一元一次方程解决问题公式大全

合集下载

一元一次方程解决问题公式

一元一次方程解决问题公式

一元一次方程解决问题公式
一元一次方程是初中数学中的基础知识,也是解决实际问题的重要
工具。

在日常生活中,我们经常会遇到一些需要用到一元一次方程的
问题,比如买东西打折、计算路程时间等等。

本文将从不同的角度介
绍一元一次方程解决问题的公式。

一、基本概念
一元一次方程是指只有一个未知数,并且这个未知数的最高次数为1
的方程。

一般形式为ax+b=0,其中a和b为已知数,x为未知数。


一元一次方程的基本方法是移项、合并同类项、化简等。

二、买东西打折
在购物时,商家常常会打折促销,这时我们需要计算出打折后的价格。

假设某商品原价为x元,打折后的价格为y元,打折力度为z折,那么可以列出如下的一元一次方程:
y = x * z / 10
其中,z为折扣数,需要将其转化为折扣率,即z/10。

通过解这个方程,就可以得到打折后的价格y。

三、计算路程时间
在旅行或者出差时,我们需要计算出行程的时间。

假设某段路程的长度为x公里,行驶速度为y公里/小时,行程时间为t小时,那么可以列出如下的一元一次方程:
x = y * t
通过解这个方程,就可以得到行程时间t。

四、其他应用
除了上述两个例子,一元一次方程还可以应用于很多其他的实际问题中。

比如计算水果的单价、计算工人的工资等等。

只要将问题转化为一元一次方程的形式,就可以通过解方程来得到答案。

总之,一元一次方程是解决实际问题的重要工具,掌握它的应用方法对于我们的日常生活和学习都有很大的帮助。

希望本文能够对大家有所启发。

实际问题与一元一次方程常用方法及公式

实际问题与一元一次方程常用方法及公式

实际问题与一元一次方程(二元一次方程组也可用)知识点一、用一元一次方程解决实际问题的一般步骤:审、设、列、解、检验、答. 知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,则现有量=原有量+增长量=原有量×(1+增长率),也有降低的情况,则现有量=原有量-降低量=原有量×(1-降低率)例如原有量是a,增长率为10%,则现有量为(1+10%)×a=1.1 a ;若下降10%,则现有量为(1-10%)×a=0.9 a(2)寻找相等关系:抓住关键词,圈词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(s=vt ) ,速度= ,时间=(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1) 每个人工作效率相同时:总工作量=工作效率×工作时间x人数;工作效率= (由上式可推导)(2)总工作量=各部分工作量之和.4.调配问题(表格分析法)(1)寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.(2)此消彼长:甲处调往乙处x 人,则甲处现有人数=原有人数-x ,乙处现有人数=原有人数+x5.利润问题:成本一般即进价,先审题看题中涉及几个量,再决定用哪(几)个公式(变形)(1) 利润=售价-进价 (2)=100% 利润利润率进价(3) 实际售价=标价×折扣数/10 (4) 售价-进价= 利润率×进价(公式4可由公式1和2得到)(5) 标价=进价×(1+利润率) 例一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元。

解方程公式

解方程公式

解方程公式
解方程公式的概念是指通过数学运算找出方程中未知数的值。

在数学中,方程是用来描述两个表达式相等的等式。

解方程公式是指一般用来解一元一次方程、一元二次方程、一元三次方程和一元四次方程的公式。

以下是几个常见的解方程公式:
1. 一元一次方程的解公式:
对于形如 ax + b = 0 的一元一次方程,解公式为:x = -b/a
2. 一元二次方程的解公式:
对于形如 ax^2 + bx + c = 0 的一元二次方程,解公式为:x = (-b ± √(b^2 - 4ac)) / (2a)
3. 一元三次方程的解公式:
一般来说,一元三次方程没有通用的解公式,需要使用数值方法或近似解法来找到方程的解。

