动量p=mv,则p=,因为初动能相等,m1>m2,则动量p1>p2,B正确.17.【答案】B【解析】物体在空中只受重力作用,三种情况下从抛出到落地竖直上抛时间最长,竖直下抛时间最短,由动量定理:I=mgt=Δp得竖直上抛过程动量增量最大,B正确.18.【答案】D【解析】对A由动量定理:I=2m(v2-v1),对B由动量定理:I=p-mv1,则p=I+mv1=m(2v2-v1),D正确.19.【答案】B【解析】两球碰撞过程动量守恒,有mv A=2mv B,所以由动量和能量的关系有=,故E kB=,B项正确.20.【答案】A【解析】从光滑的斜面下滑,设斜面倾角为θ,高h,则有加速度a=g sinθ,位移x=,根据匀变速直线运动则有x==at2=g sinθt2,运动时间t=,两个斜面高度相同而倾角不同所以运动时间不同,选项C错;沿斜面运动合力为mg sinθ,所以合力的冲量I=mg sinθt=mg,虽然大小相等,但是倾角不同,合力方向不同,合外力冲量不同,B错;下滑过程重力做功mgh相等,A对;根据动能定理,下滑过程只有重力做功,而且做功相等,所以到达斜面底端时动能相同,选项D错.21.【答案】(m+M)g+【解析】子弹射入木块的瞬间,子弹和木块组成的系统动量守恒.取水平向左为正方向,由动量守恒定律得0+mv=(m+M)v1解得v1=.随后子弹和木块整体以此初速度向左摆动做圆周运动.由牛顿第二定律得(取向上为正方向)F-(m+M)g=(m+M)将v1代入解得F=(m+M)g+22.【答案】【解析】摆球从下落过程机械能守恒,设下落到最低点速度大小为v1,则由动能定理得:mgl=mv摆球与钢块碰撞极短,设碰撞后摆球速度大小为v2,钢块速度大小为v3,以水平向右为正方向,由动量守恒得:mv1=-mv2+Mv3由于碰撞后小球反弹至l高处,则小球上升过程由动能定理得:-mg×l=0-mv碰撞后钢块沿水平面做匀减速运动,由动能定理得:-μMgs=0-Mv得s=.23.【答案】1100 N【解析】人自由下落5 m,由运动学公式v2=2gh,则v==m/s=10 m/s.人和安全带作用时,人受到向上的拉力和向下的重力,设向下为正,由动量定理(mg-F)t=0-mv得F=mg+=(60×10+) N=1100 N.24.【答案】(1)(2)mgR(3)【解析】(1)设前车在最高点速度为v2,依题意有mg=①设前车在最低位置与后车分离后速度为v1,根据机械能守恒mv+mg·2R=mv②由①②得:v1=(2)设两车分离前速度为v0,由动量守恒定律2mv0=mv1得v0==设分离前弹簧弹性势能为E p,根据系统机械能守恒定律得E p=mv-·2mv=mgR (3)两车从h高处运动到最低处机械能守恒,有2mgh=·2mv,解得:h=.。
选修1高中物理《动量守恒定律》测试题(含答案)
选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.在光滑的水平桌面上有等大的质量分别为M =0.6kg ,m =0.2kg 的两个小球,中间夹着一个被压缩的具有E p =10.8J 弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m 脱离弹簧后滑向与水平面相切、半径为R =0.425m 的竖直放置的光滑半圆形轨道,如图所示。
g 取10m/s 2。
则下列说法正确的是( )A .球m 从轨道底端A 运动到顶端B 的过程中所受合外力冲量大小为3.4N·sB .弹簧弹开过程,弹力对m 的冲量大小为1.8N·sC .若半圆轨道半径可调,则球m 从B 点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D .M 离开轻弹簧时获得的速度为9m/s2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C .小球第一次在半圆槽的最低点B 时对槽的压力为133mgmgRD.物块最终的动能为154.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A一个向左的初速度v0=10m/s,A、B碰后A球的速度变为向右,大小为2m/s,下列说法正确的是A.球A和B碰撞是弹性碰撞B.球A和B碰后,球B的最小速度可为0C.球A和B碰后,弹簧的最大弹性势能可以达到96JD.球A和B碰后,弹簧恢复原长时球C的速度可能为12m/s5.如图所示,光滑绝缘的水平面上M、N两点有完全相同的金属球A和B,带有不等量的同种电荷.现使A、B以大小相等的初动量相向运动,不计一切能量损失,碰后返回M、N 两点,则A.碰撞发生在M、N中点之外B.两球同时返回M、N两点C.两球回到原位置时动能比原来大些D.两球回到原位置时动能不变6.如图,质量分别为m A、m B的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m,A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放. 当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小为g=10 m/s2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是()A .B 球第一次到达地面时的速度为4m/sB .A 、B 球在B 球向上运动的过程中发生碰撞C .B 球与A 球碰撞后的速度为1m/sD .P 点距离地面的高度0.75m7.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 8.在光滑水平面上,有两个小球A 、B 沿同一直线同向运动(B 在前),已知碰前两球的动量分别为pA =10 kg·m/s 、pB =13 kg·m/s ,碰后它们动量的变化分别为ΔpA 、ΔpB .下列数值可能正确的是( )A .ΔpA =-3 kg·m/s 、ΔpB =3 kg·m/sB .ΔpA =3 kg·m/s 、ΔpB =-3 kg·m/sC .ΔpA =-20 kg·m/s 、ΔpB =20 kg·m/sD .ΔpA =20kg·m/s 、ΔpB =-20 kg·m/s9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m 的小球以平行斜面向上的初速度1v ,当小球回到出发点时速率为2v 。
高中人教物理选择性必修一第一章、章末总结、动量守恒定律(同步练习)(原卷版)同步备课
章末复习第一章 动量守恒定律一、选择题(1~8题,每题6分,共48分)1.(2020·全国高三联考)(单选)下列关于动量的说法正确的是( )A .质量大的物体动量一定大B .速度大的物体动量一定大C .两物体动能相等,动量不一定相等D .两物体动能相等,动量一定相等2.(2020·河北河间四中高二期中)(单选)4.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
则物体在前10 s 内和后10 s 内所受外力的冲量分别是( )A .10 N·s,10 N·sB .10 N·s ,-10 N·sC .0,10 N·sD .0,-10 N·s3.(单选)如图所示,一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离。
已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2) 4.(2020·四川省绵阳南山中学高二月考)(单选)光滑水平面上放有一上表面光滑、倾角为α的斜面体A ,斜面体质量为M ,底边长为L ,如图所示。
将一质量为m 、可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端。
