电磁场答案五

合集下载

电磁场与电磁波试题答案

电磁场与电磁波试题答案

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: 。

2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。

3.时变电磁场中,数学表达式H E S⨯=称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场)(r A穿过闭合曲面S 的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。

7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。

12.试简述唯一性定理,并说明其意义。

13.什么是群速?试写出群速与相速之间的关系式。

14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。

16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e eB ˆˆ3ˆ5--=,求(1)B A+ (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。

试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

电磁场与电磁波 答案

电磁场与电磁波  答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。

电磁场课后答案5

电磁场课后答案5

k1 sin θ B = k 2 sin θ 2

ε 2 k1 cosθ B = ε 1k 2 cosθ 2
cos θ 2 =

= 0, k z2 ε 1 − k z1 ε 2 = 0
ww w
Z 2 − Z 1 ωε 2 = k z2 Z 2 + Z1
− +
ωε 2
.k hd
k z1
对于 TM 模
ωε 1
所以
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
θ B = arccos
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
co
m
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2

μ1 = μ 2 ,θ B = arccos
ε1 + ε 2
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ρs
y =d
=0


ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠

电磁场课后习题答案

电磁场课后习题答案

电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。

在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。

本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。

1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。

洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。

将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。

因此,速度与运动半径之间的关系是v 与R成正比。

2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。

答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。

可以看出,磁场强度与距离的关系是B与1/r成反比。

3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。

答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。

可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。

4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。

当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。

电磁场理论知到章节答案智慧树2023年齐鲁工业大学

电磁场理论知到章节答案智慧树2023年齐鲁工业大学

电磁场理论知到章节测试答案智慧树2023年最新齐鲁工业大学第一章测试1.下列应用属于电磁场范围的有()。

参考答案:磁悬浮列车;立体电影;北斗导航系统;隐形飞机2.矢量场中某点的旋度是一个矢量,其大小等于该点的,其方向为()参考答案:最大环量密度,取得最大环量的环面的法线方向。

3.某标量场的方向导数为一矢量。

()参考答案:对4.只有大小没有方向的量为标量,电场为标量。

()参考答案:错5.既有大小又有方向的量为矢量,磁场为矢量。

()参考答案:对6.由空间某点处的散度值可以判断该点处通量源的情况。

()参考答案:对7.由空间处的环量可以推断源的分布特性。

()参考答案:错8.赫姆霍兹定理表明任一矢量场都可以表示成一个无散场和一个无旋场之和。

()参考答案:对9.矢量场中每一点处的旋度均为0,则称该矢量场为无旋场。

()参考答案:对10.矢量场中每一点处的散度均为0,则称该矢量场为无散场。

()参考答案:对第二章测试1.为了描述电荷分布在空间流动的状态,定义体积电流密度J,其国际单位为()参考答案:安培/平方米2.电荷只能在分子或原子范围内作微小位移的物质为()参考答案:电介质3.麦克斯韦方程组不包含以下哪种定律()参考答案:牛顿4.在两种理想介质分界面上,磁场的切向分量连续。

()参考答案:对5.在两种理想介质分界面上,电位移矢量的切向分量不连续。

()参考答案:对6.在时变电磁场中,只有传导电流与位移电流之和才是连续的。

()参考答案:对7.位移电流也要产生磁场,与传导电流一样,也是磁场的涡旋源。

()参考答案:对8.麦克斯韦方程组表明电荷要产生电场,是电场的散度源。

()参考答案:对9.电介质中的位移电荷在外电场的作用下产生位移的现象,称为电介质的极化。

()参考答案:错10.当有外磁场作用时,磁介质会产生磁化现象。

()参考答案:对第三章测试1.静态场的位函数满足的方程有()。

参考答案:无源区,满足拉普拉斯方程;有源区,满足泊松方程2.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,它可用()函数的旋度来表示。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