4. 一元四次方程的解公式:
类似于一元三次方程,一元四次方程也没有通用的解公式,需要使用数值方法或近似解法来找到方程的解。

需要注意的是,解方程公式只适用于特定类型的方程,对
于其他类型的方程可能需要使用不同的方法来解决。

因此,在解方程时需要根据方程的类型选择适当的解法。

一元一次方程的解法公式

一元一次方程的解法公式

一元一次方程的解法公式一元一次方程是数学中最基础的方程形式之一,它的一般形式为ax+b=0,其中a和b是已知的实数,且a≠0。

解一元一次方程的方法有很多种,其中最常用的是解法公式。

解法公式是指通过一系列的代数变换,将方程转化为形如x=c的形式,从而得到方程的解。

对于一元一次方程来说,解法公式可以简化为x=-b/a。

下面将详细介绍一元一次方程的解法公式。

我们来看一个具体的例子:2x+3=0。

我们需要找到一个数x,使得代入方程后等式成立。

根据解法公式,我们可以得到x=-3/2。

这个结果就是方程的解。

那么,为什么解法公式能够得到方程的解呢?这是因为我们通过一系列的代数变换,将方程转化为了一个等价的形式。

具体的步骤如下:1. 将方程的常数项移到等号的右边,得到ax=-b;2. 将方程两边同时除以a,得到x=-b/a。

通过上述步骤,我们得到了一元一次方程的解法公式x=-b/a。

这个公式告诉我们,要求方程的解,只需要将方程的常数项取相反数,然后除以方程的系数即可。

解法公式的使用非常简单,只需要将方程的系数代入公式中即可得到方程的解。

在实际应用中,解法公式可以帮助我们快速求解一元一次方程,从而解决实际问题。

下面,我们通过一个具体的例子来说明解法公式的应用。

假设一个小明去超市买了一些东西,总共花费了50元,他买了一些苹果和一些橙子。

已知苹果的单价是2元,橙子的单价是3元,我们需要求解小明买了多少个苹果和多少个橙子。

我们可以设苹果的数量为x,橙子的数量为y。

根据题意,我们可以列出一个一元一次方程2x+3y=50。

现在,我们可以直接使用解法公式来解决这个问题。

将方程的系数代入解法公式中,我们可以得到x=-3/2,y=25。

这个结果告诉我们,小明买了-3/2个苹果和25个橙子。

显然,这个结果是不符合实际情况的。

这是因为一元一次方程的解法公式只能得到方程的解,而不能判断解是否合理。

为了得到合理的解,我们需要对方程进行进一步的分析。

一元一次方程应用题公式大全

一元一次方程应用题公式大全

一元一次方程应用题公式大全一、行程问题。

1. 基本公式。

- 路程 = 速度×时间(s = vt)。

- 速度=s÷ t,时间=s÷ v。

2. 相遇问题。

- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。

- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。

根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。

则(3 + 2)t=20,5t = 20,解得t = 4小时。

3. 追及问题。

- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。

- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。

根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。

则(6 - 4)t=5,2t = 5,解得t = 2.5小时。

二、工程问题。

- 工作总量 = 工作效率×工作时间(W = p× t)。

- 工作效率=W÷ t,工作时间=W÷ p。

通常把工作总量看成单位“1”。

2. 合作问题。

- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。

- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。

甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。

根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。

初中数学方程式公式大全

初中数学方程式公式大全

初中数学方程式公式大全下面是一份初中数学方程式和公式的大全:1.一元一次方程:-一元一次方程的定义:ax+b=0-解一元一次方程:x=-b/a2.一元一次方程组:-一元一次方程组的定义:{ax+by=c,dx+ey=f}-解一元一次方程组:通过消元或代入法求解未知数的值。