此过程中斜面对滑块的支持力大小为F N ,则下列说法中正确的是( )A .F N =mg cos αB .滑块B 下滑过程中支持力对B 的冲量大小为F N t cos αC .滑块B 下滑过程中A 、B 组成的系统动量守恒D .此过程中斜面向左滑动的距离为m M +mL 5.(2019·日照一模)A 、B 两小球静止在光滑水平面上,用轻弹簧相连接,A 、B 两球的质量分别为m 和M (m <M )。
选修1高中物理动量守恒定律试题(含答案)
选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律 选择题1.一个物体以某一初速度从粗糙斜面的底部沿斜面向上滑,物体滑到最高点后又返回到斜面底部,则下述说法中正确的是()A .上滑过程中重力的冲量小于下滑过程中重力的冲量B .上滑过程中摩擦力的冲量与下滑过程中摩擦力的冲量大小相等C .上滑过程中合力的冲量大于下滑过程中合力的冲量D .上滑与下滑的过程中合外力冲量的方向相同2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m --C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s4.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mghB .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处5.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值6.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 7.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量8.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
高中物理动量守恒定律专项训练100(附答案)
高中物理动量守恒定律专项训练100(附答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v tgt -=-解得:4282t s +=2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.3.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m考点:牛顿第二定律;动量守恒定律;能量守恒定律.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m2速度的大小分别为和,由动量守恒定律得:(4分)两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE 损1=f·d=mv 20(1分),由能量守恒得:12mv 21+12mV 21=12mv 20-ΔE 损1(2分) 且考虑到v 1必须大于V 1,解得:v 1=13()26+v 0 设子弹射入第二块钢板并留在其中后两者的共同速度为V 2, 由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)2+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m =0.1kg .P 2的右端固定一轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得012/2v v m s ==,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 1022(2)mv Mv m M v '+=+ 解得2033/4v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能222102111•2+Mv 2m )0.2222P E mv M v J =-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得2222103211112+Mv 2mv +Mg 2222mv Mv L ⋅=⋅+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =8.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.9.如图所示,木块m 2静止在高h=0.45 m 的水平桌面的最右端,木块m 1静止在距m 2 左侧s 0=6.25 m 处.现木块m 1在水平拉力F 作用下由静止开始沿水平桌面向右运动,与 m 2碰前瞬间撤去F ,m 1和m 2发生弹性正碰.碰后m 2落在水平地面上,落点距桌面右端水平 距离s=l .2 m .已知m 1=0.2 kg ,m 2 =0.3 kg ,m 1与桌面的动摩擦因素为0.2.(两个木块都可以视为质点,g=10 m /s 2)求:(1)碰后瞬间m 2的速度是多少? (2)m 1碰撞前后的速度分别是多少? (3)水平拉力F 的大小?【答案】(1)4m/s (2)5m/s ;-1m/s (3)0.8N 【解析】试题分析:(1)m 2做平抛运动,则:h=12gt 2; s=v 2t ; 解得v 2=4m/s(2)碰撞过程动量和能量守恒:m 1v=m 1v 1+m 2v 212m 1v 2=12m 1v 12+12m 2v 22代入数据解得:v=5m/s v 1=-1m/s (3)m 1碰前:v 2=2as11F m g m a μ-=代入数据解得:F=0.8N考点:动量守恒定律;能量守恒定律;牛顿第二定律的应用【名师点睛】此题关键是搞清两个物体的运动特征,分清物理过程;用动量守恒定律和能量守恒定律结合牛顿定律列出方程求解.10.如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B ,C 的上表面相平且B ,C 不粘连,A 滑上C 后恰好能到达C 板的最右端,已知A ,B ,C 质量均相等,木板C 长为L ,求①A 物体的最终速度 ②A 在木板C 上滑行的时间【答案】①34v ;②04L v 【解析】试题分析:①设A 、B 、C 的质量为m ,B 、C 碰撞过程中动量守恒, 令B 、C 碰后的共同速度为,则,解得,B、C共速后A以0v的速度滑上C,A滑上C后,B、C脱离A、C相互作用过程中动量守恒,设最终A、C 的共同速度,则解得②在A、C相互作用过程中,根据功能关系有(f为A、C间的摩擦力)代入解得20 16mvfL=·此过程中对C,根据动量定理有代入相关数据解得4Ltv=考点:动量守恒定律;能量守恒定律及动量定理.11.如图所示,水平光滑轨道AB与以O点为圆心的竖直半圆形光滑轨道BCD相切于B 点,半圆形轨道的半径r=0.30m.在水平轨道上A点静止放置一质量为m2=0.12kg的物块2,现有一个质量m1=0.06kg的物块1以一定的速度向物块2运动,并与之发生正碰,碰撞过程中无机械能损失,碰撞后物块2的速度v2=4.0m/s.物块均可视为质点,g取10m/s2,求:(1)物块2运动到B点时对半圆形轨道的压力大小;(2)发生碰撞前物块1的速度大小;(3)若半圆形轨道的半径大小可调,则在题设条件下,为使物块2能通过半圆形轨道的最高点,其半径大小应满足什么条件.【答案】【小题1】7.6N【小题2】6.0m/s【小题3】0.32m【解析】(1)设轨道B点对物块2的支持力为N,根据牛顿第二定律有N-m2g=m2v22/R解得 N=7.6N根据牛顿第三定律可知,物块2对轨道B点的压力大小N′=7.6N(2)设物块1碰撞前的速度为v0,碰撞后的速度为v1,对于物块1与物块2的碰撞过程,根据动量守恒定律有 m1v0=mv1+m2v2因碰撞过程中无机械能损失,所以有m1v02=m1v12+m2v22代入数据联立解得 v0=6.0m/s(3)设物块2能通过半圆形轨道最高点的最大半径为R m,对应的恰能通过最高点时的速度大小为v,根据牛顿第二定律,对物块2恰能通过最高点时有 m2g=m2v2/R m对物块2由B运动到D的过程,根据机械能守恒定律有m2v22=m2g•2R m+m2v2联立可解得:R m=0.32m所以,为使物块2能通过半圆形轨道的最高点,半圆形轨道半径不得大于0.32m12.