电磁场与电磁波 第五章答案

电磁场与电磁波 第五章答案

第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。

但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。

说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。

讲解恒定磁场时,应与静电场进行对比。

例如,静电场是无散场,而恒定磁场是无旋场。

在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。

重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。

3,I ⎰=⋅ll B 0d μ安培环路定律。

面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。

(完整版)大学物理电磁场练习题含答案

(完整版)大学物理电磁场练习题含答案

(完整版)⼤学物理电磁场练习题含答案前⾯是答案和后⾯是题⽬,⼤家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为(A) l I π420µ. (B) l Iπ220µ.(C)l Iπ02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[]4.⽆限长载流空⼼圆柱导体的内外半径分别为a 、b ,电流在导体截⾯上均匀分布,则空间各处的B ?的⼤⼩与场点到圆柱中⼼轴线的距离r 的关系定性地如图所⽰.正确的图是[]5.电流I 由长直导线1沿平⾏bc 边⽅向经a 点流⼊由电阻均匀的导线构成的正三⾓形线框,再由b 点沿垂直ac 边⽅向流出,经长直导线2返回电源(如图).若载流直导线1、2和三⾓形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B ?、2B ?和3B表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ?,但B 3≠ 0.[]6.电流由长直导线1沿半径⽅向经a 点流⼊⼀电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆⼼O 三点在同⼀直线上.设直电流1、2及圆环电流分别在O 点产⽣的磁感强度为1B ?、2B ?及3B,则O 点的磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ?,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0.[] v7.电流由长直导线1沿切向经a 点流⼊⼀个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆⼼O 在同⼀直线上.设长直载流导线1、2和圆环中的电流分别在O 点产⽣的磁感强度为1B ?、2B ?、3B,则圆⼼处磁感强度的⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ??,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ??.[]8.a R r OO ′I在半径为R 的长直⾦属圆柱体内部挖去⼀个半径为r 的长直圆柱体,两柱体轴线平⾏,其间距为a ,如图.今在此导体上通以电流I ,电流在截⾯上均匀分布,则空⼼部分轴线上O ′点的磁感强度的⼤⼩为(A) 2202R a a I ?πµ (B)22202R r a a I -?πµ(C) 22202r R a a I-?πµ (D) )(222220a r Ra a I -πµ []参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空⼼部分轴线上的磁感强度可以看成是电流密度为J 的实⼼圆柱体在挖空部分轴线上的磁感强度1B ?和占据挖空部分的电流密度-J 的实⼼圆柱在轴线上的磁感强度2B ?的⽮量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=µ 所以挖空部分轴线上⼀点的磁感强度的⼤⼩就等于)(22201r R IaB -π=µ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减⼩ 2分在2/R x <区域减⼩;在2/R x >区域增⼤.(x 为离圆⼼的距离) 3分13. 0 1分I 0µ- 2分14. 4×10-6 T 2分 5 A 2分15. I0µ 1分 0 2分2I0µ 2分16. 解:①电⼦绕原⼦核运动的向⼼⼒是库仑⼒提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电⼦单位时间绕原⼦核的周数即频率000142a m a e a ενππ=π=v 2分由于电⼦的运动所形成的圆电流00214a m a e e i ενππ== 因为电⼦带负电,电流i 的流向与 v ?⽅向相反 2分③i 在圆⼼处产⽣的磁感强度002a i B µ=00202018a m a eεµππ= 其⽅向垂直纸⾯向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产⽣的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B ?、4B ?均为0,故32B B B ?+= 2分)2(4102R I B µ= ⽅向? 2分 242)sin (sin 401203R I a I B π=-π=µββµ)2/(0R I π=µ ⽅向 ? 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800µµ)141(20π+=R I µ ⽅向 ? 2分 18. 解:电流元1d l I ?在O 点产⽣1d B ?的⽅向为↓(-z ⽅向) 电流元2d l I ?在O 点产⽣2d B ?的⽅向为?(-x ⽅向) 电流元3d l I ?在O 点产⽣3d B ?的⽅向为? (-x ⽅向) 3分kR I i R IB π-+ππ-=4)1(400µµ 2分 19. 解:设x 为假想平⾯⾥⾯的⼀边与对称中⼼轴线距离,++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=µ (导线内) 2分r I B π=202µ (导线外) 2分)(42220x R R Il -π=µΦR R x Il +π+ln20µ 2分令 d Φ / d x = 0,得Φ最⼤时 Rx )15(21-= 2分20. 解:洛伦兹⼒的⼤⼩ B q f v = 1分对质⼦:1211/R m B q v v = 1分对电⼦: 2222/R m B q v v = 1分∵ 21q q = 1分∴ 2121//m m R R = 1分21.解:电⼦在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接⼊射和出射点的线段将是圆周的⼀条弦,如图所⽰.所以⼊射和出射点间的距离为:)/(3360sin 2eB m R R l v ==?= 3分2解:在任⼀根导线上(例如导线2)取⼀线元d l ,该线元距O 点为l .该处的磁感强度为θµsin 20l I B π=2分⽅向垂直于纸⾯向⾥. 1分电流元I d l 受到的磁⼒为 B l I F=d d 2分其⼤⼩θµsin 2d d d 20l lI l IB F π== 2分⽅向垂直于导线2,如图所⽰.该⼒对O 点的⼒矩为 1分θµsin 2d d d 20π==lI F l M 2分任⼀段单位长度导线所受磁⼒对O 点的⼒矩+π==120d sin 2d l l l I M M θµθµsin 220π=I 2分导线2所受⼒矩⽅向垂直图⾯向上,导线1所受⼒矩⽅向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r µµµ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /µ 6.25×10-4 T ·m/A 2分=-=1/0µµχm 496 2分9. ⼀磁场的磁感强度为k c j b i a B ?++= (SI),则通过⼀半径为R ,开⼝向z 轴正⽅向的半球壳表⾯的磁通量的⼤⼩为____________Wb .10.在匀强磁场B ?中,取⼀半径为R 的圆,圆⾯的法线n ?与B ?成60°⾓,如图所⽰,则通过以该圆周为边线的如图所⽰的任意曲⾯S 的磁通量==Sm S B ?d Φ_______________________.11. ⼀质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(µ0 =4π×10-7 H ·m -1)12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R 有关,当圆线圈半径增⼤时,(1) 圆线圈中⼼点(即圆⼼)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平⾏的⽆限长直载流导线A 和B ,电流强度均为I ,垂直纸⾯向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ?_____________.(2) 磁感强度B ?沿图中环路L 的线积分 =??L l B ??d ______________________.14. ⼀条⽆限长直导线载有10 A 的电流.在离它 0.5 m 远的地⽅它产⽣的磁感强度B 为______________________.⼀条长直载流导线,在离它 1 cm 处产⽣的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图⽰有三种环路;在每种情况下,??lB ?____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原⼦基态的电⼦轨道半径为a 0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.17.⼀根⽆限长导线弯成如图形状,设各线段都在同⼀平⾯内(纸⾯内),其中第⼆段是半径为R 的四分之⼀圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ?2d l I ?3d l I ?O如图,1、3为半⽆限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平⾯内,导线2、3在Oyz 平⾯内.试指出电流元1d l I ?、2d l I ?、3d l I ?在O 点产⽣的Bd 的⽅向,并写出此载流导线在O 点总磁感强度(包括⼤⼩与⽅向).19.⼀根半径为R 的长直导线载有电流I ,作⼀宽为R 、长为l 的假想平⾯S ,如图所⽰。