3.二次方程:-二次方程的定义:ax^2+bx+c=0-求解二次方程:使用配方法、因式分解、求根公式等方法求解方程。

4.二次函数:-二次函数的标准式:y=ax^2+bx+c,a≠0-二次函数的顶点坐标:(-b/2a,f(-b/2a))5.等差数列:-等差数列的通项公式:an=a1+(n-1)d-等差数列前n项和公式:Sn=(n/2)(a1+an)6.等比数列:-等比数列的通项公式:an=a1*r^(n-1)-等比数列前n项和公式:Sn=a1*(1-r^n)/(1-r)7.平方差公式:-(a+b)^2=a^2+2ab+b^2-(a-b)^2=a^2-2ab+b^28.三角函数:-正弦定理:a/sinA=b/sinB=c/sinC-余弦定理:c^2=a^2+b^2-2abcosC9.圆的面积和周长:-圆的面积公式:S=πr^2-圆的周长公式:C=2πr10.直角三角形:-勾股定理:c^2=a^2+b^2-特殊直角三角形:45°-45°-90°三角形、30°-60°-90°三角形。

这只是初中数学中一部分常用的方程式和公式,还有许多其他的方程式和公式可根据具体需要进行补充。

在学习过程中,掌握这些方程式和公式,能够帮助学生更好地解决问题、计算数值,并在应用题中灵活运用。

同时,也需要理解这些方程式和公式的原理和推导过程,加深对数学概念和方法的理解。

一元一次方程6种解法是什么

一元一次方程6种解法是什么

一元一次方程6种解法是什么一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

一元一次方程只有一个根。

接下来给大家分享一元一次方程的6种解法。

6种解一元一次方程的方法(1)一般方法①去分母:去分母是指等式两边同时乘以分母的最小公倍数。

②去括号:括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。

括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。

③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。

⑤系数化为1:设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。

(2)求根公式法对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。

(3)去括号方法①方程两边同时乘以一个数,去掉方程的括号;②移项;③合并同类项;④系数化为1。

(4)约分方法例如:(7/2)2=21/4(x-4/3)解法:两边同时除以21/4,得到7/3=x-4/3,求解:x=11/3。

(5)比例性质法根据比例的基本性质,去括号,移项,合并同类项,系数化为1。

(6)图像法对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。

一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。

一元一次方程公式笔记

一元一次方程公式笔记

一元一次方程公式笔记
一元一次方程公式的笔记如下:
1.一元一次方程是一种简单的线性方程,它的公式形式为:ax+b=0,其中a和
b是已知的数,x是未知数。

2.解一元一次方程有两个步骤:①把常数项移到方程的右边:ax=-b;②把方程
两边同除以未知数的系数a:x=-b/a。

3.这个公式用来解一元一次方程的基本思想是通过移项和除法运算,把方程变
形为x=-b/a的形式,其中a和b是已知数。

4.注意事项:一元一次方程的基本形式为ax+b=0,其中a不为0。

如果a等
于0,那么这个方程就没有解,因为当a等于0时,方程ax+b=0变为b=0,与x的取值无关。

5.举一个例子:如果我们要解方程3x+2=0,按照上述步骤,我们可以把方程
变形为3x=-2,然后把方程两边同时除以3得到x=-2/3。

因此方程3x+2=0的解为x=-2/3。

1/ 1。

实际问题与一元一次方程公式总结

实际问题与一元一次方程公式总结
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、工程款=工程单价*工作时间S 总= S甲+S乙=甲单价*T甲+乙单价*T乙
c、合作类题型
S 总= S甲+S乙= V甲t甲合作时间+V乙t甲合作时间
三、和倍分差问题
加(和)—+ 减(差)-- 乘(倍)—* 分(除)—/
四、数字问题
123= 1*100+2*10+3*1
实际问题与一元一次方程公式模型总结
一、行程问题(路程=速度*时间)
a、相遇问题
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、追击问题
S 差= S甲-S乙 S 总= S甲+S乙 S 总= (V甲-V乙)T
c、顺逆流问题
V顺=V船+V水
V逆=V船-V水
二、工程问题(a、工程总量=工作时间*工作效率)
xyz=100x+10y+z
五、利润问题
利润=售价-进价(标价-成本)
售价=标价*折数
利润金*期数*利率*(1-利息税)
本息和=本金+利息
年利率=月利率* 12