如图所示,装置的左边是足够长的光滑水平台面,一轻质弹簧左端固定,右端连接着质量M=1kg的小物块A.装置的中间是水平传送带,它与左、右两边的台面等高,并能平滑对接.传送带始终以v=1m/s的速率逆时针转动,装置的右边是一光滑曲面,质量m=0.5kg的小物块B从其上距水平台面高h=0.8m处由静止释放.已知物块B与传送带之间的动摩擦因数0.35μ=,l=1.0m.设物块A、B间发生的是对心弹性碰撞,第一次碰撞前物块A处于静止状态.取g=10m/s2.(1)求物块B与物块A第一次碰撞前的速度大小;(2)物块A、B间发生碰撞过程中,物块B受到的冲量;(3)通过计算说明物块B与物块A第一次碰撞后能否运动到右边的曲面上?(4)如果物块A、B每次碰撞后,弹簧恢复原长时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后的运动速度大小.【答案】(1)3m/s;(2)2kgm/s;(3)17l<,所以不能;(4)113nms-⎛⎫⎪⎝⎭【解析】【分析】物块B沿光滑曲面下滑到水平位置由机械能守恒列出等式,物块B在传送带上滑动根据牛顿第二定律和运动学公式求解;物块A、B第一次碰撞前后运用动量守恒,能量守恒列出等式求解;当物块B在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B运动到左边台面是的速度大小为v1,继而与物块A发生第二次碰撞.物块B与物块A第三次碰撞、第四次碰撞…,根据对于的规律求出n次碰撞后的运动速度大小.【详解】(1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律可得: 2012mgh mv = 解得:04m v s= 设物块B 在传送带上滑动过程中因受摩擦力所产生的加速度大小为a ,则有:μmg=ma , 设物块B 通过传送带后运动速度大小为v ,有:v 12-v 02=-2al ,解得:v 1=3m/s >v=1m/s ,则物块B 与物块A 第一次碰撞前的速度大小为3m/s ;(2)设物体A 、B 第一次碰撞后的速度分别为A v 、B v ,取向右为正方向由动量守恒定律得:1A B mv Mv mv -=+ 由机械能守恒定律得:2221111222B A mv mv Mv =+ 解得:v A =-2m/s ,v B =1m/s ,(v A =0m/s ,v B =-3m/s 不符合题意,舍去)12?B m I P mv mv kg s=∆=-= ,方向水平向右; (3) 碰撞后物块B 在水平台面向右匀速运动,设物块B 在传送带上向右运动的最大位移为l',则有:0-v B 2=-2al′, 解得:17l l '=< 所以物块B 不能通过传送带运动到右边的曲面上;(4) 当物块B 在传送带上向右运动的速度为零时,将会沿传送带向左加速.可以判断,物块B 运动到左边台面是的速度大小为v B ,继而与物块A 发生第二次碰撞由(2)可知,v B =113v 同理可得:第二次碰撞后B 的速度:v B1=2111()33B v v =第n 次碰撞后B 的速度为:v B (n-1)=1111()()33n n m v s-= 【点睛】本题是多过程问题,分析滑块经历的过程,运用动量守恒,能量守恒、牛顿第二定律和运动学公式结合按时间顺序分析和计算,难度较大.。
动量守恒测试题及答案高中
动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。
如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。
3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。
如果碰撞是完全弹性的,请计算碰撞后两物体的速度。
4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。
如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。
5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。
答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。
在这种情况下,系统的总动量在时间上保持不变。
2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。
因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。
3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。
碰撞后两物体的总动量仍为50 kg·m/s。
设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。
由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。
解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。
4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。
高中物理动量守恒定律真题汇编(含答案)
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
江苏专用2024_2025年新教材高中物理第一章动量守恒定律章末检测含解析新人教版选择性必修第一册
动量守恒定律(时间:75分钟满分:100分)一、单项选择题:共11题,每题4分,共44分。
每题只有一个选项最符合题意。
1.如图所示,坐落于中国天津永乐桥之上的“天津之眼”,以其独特的位置优势成为“世界上唯一一座建在桥上的摩天轮”。
假设乘客随座舱在竖直面内做匀速圆周运动。
下列说法正确的是( )A.在摩天轮转动的过程中,乘客动量始终保持不变B.在最低点时,乘客所受重力大小大于座椅对他的支持力大小C.在摩天轮转动一周的过程中,座椅对乘客的冲量方向竖直向上D.从最高点到最低点的过程中,重力的瞬时功率渐渐增大解析:选C 在摩天轮转动过程中,乘客做匀速圆周运动,乘客的速度大小不变,但方向变更,乘客的动量发生变更,故A错误;在最低点,由重力和支持力的合力供应向心力F,向心力方向向上,F=F N-mg,则支持力F N=mg+F,所以重力大小小于支持力大小,故B错误;在摩天轮转动一周的过程中,动量变更量为零,则合力对乘客的总冲量为零,座椅对乘客的冲量与重力的冲量方向相反,即座椅对乘客的冲量方向竖直向上,故C正确;从最高点到最低点的运动过程中,重力的瞬时功领先增大后减小,故D错误。
2.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
如图所示,使笔的尾部朝下,将笔向下按到最低点,使小帽缩进,然后放手,笔将向上弹起至肯定的高度。
忽视摩擦和空气阻力。
则笔从最低点运动至最高点的过程中,下列说法正确的是( )A.笔的动量始终增大B.弹簧的弹性势能削减量等于笔的动能的增加量C.笔的动能先减小后增大D.若考虑运动的全过程,笔所受的重力的冲量大小等于弹力冲量大小解析:选D 笔从最低点运动至最高点的过程中,笔向上运动,先加速再减速,故动量、动能都是先增大再减小,A、C错误;忽视摩擦和空气阻力,笔、弹簧组成的系统机械能守恒,可知弹簧的弹性势能削减量等于笔的动能和重力势能总和的增加量,B错误;依据动量定理可知,合外力的冲量等于动量的变更量,运动的全过程,初、末动量都为零,则可知笔所受的重力的冲量大小等于弹力冲量大小,D正确。