大学电磁场课后答案

大学电磁场课后答案

(
)
2-9 已知在半径为 a 的球体区域内外,电场强度矢量表达式为 ⎧ Ar r2 (1 − 2 )e r r < a ⎪ ⎪ 3ε a E =⎨ 2 Ba ⎪ r>a e 2 r ⎪ ⎩ε 0r
其中 A, B 均为常数。求此区域的电荷分布。 答案
ρ = A(1 −
5r 2 ), r < a , 3a 2
但可把半径为a的小圆柱面内看作同时具有体密度分别为的两种电荷分布这样在半径为b的整个圆柱体内具有体密度的均匀电荷分布而在半径为a的整个圆柱体内则具有体密度的均匀电荷分布如例36图b所示
习题二 2-3 已知真空中静电场的电位 ϕ ( x) = 解:
U x V,求电场强度的分布及电荷体密度 ρ 。 ε0 d ∂ϕ 2x U E = −∇ϕ = − e x = −( + )e x V/m ∂x ε0 d ∂E 2 ρ = ∇ ⋅ D = −ε 0 ∇ ⋅ E = −ε 0 x = −ε 0 ( ) = −2 C/m2 ε0 ∂x + x2


得到
(b 2 + ab − 2a 2 ) a(b − a) 6a 故两导体球壳间的电位分布为 b b σ a2 ρ a3 σ a 2 (b − r ) ρ 0 b 2 − r 2 a 3 (b − r ) ϕ (r ) = E (r ) d r = [ 2 + 0 (r − 2 )] d r = + − ] [ r r ε r 3ε 0 ε 0br br 3ε 0 2 r 0 说明 此题的要点在于导体的表面上有未知的感应电荷分布,用高斯定律求电场时,必须注意考虑 感应电荷产生的电场。 −
ρl =
∂E (a) 1 ln(b a) − 1 =− 2 =0 ∂a a ln 2 (b a)