一元一次方程行程问题公式

一元一次方程行程问题公式

一元一次方程行程问题公式
一元一次方程是指只含有一个未知数的一次幂的方程。

行程问题通常可以使用一元一次方程来建模和解决。

行程问题可以表示为以下方程形式:
距离= 速度× 时间
其中,距离为行程的距离,速度为行程的速度,时间为行程所花费的时间。

如果你知道速度和时间,想要计算距离,可以使用以下方程:
距离= 速度× 时间
如果你知道距离和时间,想要计算速度,可以使用以下方程:
速度= 距离/ 时间
如果你知道距离和速度,想要计算时间,可以使用以下方程:
时间= 距离/ 速度
根据实际情况,将已知的数值代入公式中,即可计算出未知的数值。

初一数学一元一次方程公式大全_公式总结

初一数学一元一次方程公式大全_公式总结

初一数学一元一次方程公式大全_公式总结
在小学会学习较浅的一元一次方程,到了初中开始深入的了解一元一次方程的解法和利用一元一次方程解较难的应用题,解题当然要用到初一数学一元一次方程公式了,赶紧收藏起来喽!
常见的四种是:
速度X时间=路程
工效X时间=工作总量
单价X数量=总价
单产量X数量=总产量
(可根据这些等量关系列方程)
特殊的有:
逆水速度=静水速度-水流速度
顺水速度=静水速度+水流速度
工效和X时间=工作总量(用于合做工程时)
溶液X浓度=溶质
原式为ax2+bx+c=0
当b2-4ac=0时有两个根
x1=(-b+√(b2-4ac))/2a
x2=(-b-√(b2-4ac))/2a
当b2-4ac0时
x1=x2=-b/2a
你在看题目时先看问题,然后仔细地看有什么条件,看看哪些是已知的,哪些是未知的.接着思考要求出答案需要哪些条件,再利用已知条件来获得那些条件,讲的就是公式,初一数学一元一次方程公式是很重要的!。

(完整版)一元一次方程应用题公式

(完整版)一元一次方程应用题公式

一元一次方程应用题公式知能点1:市场经济、打折销售问题(1)售价、进价、利润的关系式:商品利润=商品售价—商品进价(2)进价、利润、利润率的关系:利润率=(商品利润/商品进价)×100%(3)标价、折扣数、商品售价关系:商品售价=标价×(折扣数/10)(4)商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)(5)商品总销售额=商品销售价×商品销售量(6)商品总的销售利润=(销售价-成本价)×销售量知能点2;储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)商品利润率=(商品利润/商品进价)×100%知能点3:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”知能点4:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=ab(形状面积变了,周长没变;原料体积=成品体积)知能点5:行程问题掌握行程中的基本关系:路程=速度×时间。

一元一次方程的应用公式

一元一次方程的应用公式

一元一次方程的应用公式【和差问题公式】(和+差)*2=较大数;(和-差)*2=较小数。

【和倍问题公式】和*(倍数+1)=一倍数;一倍数X倍数=另一数,或和-一倍数=另一数。

【差倍问题公式】差宁(倍数-1)=较小数;\较小数X倍数=较大数,或较小数+差二较大数。

【平均数问题公式】总数量宁总份数=平均数。

【一般行程问题公式】平均速度X时间=路程;路程宁时间=平均速度;路程十平均速度=时间。

反向行程问题公式】反向行程问题可以分为“相遇问题” (二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)X相遇(离)时间=相遇(离)路程;相遇(离)路程宁(速度和)=相遇(离)时间;相遇(离)路程十相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程十(速度差)=追及(拉开)时间;追及(拉开)路程十追及(拉开)时间=速度差;(速度差)X追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)*速度=过桥时间;(桥长+列车长)*过桥时间=速度;速度X过桥时间=桥、车长度之和。

行船问题公式】1 )一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)* 2=船速;(顺水速度-逆水速度)* 2=水速。

2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

工程问题公式】(1)一般公式:工效X工时=工作总量;工作总量*工时=工效;工作总量*工效=工时。

2)用假设工作总量为“ 1”的方法解工程问题的公式:1十工作时间二单位时间内完成工作总量的几分之几;1十单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。