选修1高中物理《动量守恒定律》测试题(含答案)
选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --4.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v gμ 5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
第一章 动量守恒定律-同步章末检测(含解析)—【新教材】人教版(2019)高中物理选择性必修第一册
第一章动量守恒定律-同步章末检测(含解析)一、单选题1.如图所示。
光滑水平面上有A,B两辆小车,质量均为m=1kg。
现将小球C用长为0.2m的细线悬于轻质支架顶端,m C=0.5kg。
开始时A车与C球以v C=4m/s的速度冲向静止的B车若两车正碰后粘在一起。
不计空气阻力。
重力加速度g取10m/s2。
则()A.A车与B车碰撞瞬间。
两车动量守恒,机械能也守恒B.小球能上升的最大高度为0.16mC.小球能上升的最大高度为0.12mD.从两车粘在一起到小球摆到最高点的过程中,A,B,C组成的系统动量2.运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭B.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭C.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭D.燃料燃烧推动空气,空气反作用力推动火箭3.如图,一质量为2kg的物体放在光滑的水平面上,处于静止状态,现用与水平方向成60°角的恒力F=10N作用于物体上,历时5s,则()①力F对物体的冲量大小为50N•s②力F对物体的冲量大小为25N•s③物体的动量变化量为25kg•m/s④物体所受合外力冲量大小为25N•s.A.①③B.②③C.①③④D.②③④4.2018年3月22日,一架中国国际航空CA103客机,中午从天津飞抵香港途中迅遇鸟击,飞机头部被撞穿一个1米乘1米的大洞,雷达罩被砸穿。
所幸客机于下午1点24分安全着陆,机上无人受伤。
设客机撞鸟时飞行时速度大约为1080km/h,小鸟质量约为0.5kg,撞机时间约为0.01s,估算飞机收到的撞击力为()A.540NB.54000NC.15000ND.1.50N5.两球A、B在光滑的水平面上沿同一直线、同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s,当球A 追上球B并发生碰撞后A、B两球的速度的可能值是(取两球碰撞前的运动方向为正):()A.v A′=5m/s,v B′=2.5m/sB.v A′=2m/s,v B′=4m/sC.v A′=-4m/s,v B′=7m/sD.v A′=7m/s,v B′=1.5m/s6.为探究人在运动过程中脚底在接触地面瞬间受到的冲击力问题,实验小组的同学利用落锤冲击地面的方式进行实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计,g 取10m/s2.下表为一次实验过程中的相关数据.根据实验数据可知()A.重物受到地面的最大冲击力时的加速度大小为100m/s2B.重物与地面接触前瞬时的速度大小为2m/sC.重物离开地面瞬时的速度大小为3m/sD.在重物与地面接触的过程中,重物受到的地面施加的平均作用力是重物所受重力的6 倍7.甲、乙两物体在光滑水平面上沿同一直线相向运动,甲、乙物体的速度大小分别为3m/s和1m/s;碰撞后甲、乙两物体都反向运动,速度大小均为2m/s.则甲、乙两物体质量之比为()A.2:3B.2:5C.3:5D.5:38.光滑水平面上放有一上表面光滑、倾角为α的斜面体A,斜面体质量为M、底边长为L,如图所示.将一质量为m、可视为质点的滑块B从斜面的顶端由静止释放,滑块B经过时间t刚好滑到斜面底端.此过程中斜面对滑块的支持力大小为F N,则下列说法中正确的是()A.F N=mgcos αB.滑块下滑过程中支持力对B的冲量大小为F N tcos αC.滑块B下滑的过程中A、B组成的系统动量守恒D.此过程中斜面体向左滑动的距离为L9.质量分别为m1和m2的两个物体碰撞前后的位移—时间图象如图所示,由图有以下说法:①碰撞前两物体质量与速度的乘积相同;②质量m1等于质量m2;③碰撞后两物体一起做匀速直线运动;④碰撞前两物体质量与速度的乘积大小相等、方向相反。
高中物理人教版选择性必修一第一章动量守恒定律章末检测试卷(一)
高中物理人教版选择性必修一第一章动量守恒定律章末检测试卷(一)章末检测试卷(一)(时间:90分钟满分:100分)一、单项选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面列举的装置各有一定的道理,其中不能用动量定理进行解释的是()A.运输玻璃器皿等易碎物品时,在器皿的四周总是垫着碎纸或海绵等柔软、有弹性的垫衬物B.建筑工人戴的安全帽内有帆布垫,把头和帽子的外壳隔开一定的空间C.热水瓶胆做成两层,且把两层中间的空气抽去D.跳高运动中的垫子总是十分松软答案 C2.如图1所示,在光滑的水平面上放置有两木块A和B,A的质量较大,现同时施加大小相等的恒力F使它们相向运动,然后又同时撤去外力F,A和B迎面相碰后合在一起,则A和B合在一起后的运动情况是()图1A.停止运动B.因A的质量较大而向右运动C.因B的速度较大而向左运动D.运动方向不确定答案 A解析由动量定理知,A和B在碰撞之前的动量等大反向,合动量为零,碰撞过程中动量守恒,因此碰撞合在一起之后的总动量仍为零,即停止运动,故选A.3.(2019·湖北重点高中联考)一只小船质量为M ,船上人的质量为m .船原来以速度v 0行驶,当船上的人以相对地面的水平速度v 0沿船行反方向跳离船时,不计水的阻力,则船的速度大小变为( ) A .v 0 B.mM v 0 C.M +m M v 0D.M +2m Mv 0答案 D解析当船上的人以相对地面的水平速度v 0沿船行反方向跳离船时,小船和人组成的系统动量守恒,以小船原来的速度方向为正方向,根据动量守恒定律得:(M +m )v 0=m (-v 0)+M v 解得:v =M +2m Mv 0,故D 正确.4.一质量为60 kg 的建筑工人不慎由静止从高空跌下,由于弹性安全带的保护,使他悬挂起来.已知弹性安全带从开始伸直到拉伸到最长的缓冲时间是1.5 s ,安全带自然长度为5 m ,g 取10 m/s 2,则安全带所受的平均冲力的大小为( ) A .500 N B .1 100 N C .600 N D .1 000 N 答案 D解析设建筑工人下落5 m 时速度为v ,则v =2gh =2×10×5 m/s =10 m/s ,设安全带所受平均冲力大小为F ,则由动量定理得:(mg -F )t =-m v ,所以F =mg +m vt =60×10 N +60×101.5N =1 000 N ,故D 对,A 、B 、C 错. 5.a 、b 两球在光滑的水平面上沿同一直线发生正碰,碰撞前a 球的动量p a =30 kg·m/s ,b 球的动量p b =0,碰撞过程中,a 球的动量减少了20 kg·m/s ,则碰撞后b 球的动量为( ) A .-20 kg·m/s B .10 kg·m/s C .20 kg·m/s D .30 kg·m/s 答案 C解析碰撞过程中,a 球的动量减少了20 kg·m/s ,故此时a 球的动量是10 kg·m/s ,a 、b 两球碰撞前后总动量保持不变,为30 kg·m/s ,则碰撞后b 球的动量为20 kg·m/s.6.