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。

导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。

当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。

也可以用静电能计算。

在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。

因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。

5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。

解:需要加三个镜像电荷代替 导体面上的感应电荷。

在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。

)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。

图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。

证明:使用镜像法分析。

电磁场与电磁波(金立军)第五章答案

电磁场与电磁波(金立军)第五章答案
1.25 20 4 100












题 5-9 图
F2 Idl B I ade Be z
BIa e d
0

BIa (cos e y sin e x )d
0

2 BIae x
2 1.25 120 1a x 50ex
e z 0 I 5 z x 2 ( y 1) 2 ( z 5) 2 ln 2 2 2 4 5 z x ( y 1) ( z 5)
则 A(3, 4,0) = ez 4.5 10 Wb / m
-6
y 1 y 1 B = A = ex (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 y 1 y 1 e x (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 x x e y (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 x x e y (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2

电磁场与电磁波课后习题及答案五章习题解答

电磁场与电磁波课后习题及答案五章习题解答

五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。

解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。

将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。

大学物理习题答案-第16章-电磁场

大学物理习题答案-第16章-电磁场

第16章 电磁场 参考答案一、选择题1(A),2(A),3(C),4(C),5(D),6(D),7(C),8(B),9(B),10(B) 二、填空题(1). )2/cos(/d d π+==t A NbB t x NbB ωωε 或t NBbA ωωεsin =. (2). πBnR 2, O . (3). 相同(或221R B ω), 沿曲线由中心向外.(4). 小于, 有关. (5). 0 (6). )8/(2220a I πμ. (7). 9.6 J.(8). ⎰⎰⋅∂∂S S D t ϖϖd 或 t D /d d Φ , ⎰⎰⋅∂∂-SS B t ϖϖd 或 t m /d d Φ-. (9). t E R d /d 02επ, 与E ϖ方向相同(或由正极板垂直指向负极板).(10).t B r d /d 21.三 计算题1. 如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B ϖ中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θΦcos 2r B π=, nt t π==2ωθ∴ nt r B ππ=2cos 2Φ在任意时刻线圈中的感应电动势为nt n r NB tNπππ=Φ-=2sin 2d d 2 nt n BNr ππ=2sin 222 t ΤI nt R n NBr R i m π=ππ==22sin 2sin 22 当线圈转过π /2时,t =T /4,则 987.0/22=π==2R NBn r I i m A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')2/(0r NI B m μ 6.20×10-4 T方向在图面内向下,故此时圆心处的实际磁感强度的大小500.0)(2/1220≈'+=B B B T 方向与磁场B ρ的方向基本相同.ϖ2. 如图所示,真空中一长直导线通有电流I (t ) =I 0e -λt (式中I 0、λ为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距a .矩形线框的滑动边与长直导线垂直,它的长度为b ,并且以匀速v ϖ(方向平行长直导线)滑动.若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势 i 并讨论 i 方向.解:线框内既有感生又有动生电动势.设顺时针绕向为 i 的正方向.由 i = -d Φ /dt 出发,先求任意时刻t 的Φ (t )⎰⋅=S B t ρϖd )(Φy t x yt I ba ad )(2)(0⎰+π=μaba t x t I +π=ln )()(20μ 再求Φ (t )对t 的导数:)d d d d )((ln 2d )(d 0txI x t I b ba t t ++π=μΦ ab a t I t+-π=-ln )1(e 200λμλv )(t x v =∴ i ab a t I tt +-π=-=-ln )1(e 2d d 00λμΦλvi 方向:λ t <1时,逆时针;λ t >1时,顺时针.3. 