七年级实际问题与一元一次方程应用题公式

七年级实际问题与一元一次方程应用题公式

七年级实际问题与一元一次方程应用题公式一、概述作为七年级的学生,我们在数学学习中经常会遇到一元一次方程的应用题。

一元一次方程是数学中的重要内容,通过学习一元一次方程,我们可以更好地解决实际生活中的问题。

在这篇文章中,我们将讨论七年级实际问题与一元一次方程应用题公式,在解决实际问题时如何灵活运用相关知识。

二、七年级实际问题与一元一次方程应用题公式1.问题一:小明买文具小明去文具店买铅笔和钢笔,一共花了30元。

如果铅笔的价格是每支3元,钢笔的价格是每支5元,那么小明分别买了多少支铅笔和钢笔?解答:设铅笔的支数为x,钢笔的支数为y,根据题意可列出方程:3x + 5y = 30这是一个一元一次方程,通过求解可以得到小明分别买了多少支铅笔和钢笔的解。

2.问题二:田径比赛田径比赛中,小明与小红一起跑800米,小明的速度是每分钟6米,小红的速度是每分钟5米。

问他们谁先到达终点?解答:假设小明和小红分别用t分钟和s分钟跑完800米,可以列出方程:6t = 8005s = 800通过求解可以得到谁先到达终点的结果。

三、灵活运用一元一次方程1.小结通过以上两个实际问题的解决,我们可以发现,在实际问题中,运用一元一次方程是非常有效的。

通过设定未知数、建立方程,然后求解,可以很好地解决实际生活中遇到的一些问题。

2.拓展在实际生活中,还会有很多和一元一次方程相关的问题,比如买菜、买水果、做作业等等,这些问题都可以使用一元一次方程来解决。

学生可以通过练习更多的应用题,来提高运用一元一次方程的能力。

四、结语一元一次方程的应用题公式在七年级数学学习中扮演着重要角色,通过本文的介绍,相信大家对七年级实际问题与一元一次方程应用题公式有了更深入的了解。

希望大家可以在解决实际问题时,灵活运用相关知识,提高解决问题的能力。

五、实际问题的更复杂应用1.问题三:搬运水果小明和小红一起搬运水果,小明每次可以搬5箱水果,小红每次可以搬3箱水果。

小学解方程公式大全

小学解方程公式大全

小学解方程公式大全解方程是数学中的一个重要内容,它是数学运算的一种形式,也是数学思维的一种训练。

在小学阶段,解方程虽然不是主要内容,但也是需要掌握的基础知识之一。

下面,我们将为大家介绍小学解方程的公式大全,希望能帮助大家更好地理解和掌握解方程的知识。

1. 一元一次方程。

一元一次方程是指只含有一个未知数的一次方程,其一般形式为:ax+b=0,其中a≠0。

解一元一次方程的基本步骤是先移项,再合并同类项,最后进行化简。

常见的解一元一次方程的公式有:移项公式,ax+b=0,解得x=-b/a。

合并同类项公式,ax+by=c,解得y=(-a/b)x+c/b。

2. 一元二次方程。

一元二次方程是指只含有一个未知数的二次方程,其一般形式为:ax^2+bx+c=0,其中a≠0。

解一元二次方程的基本步骤是先化简,再配方法,最后解方程。

常见的解一元二次方程的公式有:一元二次方程的根的判别式,Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。

一元二次方程的求根公式,x=(-b±√Δ)/2a。

3. 分式方程。

分式方程是指方程中含有未知数的分式形式,其一般形式为:(ax+b)/(cx+d)=e,其中a、b、c、d、e均为已知数。

解分式方程的基本步骤是先通分,再化简,最后解方程。

常见的解分式方程的公式有:通分公式,(ax+b)/(cx+d)=e,通分后得到ax+b=ecx+ed。

化简公式,ax+b=ecx+ed,化简后得到一元一次方程,再按照一元一次方程的解法进行求解。

4. 绝对值方程。

绝对值方程是指方程中含有未知数的绝对值形式,其一般形式为:|ax+b|=c,其中a、b、c均为已知数。

解绝对值方程的基本步骤是分情况讨论,先去绝对值,再解方程。

常见的解绝对值方程的公式有:分情况讨论公式,|ax+b|=c,当ax+b≥0时,得到ax+b=c;当ax+b<0时,得到-(ax+b)=c。

一元一次方程的利润问题公式

一元一次方程的利润问题公式

在解决一元一次方程的利润问题时,通常会用到以下公式:
1. 利润公式:利润 = 销售收入 - 成本
其中,销售收入是指卖出商品或服务所得到的金额,成本包括商品的成本价或者生产成本、运营成本等。