(2018·济南市高二下期末)一只爆竹竖直升空后,在高为h 处达到最高点并发生爆炸,分为质量不同的两块,两块质量之比为3∶1,其中质量小的一块获得大小为v 的水平速度,重力加速度为g ,不计空气阻力,则两块爆竹落地后相距( ) A.v 42h g B.2v 32h g C .4v 2h gD.4v 32h g答案 D解析设其中一块质量为m ,另一块质量为3m .爆炸过程系统水平方向动量守恒,以速度v 的方向为正方向,由动量守恒定律得:m v -3m v ′=0,解得v ′=v3;设两块爆竹落地用的时间为t ,则有:h =12gt 2,得t =2hg,落地后两者间的距离为:s =(v +v ′)t ,联立各式解得:s =4v32hg,故选D.7.如图2所示,半径为R 的光滑半圆槽质量为M ,静止在光滑水平面上,其内表面有一质量为m 的小球被竖直细线吊着位于槽的边缘处,现将线烧断,小球滑行到最低点向右运动时,槽的速度为(重力加速度为g )( )图2A .0 B.m M 2MgRM +m,方向向左 C.m M2MgRM +m,方向向右 D .不能确定答案 B解析以水平向右为正方向,设在最低点时m 和M 的速度大小分别为v 和v ′,根据动量守恒定律得:0=m v -M v ′,根据机械能守恒定律得:mgR =12m v 2+12M v ′2,联立以上两式解得v ′=mM2MgRM +m,方向向左,故选项B 正确.8.如图3所示,在光滑的水平地面上停放着质量为m 的装有14弧形槽的小车.现有一质量也为m 的小球以v 0的水平速度沿与切线水平的槽口向小车滑去,不计一切摩擦,则( )图3A.在相互作用的过程中,小车和小球组成的系统总动量守恒B.小球从右侧离开车后,对地将向右做平抛运动C.小球从右侧离开车后,对地将做自由落体运动D.小球从右侧离开车后,小车的速度有可能大于v0答案 C解析整个过程中系统水平方向动量守恒,竖直方向动量不守恒,故A错误;设小球离开小车时,小球的速度为v1,小车的速度为v2,整个过程中水平方向动量守恒:m v0=m v1+m v2,由机械能守恒得:12=12m v12+12m v22,联立解得v1=0,v2=v0,即小球与小车分离时二者2m v0交换速度,所以小球从小车右侧离开后对地将做自由落体运动,故B、D错误,C正确.二、多项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.9.如图4所示,用水平轻弹簧相连的物块a和b放在光滑的水平面上,物块a紧靠竖直墙壁,物块c以初速度v0向物块b运动并在极短时间内与b粘在一起.对于由物块a、b、c和弹簧所组成的系统,在下列依次进行的过程中,机械能守恒但动量不守恒的是() 图4A .c 刚与b 接触→c 与b 粘在一起B .b 和c 整体向左运动→弹簧压缩量第一次最大C .弹簧压缩量第一次最大→弹簧第一次恢复原长D .弹簧第一次恢复原长→弹簧伸长量第一次最大答案 BC解析c 与b 粘在一起,发生的是完全非弹性碰撞,动量守恒,机械能损失最大,故A 错误;b 和c 整体向左运动→弹簧压缩量第一次最大,动能转化成弹簧的弹性势能,机械能守恒,但动量不守恒,故B 正确;弹簧压缩量第一次最大→弹簧第一次恢复原长,弹性势能转化成动能,机械能守恒,但是动量增加,故C 正确;弹簧第一次恢复原长→弹簧伸长量第一次最大,动量守恒,机械能守恒,故D 错误.10.质量为m 的小球A ,沿光滑水平面以v 0的速度与质量为2m 的静止小球B 发生正碰,碰撞后A 球的动能变为原来的1 9,那么小球B 的速度可能是( )A.13v 0 B.23v 0 C.49v 0 D.59v 0 答案 AB解析根据E k =12m v 2,碰撞后A 球的动能变为原来的19,则A 球的速度变为v A ′=±13v 0,正、负表示方向有两种可能.当v A ′=13v 0时,v A ′与v 0同向,有m v 0=13m v 0+2m v B ,解得v B =13v 0当v A ′=-13v 0时,v A ′与v 0反向,有m v 0=-13m v 0+2m v B ,解得v B =23v 0,故选A 、B.11.小车静置于光滑的水平面上,小车的A 端固定一个水平轻质小弹簧,B 端粘有橡皮泥,小车的质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩(细绳未画出),开始时小车与C 都处于静止状态,木块C 距小车右端的距离为L ,如图5所示,当突然烧断细绳,弹簧被释放,使木块C 离开弹簧向B 端冲去,并跟B 端橡皮泥粘在一起,以下说法中正确的是( )图5A .如果小车内表面光滑,整个系统任何时刻机械能都守恒B .当木块相对地面运动的速度大小为v 时,小车相对地面运动的速度大小为mM vC .小车向左运动的最大位移为mLM +mD .小车向左运动的最大位移为mM L答案 BC解析小车、弹簧与木块C 这一系统所受合外力为零,系统在整个过程动量守恒,但粘接过程有机械能损失.M v ′-m v =0,则v ′=mMv ,该系统属于“人船模型”,Md =m (L -d ),所以车向左运动的最大位移应等于d =mLM +m,综上,选项B 、C 正确.12.(2020·郑州一中高二期中)如图6所示,质量为m 的小球A 静止于光滑的水平面上,在球A 和墙之间用水平轻弹簧连接,现用完全相同的小球B 以水平速度v 0与A 相碰撞,碰撞后两球粘在一起压缩弹簧.若弹簧被压缩过程中的最大弹性势能为E ,从球A 被碰撞到回到原静止位置的过程中弹簧对A 、B 整体的冲量大小为I ,则下列表达式中正确的是( )图6A .E =14m v 02B .E =12m v 02C .I =m v 0D .I =2m v 0答案 AD解析选取A 、B 作为一个系统,设两球碰撞后的速度为v ,在A 、B 两球碰撞过程中,以v 0的方向为正方向,由动量守恒定律可得:m v 0=(m +m )v ,解得v =v 02,再将A 、B 及轻弹簧作为一个系统,在压缩弹簧过程中利用机械能守恒定律可得:弹簧最大弹性势能E =12×2m v 022=14m v 02,A 正确,B 错误;弹簧压缩到最短后,A 、B 开始向右运动,弹簧恢复原长时,由机械能守恒定律可知,A 、B 的速度大小均为v 02,以水平向右为正方向,从球A 被碰撞到回到原静止位置的过程中,弹簧对A 、B 整体的冲量大小I =2m ×v 02-2m ×-v 02=2m v 0,C 错误,D正确.三、非选择题(本题6小题,共60分)13.(6分)(2019·玉溪一中期中)如图7所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.图7(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是可以通过仅测量________(填选项前的符号)间接地解决这个问题.A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影点.实验时,先将入射球m1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置由静止释放,与小球m2相撞,并多次重复.(小球质量关系满足m1>m2)接下来要完成的必要步骤是________.(填选项前的符号)A.用天平测量两个小球的质量m1、m2B.测量小球m1开始释放时的高度hC.测量抛出点距地面的高度HD.分别找到m1、m2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)若两球相碰前后的动量守恒,其表达式可表示为________[用(2)中测量的量表示].答案(1)C(2分)(2)ADE(2分)(3)m1·OM+m2·ON=m1·OP(2分) 解析(1)验证动量守恒定律实验中,即研究两个小球在轨道水平部分碰撞前后的动量关系,直接测定小球碰撞前后的速度是不容易的,但是可以由落地高度不变情况下的水平射程来体现速度.故选C.(2)实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球从斜轨上S位置静止释放,与小球相碰,并多次重复.