如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直方向的分量为B ϖ.求ab 两端间的电势差b a U U -.解:Ob 间的动生电动势:⎰⎰=⋅⨯=5/405/401d d )L L l Bl l B ωϖϖϖv ( 225016)54(21BL L B ωω== b 点电势高于O 点. Oa 间的动生电动势:⎰⎰⋅=⨯=5/05/02d d )L L l Bl l B ωϖϖϖv ( 22501)51(21BL L B ωω== a 点电势高于O 点. ∴ 22125016501BL BL U U b a ωω-=-=- 221035015BL BL ωω-=-=I (t )v ϖI (t ) x (t )b4. 有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B ϖ竖直向上的均匀磁场中,如图所示.设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.解:ab 导线在磁场中运动产生的感应电动势 θcos v Bl i = abcd 回路中流过的电流 θcos RBl R I ii v ==ab 载流导线在磁场中受到的安培力沿导轨方向上的分力为: θθθcos cos cos Bl RBl Bl I F i v ==由牛顿第二定律: t mBl R Bl mg d d cos cos sin vv =-θθθ mR l B g t θθ222cos sin d d v v-=令 θsin g A =,)/(cos 222mR l B c θ= 则 )/(d d v v c A t -=利用t = 0,v = 0 有⎰⎰⎰---=-=vv v v v v 000)d(1d c A c A c c A d t t Ac A ct v--=ln1 ∴ )e 1(cos sin )e 1(222ct ctl B mgR c A ---=-=θθv5. 一根长为l ,质量为m ,电阻为R 的导线ab 沿两平行的导电轨道无摩擦下滑,如图所示.轨道平面的倾角为θ,导线ab 与轨道组成矩形闭合导电回路abdc .整个系统处在竖直向上的均匀磁场B ϖ中,忽略轨道电阻.求ab 导线下滑所达到的稳定速度.解∶动生电动势θcos Bl i v = RBl RI iθcos v ==导线受到的安培力 lB I f m =ab 导线下滑达到稳定速度时重力和磁力在导轨方向的分力相平衡 θθcos sin m f mg =θθθcos cos sin lB RBl mg v =∴ θθ222cos sin l B mgR =vdϖ6. 已知,一根长的同轴电缆由半径为R 1的空心圆柱导体壳和另一半径为R 2的外圆柱导体壳组成,两导体壳间为真空.忽略电缆自身电阻,设电缆中通有电流i ,导体间电势差为U ,求(1) 两导体壳之间的电场强度E ϖ和磁感强度B ϖ. (2) 电缆单位长度的自感L 和电容C .解:(1) 根据安培环路定理i l B 0d μ⎰=⋅ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1 (r 为轴线到场点的半径)区域有 )2/(0r I B π=μB ϖ方向与内导体壳电流方向成右手螺旋关系.根据高斯定理:⎰⋅=0/d εQ S E ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1区域有r E 02/ελπ=E ϖ方向沿半径指向电势降落方向,式中λ为电缆内导体壳上单位长度上的电荷.由两导体间电势差U ,可求得 )/ln(2120R R U ελπ=, ∴ )/ln(12R R r UE =(2) 在电缆的两个导体壳之间单位长度的磁通量为 1200ln 2d 221R R ir riR R π=π=⎰μμΦ 单位长度电缆的自感系数为12ln2R R iL π==μΦ由电容定义又知单位长度电缆的电容应为 )/ln(2120R R UC ελπ==7. 两线圈顺接,如图(a),1、4间的总自感为1.0 H .在它们的形状和位置都不变的情况下,如图(b)那样反接后1、3之间的总自感为0.4 H .求两线圈之间的互感系数.解:设顺接的总自感为L S ,反接的总自感为L F . ∵ M L L L S 221++= M L L L F 221-+=∴ 4/)(F S L L M -== 0.15 H8. 如图所示,真空中一矩形线圈宽和长分别为2a 和b ,通有电流I 2,可绕其中心对称轴OO '转动.与轴平行且相距为d +a 处有一固定不动的长直电流I 1,开始时矩形线圈与长直电流在同一平面内,求:(1) 在图示位置时,I 1产生的磁场通过线圈平面的磁通量;(2) 线圈与直线电流间的互感系数. (3) 保持I 1、I 2不变,使线圈绕轴OO '转过90°外力要做多少功? 解:(1) 按题意是指图示位置时的Φ.123(a)顺接(b) 反接Ibdad bI bdx xI ad d2ln2210210+π=π=⎰+μμΦ (2) dad bI M 2ln201+π==μΦ(3)dad bI I I A 2ln22102+π==∆μΦ9. 一根电缆由半径为R 1和R 2的两个薄圆筒形导体组成,在两圆筒中间填充磁导率为μ 的均匀磁介质.电缆内层导体通电流I ,外层导体作为电流返回路径,如图所示.求长度为l 的一段电缆内的磁场储存的能量.解: ⎰∑⋅=i I l H ϖϖd , I rH =π2 (R 1< r < R 2)r I H π=2, r I H B π==2μμ2222)2(22r I B w m π==μμμ l r r w V w W m m m ⋅π==d 2d d r rl r Id 2)2(222ππ=μ∴ ⎰⎰π==2121d 4d 2R R R R m m rrl I W W μ122ln4R R lI π=μ四 研讨题1. 我们考虑这样一个例子: 设一个半径为R 的导体圆盘绕通过其中心的垂直轴在磁场中作角速度为ω的匀速转动,并假设磁场B 均匀且与轴线平行,如图所示。