2. 利润率公式:利润率 = (利润 / 成本)× 100%
这个公式用于计算利润占成本的百分比。

3. 销售价格公式:销售价格 = 成本 + 利润
如果知道成本和希望获得的利润,可以使用这个公式计算销售价格。

4. 成本公式:成本 = 销售价格 - 利润
如果知道销售价格和利润,可以使用这个公式计算成本。

例题:
这是一个关于一元一次方程的利润问题。

我们要找出在给定成本和售价的情况下,如何计算利润。

假设商品的成本为 c 元,售价为 s 元,利润为 p 元。

根据题目,我们可以建立以下方程:
利润 = 售价 - 成本
即:p = s - c
现在我们要用这个方程来计算利润。

计算结果为:利润 = 10 元
所以,在给定成本为10元和售价为20元的情况下,利润为:10元。

一元一次方程解决问题公式大全

一元一次方程解决问题公式大全

一元一次方程解决问题公式大全TPMK standardization office TPMK5AB- TPMK08- TPMK2C- TPMK18一元一次方程应用题公式大全1、行程问题基本量之间(de)关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变(de)特点考虑相等关系一般情况下问题就能迎刃而解.并且还常常借助画草图来分析,理解行程问题.2、工程问题一、工程问题中(de)数量关系:(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率= (3)工作效率工作总量工作时间= (4)各队工作量之和全部工作量之和=(5)各队工作效率之和各队合作工作效率=二、考点归纳考点1 工作总量 = 工作效率×工作时间一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙(de)工作效率分别为x 1、y 1;甲、乙合作m 天可以完成(de)工作量为y m x m +或 m y x ⎪⎪⎭⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和相等关系:全部工作量=甲独做工作量+甲、乙合作工作量考点3 甲完成工作量+乙完成工作量=1变式:甲x 天完成(de)工作量 + 乙y 天完成(de)工作量 = 1 3、利润问题利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,知识点一折扣问题常用数量:原价, 现价,折扣,常用数量关系:现价=原价×折扣折扣=现价÷原价知识点二通过了解利润问题(de)数量关系解决实际问题利润中常用数量及等量关系:.进价(成本)、售价(定价.标价.)、利润、利润率 (de)关系式:利润 = 售价 —售价=标价×折扣数()利润 ×100%=利润率 定价=进价×(1+利润率)利润=进价×利润率4、数字问题(1)要搞清楚数(de)表示方法:一个三位数(de)百位数字为a,十位数字是b,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:①两个连续整数之间(de)关系:较大(de)比较小(de)大1;②偶数用2n 表示,连续(de)偶数用2n+2或2n —2表示;③奇数用2n+1或2n —1表示.④如果一个两位数十位数字是a,个位数字是b,则这个两位数是: 10a+b5、金融类问题⑴ 顾客存入银行(de)钱叫做本金,银行付给顾客(de)酬金叫利息,本金和利息合称本息和,存入银行(de)时间叫做期数,利息与本金(de)比叫做利率.利息(de)20%付利息税⑵ 利息=本金×利率×期数本息和=本金+利息 利息税=利息×税率(20%)6、浓度问题浓度类问题:溶质=溶液×浓度,浓度=溶质÷溶液,溶液=溶质÷浓度溶液=溶质+溶剂.溶液:一种或以上(de)物质溶解在另一种物质中形成(de)均一、稳定(de)混合物. 溶质: 被溶解(de)物质(如溶于水中(de)糖、盐、酒精、硫酸等)溶剂: 能溶解其他物质(de)物质7、调配问题这类问题要搞清人数(de)变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变.比例分配问题比例分配问题:这类问题(de)一般思路为:设其中一份为x,利用已知(de)比,写出相应(de)代数式.常用等量关系:各部分之和=总量8、年龄问题年龄问题其基本数量关系:大小两个年龄差不会变.这类问题主要寻找(de)等量关系是:抓住年龄增长,一年一岁,人人平等.。