测量平均落地点的位置,找到平抛运动的水平位移,因此步骤中D、E是必需的,而且D要在E之前.至于用天平测量质量,先后均可以.故选A、D、E.(3)若两球相碰前后的动量守恒,则m1v0=m1v1+m2v2,又OP=v0t,OM=v1t,ON=v2t,代入得:m1OP=m1OM+m2ON.14.(8分)(2019·济宁市模拟考试)为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量相差比较大的小球a、b,按下述步骤做了实验:图8①用天平测出两小球a、b的质量(分别为m1和m2,且m1>m2).②按如图8所示安装好实验器材,将斜槽AB固定在桌边,使槽的末端切线水平,将一斜面BC连接在斜槽末端.③先不放小球b,让小球a从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置.④将小球b放在斜槽末端边缘处,让小球a从斜槽顶端A处由静止开始滚下,使它们发生碰撞,分别记下小球a和b在斜面上的落点位置.⑤用毫米刻度尺量出各个落点位置到斜槽末端点B的距离.图中点D、E、F是该同学记下小球在斜面上的落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题:(1)在不放小球b时,小球a从斜槽顶端A处由静止开始滚下,a 的落点在图中________点,把小球b放在斜槽末端边缘处,小球a从斜槽顶端A处由静止开始滚下,使它们发生碰撞,碰后小球a 的落点在图中________点.(2)若碰撞过程中,动量和机械能均守恒,不计空气阻力,则下列表达式中正确的有________. A .m 1L F =m 1L D +m 2L E B .m 1L E 2=m 1L D 2+m 2L F 2 C .m 1L E =m 1L D +m 2L F D .LE =LF -L D答案 (1)E (2分) D (2分) (2)C(4分)解析 (1)小球a 从斜槽顶端A 处由静止开始滚下,a 的落点在题图中的E 点,小球a 和小球b 相撞后,小球b 的速度增大,小球a 的速度减小,都做平抛运动,所以碰撞后a 球的落点是D 点,b 球的落点是F 点.(2)设斜面BC 的倾角为θ,小球落点到B 点的距离为L ,小球从B 点抛出时速度为v ,则竖直方向有L sin θ=12gt 2,水平方向有L cos θ=v t ,解得v =L cos θt =L cos θ2L sin θg =cos θ2sin θg L ,所以v ∝L .由题意分析得,只需满足m 1v 1=m 1v 1′+m 2v 2,把速度v 代入整理得m 1L E =m 1L D +m 2L F ,就可说明两球碰撞过程中动量守恒;若两小球的碰撞是弹性碰撞,则碰撞前后机械能没有损失,则要满足关系式12m 1v 12=12m 1v 1′2+12m 2v 22,整理得m 1L E =m 1L D +m 2L F ,故C正确.15.(8分)(2019·陕西怀仁高二期中)如图9所示,人站在滑板A 上,以v 0=3 m/s 的速度沿光滑水平面向右运动.当靠近前方的横杆时,人相对滑板竖直向上起跳越过横杆,A 从横杆下方通过,与静止的滑板B 发生碰撞并粘在一起,之后人落到B 上,与滑板一起运动,已知人、滑板A 和滑板B 的质量分别为m 人=70 kg 、m A =10 kg 和m B =20 kg ,求:图9(1)A、B碰撞过程中,A对B的冲量的大小和方向;(2)人最终与滑板的共同速度的大小.答案(1)20 kg·m/s方向水平向右(2)2.4 m/s解析(1)人跳起后A与B碰撞前后动量守恒,设碰后AB的速度为v1,m A v0=(m A+m B)v1 (2分)解得:v1=1 m/s(1分)A对B的冲量:I=m B v1=20×1 kg·m/s=20 kg·m/s方向水平向右.(2分)(2)人下落与AB作用前后,水平方向动量守恒,设共同速度为v2,m人v0+(m A+m B)v1=(m人+m A+m B)v2(2分)代入数据得:v2=2.4 m/s.(1分)16.(12分)如图10所示,在光滑水平面上静止放着一质量为2m 的木板B,木板表面光滑,右端固定一水平轻质弹簧,质量为m的木块A以速度v0从木板的左端水平向右滑上木板B.图10(1)求弹簧的最大弹性势能;(2)弹簧被压缩至最短的过程中,求弹簧给木块A 的冲量;(3)当木块A 和木板B 分离时,求木块A 和木板B 的速度.答案 (1)13m v 02 (2)23m v 0,方向水平向左 (3)13v 0,方向水平向左 23v 0,方向水平向右解析 (1)弹簧被压缩到最短时,木块A 与木板B 具有相同的速度,此时弹簧的弹性势能最大,设共同速度为v ,从木块A 开始沿木板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 和轻弹簧组成的系统的动量守恒,取向右为正方向,有m v 0=(m +2m )v (2分) 由能量守恒定律得,弹簧的最大弹性势能E p =12m v 02-1 2(m +2m )v 2(1分)解得E p =13m v 02(1分)(2)对木块A ,根据动量定理得I =m v -m v 0(1分) 解得I =-23m v 0,负号表示方向水平向左(1分)(3)从木块A 滑上木板B 直到二者分离,系统的机械能守恒,设分离时A 、B 的速度分别为v 1和v 2,根据动量守恒定律得m v 0=m v 1+2m v 2(2分) 根据机械能守恒定律得12m v 02=12m v 12+12×2m v 22 (2分)解得v 1=-v 03,v 2=2v 03,负号表示方向水平向左.(2分)17.(12分)两块质量都是m 的木块A 和B 在光滑水平面上均以大小为v 02的速度向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图11所示.现从水平方向迎面射来一颗子弹,质量为m4,速度大小为v 0,子弹射入木块A (时间极短)并留在其中.求:图11(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.答案(1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 0 2;(1分)由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A (2分) 解得v A =v 05(2分)(2)在弹簧压缩过程中木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒.设弹簧压缩量最大时共同速度的大小为v ,弹簧的最大弹性势能为E pm ,选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v (2分) 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm (3分) 联立解得v =13v 0,E pm =140m v 02.(2分)18.(14分)(2020·荆门市龙泉中学期末考试)在光滑水平面上静置有质量均为m 的木板AB 和滑块CD ,木板AB 上表面粗糙,滑块CD 上表面是光滑的14圆弧,其始端D 点切线水平且与木板AB 上表面平滑相接,如图12所示.一可视为质点的物块P ,质量也为m ,从木板AB 的右端以初速度v 0滑上木板AB ,过B 点时速度为v 02,又滑上滑块CD ,最终恰好能滑到滑块CD 圆弧的最高点C 处.已知物块P 与木板AB 间的动摩擦因数为μ,重力加速度为g .求:图12(1)物块滑到B 处时木板的速度v AB ; (2)木板的长度L ; (3)滑块CD 圆弧的半径.答案 (1)v 04,方向向左(2)5v 0216μg (3)v 0264g解析 (1)物块由点A 到点B 时,取向左为正方向,由动量守恒定律得 m v 0=m v B +2m ·v AB (2分) 又v B =v 02,(1分)解得v AB =v 04,方向向左(1分)(2)物块由点A 到点B 时,根据能量守恒定律得12m v 02-12m (v 02)2-12×2m (v 04)2=μmgL (3分) 解得L =5v 0216μg.(1分)(3)由点D 到点C ,滑块CD 与物块P 组成的系统在水平方向上动量守恒m ·v 02+m ·v 04=2m v 共(2分) 滑块CD 与物块P 组成的系统机械能守恒 mgR =12m (v 02)2+12m (v 04)2-12×2m v 共2(2分)联立解得,滑块CD 圆弧的半径为R =v 0264g.(2分)。