电磁场作业题答案全

电磁场作业题答案全

第1章 矢 量 分 析1.1 什么是场?什么是矢量场?什么是标量场?什么是静态场?什么是时变场?答:如果在空间某一个区域内上任意一点都有一确定物理量值与之对应,则这个区域就构了一个物理量的场。

如果这个确定物理量值是一个标量(只有大小没有方向),我们称这种场为标量场,如温度场、密度场、电位场等等。

如果这个确定物理量值是一个矢量(既有大小又有方向),我们称这种场为矢量场,如电场、磁场、重力场等等。

如果在场中的这个物理量仅仅是空间位置的函数,而不是时间的函数(即不随时间变化的场),我们称这种场为静态场。

如果在场中的这个物理量不仅仅是空间位置的函数,而且还是时间的函数(即随时间变化的场),我们称这种场为时变场。

1.2 什么是标量?什么是矢量?什么是常矢?什么是变矢?什么是单位矢量?答:一个物理量如果仅仅只有大小的特征,我们称此物理量为标量。

例如体积、面积、重量、能量、温度、压力、电位等。

如果一个物理量不仅仅有大小,而且还具有方向的特征,我们称此物理量为矢量。

例如电场强度,磁感应强度、电位移矢量、磁场强度、速度、重力等。

一个矢量如果其大小和方向都保持不变的矢量我们称之为常矢。

如果矢量的大小和方向或其中之一是变量的矢量称为变矢。

矢量与矢量的模值的比值,称为单位矢量。

即模值为1的矢量称为单位矢量 1.3什么是等值面?什么是等值面方程?什么是等值线?什么是等值线方程?答:在标量场中许多相同的函数值(他们具有不同的位置)。

构成的曲面,称为等值面。

例如,温度场中由相同温度构成的等温面,电位场中相同电位构成的等位面等都是等值面。

描述等值面的方程称为等值面方程。

假定()z y x u ,,是坐标变量的连续可微函数。

则等值面方程可表述为 ()C z y x u =,, (c 为任意常数)在标量场中平面中相同的函数值构成的曲线,称为等值线。

描述等值线的方程称为等值线方程。

假定()y x u ,是坐标变量的连续可微函数。

则等值线方程可表述为 ()C y x u =, (c 为任意常数) 1.4求下列电场的等位线方程 (1) z x =ϕ, (2) 224y x +=ϕ 解:根据等值线方程的定义即电位函数应为一常数,所以等位线方程为⑴ xz c ==ϕ,即 z cx =; ⑵ c 4=+=y x ϕ 即 k y ==+c 4x 22 (为常数k )1.5 求下电场的等值面方程 1) 1222z y x ++=ϕ, 2) )z -z ()()x -= 202020+++y y x (ϕ, 3))++ln(=222z y x ϕ 解:根据等值面方程的定义即电位函数应为一常数,所以等位面方程为⑴ c1222=++=z y x ϕ 即 2222c 1k z y x ==++ ⑵ c )z -z ()()x -= 202020=+++y y x (ϕ 即 22202020)()()(k c z z y y x x ==-+-+- ⑶ ()c z y x =++222ln 即 2222k e z y x c ==++,(k 为常数)1.6 什么方向导数?什么梯度?梯度与方向导数的关系?答:在标量场中任一点在某一方向上的变化率称为方向导数。