初三数学方程式公式大全

初三数学方程式公式大全

初三数学方程式公式大全
方程式是数学中用来描述两个量之间关系的等式。

以下是初三数学方程式公式的大全:
1.一元一次方程式公式:
ax + b = 0
其中,a和b是已知常数,x是未知数。

2.一元二次方程式公式:
ax² + bx + c = 0
其中,a、b、c是已知常数,x是未知数。

3.二元一次方程式公式:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f也是已知常数,x和y是未知数。

4.一元三次方程式公式:
ax³ + bx² + cx + d = 0
其中,a、b、c、d均是已知常数,x是未知数。

5.一元四次方程式公式:
ax⁴ + bx³ + cx² + dx + e = 0
其中,a、b、c、d、e是已知常数,x是未知数。

除了以上常见的方程式公式,还有其他更高次的方程式,以及含有复数解的方程式。

在解方程时,可以利用一系列运算和变换来求解未知数的值。

常用的解方程的方法有:消元法、因式分解法、配方法、求根公式等。

此外,对于一些特殊类型的方程式,如二次三项式、绝对值方程式、指数方程式、对数方程式等,也有相应的解题方法和公式。

总之,在数学中,方程式是一项重要的内容,它们在解决实际问题、推导出数学规律等方面起着重要作用。

熟练掌握各类方程式的公式及解题方法,能够帮助我们更好地理解和应用数学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题公式大全
1、行程问题 *
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题
快行距+慢行距=原距
(2)追及问题
快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系
一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

2、工程问题 *
一、工程问题中的数量关系:
(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率=
(3)
工作效率工作总量
工作时间= (4)各队工作量之和全部工作量之和=
(5)各队工作效率之和各队合作工作效率=
二、考点归纳
考点1 工作总量 = 工作效率×工作时间
一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙的工作效率分别为x 1、y 1
;甲、乙
合作m 天可以完成的工作量为y m x m +或 m y x ⎪⎪⎭
⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和
相等关系:全部工作量=甲独做工作量+甲、乙合作工作量
考点3 甲完成工作量+乙完成工作量=1
变式:甲x 天完成的工作量 + 乙y 天完成的工作量 = 1
3、利润问题 *
利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,
【知识点一】折扣问题
常用数量:原价, 现价 ,折扣,
常用数量关系:现价=原价×折扣
折扣=现价÷原价
【知识点二】通过了解利润问题的数量关系解决实际问题
利润中常用数量及等量关系:.进价(成本)、售价(定价。

标价。

)、利润、利润率 的关系式:
利润 = 售价 —
售价=标价×折扣数 ()
利润 ×100%=利润率 定价=进价×(1+利润率)
利润=进价×利润率
4、数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。

(2)数字问题中一些表示:
①两个连续整数之间的关系:较大的比较小的大1;
②偶数用2n 表示,连续的偶数用2n+2或2n —2表示;
③奇数用2n+1或2n —1表示。

④如果一个两位数十位数字是a ,个位数字是b ,则这个两位数是: 10a+b
5、金融类问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息利息税=利息×税率(20%)
6、浓度问题
浓度类问题:溶质=溶液×浓度,浓度=溶质÷溶液,溶液=溶质÷浓度
溶液=溶质+溶剂。

溶液:一种或以上的物质溶解在另一种物质中形成的均一、稳定的混合物。

溶质:被溶解的物质(如溶于水中的糖、盐、酒精、硫酸等)
溶剂:能溶解其他物质的物质
7、调配问题
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。

比例分配问题
比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量
8、年龄问题
年龄问题其基本数量关系:大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

相关文档
最新文档