高中物理动量守恒定律真题汇编(含答案)含解析
高中物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高中物理《动量守恒定律》章末检测试题(含答案)
高中物理《动量守恒定律》章末检测试题(含答案)动量守恒定律》章末检测试题时间:90分钟满分:100分一、选择题 (本题共10小题,每小题4分,共40分)1.在下列几种现象中,动量不守恒的是()A。
在光滑水平面上发生碰撞的两球B。
车静止在光滑水平面上,车上的人从车头走到车尾,以人、车为系统C。
水平放置的弹簧一端固定,另一端与置于光滑水平面上的物体相连,令弹簧伸长后释放使物体运动D。
打乒乓球时,以球和球拍为系统2.关于冲量和动量,下列说法中正确的是()A。
物体受到的冲量越大,其动量变化越大B。
物体受到的合力越大,其动量的变化就越大C。
物体受到的冲量方向与物体动量方向相同D。
物体动量发生变化是因为受到了冲量作用3.以初速度v水平抛出一质量为m的石块,不计空气阻力,则对石块在空中运动过程中的下列各物理量的判断正确的是() A。
在两个相等的时间间隔内,石块受到的冲量相同B。
在两个相等的时间间隔内,石块动量的增量相同C。
在两个下落高度相同的过程中,石块动量的增量相同D。
在两个下落高度相同的过程中,石块动能的增量相同4.如图所示,两个小球A、B在光滑水平地面上相向运动,它们的质量分别为mA=4 kg,mB=2 kg,速度分别是vA=3m/s(设为正方向),vB=-3 m/s。
则它们发生正碰后,速度的可能值分别为()A。
vA′=1 m/s,vB′=1 m/sB。
vA′=4 m/s,vB′=-5 m/sC。
vA′=2 m/s,vB′=-1 m/sD。
vA′=-1 m/s,vB′=-5 m/s5.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是()A。
a尚未离开墙壁前,a和b系统的动量守恒B。
a尚未离开墙壁前,a与b系统的动量不守恒C。
a离开墙壁后,a、b系统动量守恒D。
a离开墙壁后,a、b系统动量不守恒6.如图所示,光滑水平面上有一小车,小车上有一物体,用一细线将物体系于小车的A端(细线未画出),物体与小车A端之间有一压缩的弹簧,某时刻线断了,物体沿车滑动到B端并粘在B端的油泥上。
动量守恒定律章末测试题及答案
第十六章《动量守恒定律》章末检测试题班级姓名一、选择题(每题答案全对4分,1-—9单选,10--12多选)1、下列关于系统动量守恒说法正确的是:A.若系统内存在着摩擦力,系统的动量的就不守恒B.若系统中物体具有加速度,系统的动量就不守恒C.若系统所受的合外力为零,系统的动量就守恒D.若系统所受外力不为零,系统的动量就守恒2、把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有f.且f 的冲量甚小D.车、枪和子弹组成的系统动量守恒3。
甲、乙两球在光滑水平面上发生碰撞。
碰撞前,甲球向左运动,乙球向右运动,碰撞后一起向右运动,由此可以判断:( )A.甲的质量比乙小B.甲的初速度比乙小C.甲的初动量比乙小D.甲的动量变化比乙小4、炮弹的质量为m,装好炮弹的大炮总质量为M,炮弹出口时相对地面的速度为v,炮弹与水平方向夹角为α,如果不考虑炮车与水平地面的摩擦,则射击时炮车的后退速度为( )A。
mv/(M—m) B.mvcosα/M C。
mv/M D.mvcosα/(M-m)5.如图3所示,设车厢长度为L,质量为M,静止于光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢壁来回碰撞n次后,静止mv0图3在车厢中。
这时车厢的速度是()A。
v0水平向右 B。
0C.mv0/(M+m),水平向右.D.mv0/(M—m),水平向右乙6.、质量为2kg的物体以2m/s的速度作匀变速直线运动,经过2s后其动量大小变为8kg。
m/s,则关于该物体说法错误的是( )A.所受合外力的大小可能等于2NB.所受合外力的大小可能等于6NC.所受冲量可能等于12N。
sD.所受冲量可能等于20N。
s7、两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg m B=2 kg,v A=6m/s,v B=2 m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A.v A′=5 m/s,v B′=2.5 m/s B.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s, v B′=1.5 m/s8.在光滑的水平面上,两个质量均为m的完全相同的滑块以大小均为P的动量相向运动, 发生正碰,碰后系统的总动能不可能是A.0 B.错误!C.错误!D.错误!9.如图所示,质量为m的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( )A.向左的平抛运动;B.向右的平抛运动;C.自由落体运动;D.无法确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理-《动量守恒定律》章末测试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分110分,时间90分钟。
第Ⅰ卷(选择题 共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段D.静止不动2.如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( )A .21E E =B .01E E =C .22E E =D .02E E =3.光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。
假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。
忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( )A.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
木箱和小木块都具有一定的质量。
现使木箱获得一个向右的初速度v 0,则( )A .小木块和木箱最终都将静止B .小木块最终将相对木箱静止,二者一起向右运动C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动PvQ5.质量为m a=1kg,m b=2kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移—时间图象如图所示,则可知碰撞属于()A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,不能确定6.人的质量m=60kg,船的质量M=240kg,若船用缆绳固定,船离岸1.5m时,人可以跃上岸。