电磁场习题答案

电磁场习题答案

1-25 已知圆球坐标系中矢量为 A = a R (2 cos ϕ R 3 ) + a θ sin θ ,求该矢量在直角坐标系中
的表达式。
3
答案: A = ax Ax + a y Ay + az Az 其中, Ax = (
2 x2 x +y
2 2
+ x3 z + xy 2 z + xz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
1-9 已知一标量函数 φ = sin (πx 2) sin (πy 3) e − z ,求:① 点 p( 1, 2, 3) 处 φ 增加速率最
快的方向及大小; ② 点 p( 处向坐标原点方向 φ 增加速率 1, 2, 3) (方向导数) 的大小。 答案:① am =
-1
π 2 + 27
=
(π ay + 3 3az ), ∇u =
Ay = (
2 xy
x +y
2 2
+ x 2 yz + y 3 z + yz 3 ) ( x 2 + y 2 + z 2 ) 2 ;
Az = (
2 xz
x +y
2 2
− x4 − 2 x2 y 2 − x2 z 2 − y 2 z 2 − y 4 ) ( x2 + y 2 + z 2 )2 。
1-26 球 坐 标 系 中 的 两 个 矢 径 r1 和 r2 的 终 点 p1 和 p 2 的 坐 标 分 别 为 ( R1 ,θ 1 , ϕ 1 ) 和
1 (ax + 2a y − 3az ) ;② A − B = 53 ;③ A • B = −11 ; 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章习题解答5.1 真空中直线长电流I 的磁场中有一等边三角形回路,如题5.1图所示,求三角形回路内的磁通。

解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I r φμπ=B e穿过三角形回路面积的磁通为d S ψ==⎰BS 0002[d ]d d 2d d z ddII zz x x x xμμππ=⎰ 由题5.1图可知,()tan6z x d π=-=,故得到d d d x d x x ψ-==0[)]22I b d μπ+ 5.2 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律0d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r bb r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为20222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。

将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <>空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a <I题 5.1 图题5.2图式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3 下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

(1) 0,r ar H e B H μ== (圆柱坐标)(2) 0(),x y ay ax H e e B H μ=-+= (3) 0,x y ax ay H e e B H μ=-=(4) 0,ar H e B H φμ==(球坐标系)解 根据恒定磁场的基本性质,满足0B ∇⋅=的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

若是磁场的场矢量,则可由J H =∇⨯求出源分布。

(1)在圆柱坐标中 211()()20r rB ar a r r r rB ∂∂∇⋅===≠∂∂该矢量不是磁场的场矢量。

(2) ()()0a y a x x yB ∂∂∇⋅=-+=∂∂ 该矢量是磁场的矢量,其源分布为 20x y zza x y z a y a x e e e J H e ∂∂∂=∇⨯==∂∂∂- (3) ()()0a x a y x yB ∂∂∇⋅=+-=∂∂ 该矢量是磁场的场矢量,其源分布为 00x y z x y z a x a y e e e J H ∂∂∂=∇⨯==∂∂∂-(4) 在球坐标系中 11()0sin sin B ar r r B φθφθφ∂∂∇⋅===∂∂该矢量是磁场的场矢量,其源分布为 22sin 1ctag 2sin 00sin rr r r a a r rar e e e J H e e θφθθθθθφθ∂∂∂=∇⨯==-∂∂∂5.4 由矢量位的表示式()()d 4Rτμτπ''=⎰J r A r 证明磁感应强度的积分公式 03()()d 4Rτμτπ'⨯'=⎰J r RB r 并证明0B ∇⋅=解: 0()()()d 4R τμτπ''=∇⨯=∇⨯=⎰J r B r A r 0()d 4Rτμτπ''∇⨯=⎰J r01()()d 4R τμτπ''-⨯∇=⎰J r03()()d 4R τμτπ''-⨯-=⎰RJ r 03()d 4Rτμτπ'⨯'⎰J r R [()]0∇⋅=∇⋅∇⨯=B A r5.5 有一电流分布0()()z rJ r a J r e =≤,求矢量位()A r 和磁感应强度()B r 。

解 由于电流只有z e 分量,且仅为r 的函数,故()A r 也只有z e 分量,且仅为r 的函数,即()()z z A r A r e =。

在圆柱坐标系中,由)(r A z 满足的一维微分方程和边界条件,即可求解出)(r A ,然后由()()r B A r =∇⨯可求出()B r 。

记a r ≤和a r ≥的矢量位分别为1()A r 和2()A r 。

由于在a r ≥时电流为零,所以211001()()z z A A r r J r r r r μ∂∂∇==-∂∂ (a r ≤) 2221()()0z z A A r r r r r∂∂∇==∂∂ (a r ≥)由此可解得3100111()ln 9z A r J r C r D μ=-++222ln )(D r C r A z +=)(1r A z 和)(2r A z 满足的边界条件为 ① 0→r 时,)(1r A z 为有限值② a r =时,)()(21a A a A z z =,a r z a r z rAr A ==∂∂=∂∂21由条件①、②,有 01=C ,300221ln 9J a C a D μ-=+,2002113J a C aμ-=由此可解得 320013C J a μ=-,320011(ln )33D J a a μ=--故310011()9z A r J r D μ=-+ (a r ≤)3320000111()ln (ln )333z A r J a r J a a μμ=--- (a r ≥)式中常数1D 由参考点确定,若令0=r 时,0)(1=r A z ,则有01=D 。

空间的磁感应强度为题5.6图211001()()3r r J r φμ=∇⨯=B A e (r a <) 30022()()3J a r r rφμ=∇⨯=B A e (r a >)5.6 如题5.6图所示,边长分别为a 和b 、载有电流I 的小矩形回路。

(1)求远处的任一点),,(z y x P 的矢量位()A r ,并证明它可以写成 03()4m rp rA r μπ⨯=。

其中m z Iab p e =;(2)由A 求磁感应强度B ,并证明B 可以写成0()4I B d μΩπ=-∇ 式中2z r ab r e e d Ω⋅=场点对小电流回路所张的立体角。

解 (1)电流回路的矢量位为 01()d 4CIRμπ'=⎰A r l 式中:22212[()()]R x x y y z ''=-+-+=22212[2sin (cos sin )]r r x y x y θφφ''''-+++根据矢量积分公式d d C S l S ψψ=⨯∇⎰⎰,有 11d d ()C SR R '''=⨯∇⎰⎰l S而 11()()R R '∇=-∇所以 01()d ()4S I Rμπ'=-⨯∇⎰A r S对于远区场,y r x r '>>'>>,,所以r R ≈,故01()d ()4S I r μπ'=-⨯∇=⎰A r S 01[d ]()4S I r μπ'-⨯∇=⎰S 01()()4z Iab r μπ-⨯∇=e 03()4m rμπ-⨯-=rp 034m r p r μπ⨯(2)由于 03()()4m z r p r r A e μπ=-⨯-02s i n 4m p re φμθπ=故11(sin )()sin r A rA r r rB A e e φθφθθθ∂∂=∇⨯=-=∂∂03(2c o s s i n )4m r p r e e θμθθπ+ 又由于 3322cos 2cos sin ()()z r r r r r r e e e e θθθθ⋅+=-∇=-∇ 故 00022()()(d )444m z r z r p I I ab r r e e e e B μμμΩπππ⋅⋅=-∇=-∇=-∇5.7 半径为a 磁介质球,具有磁化强度为2()z Az B M e =+其中A 和B 为常数,求磁化电流和等效磁荷。

解 磁介质球内的磁化电流体密度为 2()20m z z z Az B Az =∇⨯=-⨯∇+=-⨯=J M e e e 等效磁荷体密度为 2()2m A z B A z zρ∂=-∇⋅=-+=-∂M 磁介质球表面的磁化电流面密度为22(cos )mS r az r Aa B θ==⨯=⨯+=J M ne e 22(cos )sin Aa B φθθ+e等效磁荷面密度为 22(cos )m r ar z Aa B σθ==⋅=⋅+=n Me e22(cos )cos Aa B θθ+5.8 如题5.8所示图,无限长直线电流I 垂直于磁导率分别为1μ和2μ的两种磁介质的分界面,试求:(1)两种磁介质中的磁感应强度1B 和2B ;(2)磁化电流分布。

解 (1)由安培环路定理,可得 2I rφπ=H e所以得到 0102I r φμμπ==B H e22I rφμμπ==B H e(2)磁介质在的磁化强度0200()12I r φμμμπμ-=-=M B H e 则磁化电流体密度00()1d 1d 1()()0d 2d m z z I rM r r r r r φμμπμ-=∇⨯==⋅=J M e e在0=r 处,2B 具有奇异性,所以在磁介质中0=r 处存在磁化线电流m I 。

以z 轴为中心、r 为半径作一个圆形回路C ,由安培环路定理,有 01d m C I I μ+=⋅=⎰B l 0I μμ 故得到 =m I 0(1)I μμ-在磁介质的表面上,磁化电流面密度为0mS z z ==?J M e 00()2rIre μμπμ- 5.9 已知一个平面电流回路在真空中产生的磁场强度为0H ,若此平面电流回路位于磁导率分别为1μ和2μ的两种均匀磁介质的分界平面上,试求两种磁介质中的磁场强度1H 和2H 。

相关文档
最新文档