若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为(不计水的阻力,两次人消耗的能量相等)()A.1.5m B.1.2mC.1.34m D.1.1m7.如图所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑。
当两物体被同时释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成系统的动量守恒8.如图所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上。
c 车上有一小孩跳到b车上,接着又立即从b车跳到a车上。
小孩跳离c车和b车时对地的水平速度相同。
他跳到a车上相对a车保持静止,此后()A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系v c>v a>v bD.a、c两车运动方向相反9.如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。
现使B瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由压缩状态恢复到原长C.两物体的质量之比为m1∶m2=1∶2D.在t2时刻A与B的动能之比为E k1∶E k2=8∶110.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。
现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。
g取10m/s2。
则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8N·s第Ⅱ卷(非选择题共60分)二、填空题(共2小题,共16分。
把答案直接填在横线上)11.(6分)如图所示,在橄榄球比赛中,一个质量为95kg的橄榄球前锋以5m/s的速度跑动,想穿越防守队员到底线触地得分。
就在他刚要到底线时,迎面撞上了对方两名质量均为75 kg的队员,一个速度为2m/s,另一个为4m/s,然后他们就扭在了一起。
(1)他们碰撞后的共同速率是________(结果保留一位有效数字)。
(2)在框中标出碰撞后他们动量的方向,并说明这名前锋能否得分:________。
12.(10分)如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O。
接下来的实验步骤如下:步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。
重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞,重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度。
(1)对于上述实验操作,下列说法正确的是________。
A.应使小球每次从斜槽上相同的位置自由滚下B.斜槽轨道必须光滑C.斜槽轨道末端必须水平D.小球1质量应大于小球2的质量(2)上述实验除需测量线段OM、OP、ON的长度外,还需要测量的物理量有________。
A.A、B两点间的高度差h1B.B点离地面的高度h2C.小球1和小球2的质量m1、m2D.小球1和小球2的半径r(3)当所测物理量满足表达式____________(用所测物理量的字母表示)时,即说明两球碰撞遵守动量守恒定律。
如果还满足表达式______________(用所测物理量的字母表示)时,即说明两球碰撞时无机械能损失。
(4)完成上述实验后,某实验小组对上述装置进行了改造,如图2所示。
在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接。
使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′。
用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1,l2、l3。
则验证两球碰撞过程中动量守恒的表达式为________________(用所测物理量的字母表示)。
三、计算题(共4小题,共54分。
解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位) 13.(8分)如图所示,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连。
将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。
现A以初速v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起。
以后细线突然断开,弹簧伸展,从而使C与A、B分离。
已知C离开弹簧后的速度为v0。
求弹簧释放的势能。
14.(10分)40kg的女孩骑自行车带30kg的男孩(如图所示),行驶速度2.5m/s。
自行车行驶时,男孩要从车上下来。
(1)他知道如果直接跳下来,他可能会摔跤,为什么?(2)男孩要以最安全的方式下车,计算男孩安全下车的瞬间,女孩和自行车的速度。
(3)以自行车和两个孩子为系统,试比较计算在男孩下车前、后整个系统的动能值,并解释之。
15.(8分)如图所示,甲车的质量是m甲=2.0kg,静止在光滑水平面上,上表面光滑,右端放一个质量为m=1.0kg可视为质点的小物体,乙车质量为m乙=4.0kg,以v乙=9.0m/s的速度向左运动,与甲车碰撞以后甲车获得v甲′=8.0m/s的速度,物体滑到乙车上,若乙车上表面与物体的动摩擦因数为0.50,则乙车至少多长才能保证物体不从乙车上滑下?(g取10m/s2)16.(12分)在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙.动摩擦因数为,滑块CD上表面是光滑的1/4圆弧,其始端D点切线水平且在木板AB上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为v0/2,又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求:(1)物块滑到B处时木板的速度v AB;(2)木板的长度L;(3)滑块CD圆弧的半径17.(16分)如图1所示,木板A静止在光滑水平面上,一小滑块B(可视为质点)以某一水平初速度从木板的左端冲上木板。
(1)若木板A的质量为M,滑块B的质量为m,初速度为v0,且滑块B没有从木板A的右端滑出,求木板A最终的速度v。
(2)若滑块B以v1=3.0m/s的初速度冲上木板A,木板A最终速度的大小为v=1.5m/s;若滑块B以初速度v2=7.5m/s冲上木板A,木板A最终速度的大小也为v=1.5m/s。
已知滑块B与木板A 间的动摩擦因数μ=0.3,g取10m/s2。
求木板A的长度L。
(3)若改变滑块B冲上木板A的初速度v0,木板A最终速度v的大小将随之变化。
请你在图2中定性画出v-v0图线。
参考答案1.【答案】C【解析】:木板和木块组成的系统动量守恒,设它们相对静止时的共同速度为v,以木板运动的方向为正方向,则:Mv1-mv2=(M+m)vv==2m/s,方向与木板运动方向相同.在这之前,木板一直做匀减速运动,木块先做匀减速运动,当相对地面的速度为零时,再反向向右做匀加速运动,直到速度增大到2m/s.设当木块对地速度为零时,木板速度为v′,则:Mv1-mv2=Mv′,v′==2.67m/s,大于2.4 m/s,故木板的速度为2.4 m/s时,木块处在反向向右加速运动阶段,C正确.2.【答案】AD【解析】:P、Q相互作用的过程中满足动量守恒和机械能守恒,当P、Q速度相等时,系统的动能损失最大,此时弹簧的弹性势能最大,根据动量守恒和机械能守恒可以求得A项正确,由于P、Q的质量相等,故在相互作用过程中发生速度交换,当弹簧恢复原长时,P的速度为零,系统的机械能全部变为Q的动能,D正确。