静安区2009学年第一学期七年级期末考试数学试卷
上海民办上海上外静安外国语中学七年级上册数学期末试题及答案解答
上海民办上海上外静安外国语中学七年级上册数学期末试题及答案解答一、选择题 1.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒2.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或53.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3804.若21(2)0x y -++=,则2015()x y +等于( )A .-1B .1C .20143D .20143-5.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .6.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 7.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 8.估算15在下列哪两个整数之间( )A .1,2B .2,3C .3,4D .4,59.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 16.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 17.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.18.若α与β互为补角,且α=50°,则β的度数是_____.19.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.20.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.22.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.解方程:(1)()43203x x --= (2)23211510x x -+-= 26.阅读下面解题过程:计算:13 (15)3632⎛⎫-÷--⨯⎪⎝⎭解:原式=25(15)66⎛⎫-÷-⨯⎪⎝⎭(第一步)=25(15)66⎛⎫-÷-⨯⎪⎝⎭(第二步)=(﹣15)÷(﹣25)(第三步)=﹣35(第四步)回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;(2)正确的结果是.27.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x天可追上弩马.(1)当良马追上驽马时,驽马行了里(用x的代数式表示).(2)求x的值.(3)若两匹马先在A站,再从A站出发行往B站,并停留在B站,且A、B两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?28.已知:如图,平面上有A、B、C、D、F五个点,根据下列语句画出图形:(Ⅰ)直线BC与射线AD相交于点M;(Ⅱ)连接AB,并反向延长线段AB至点E,使AE=12BE;(Ⅲ)①在直线BC上求作一点P,使点P到A、F两点的距离之和最小;②作图的依据是.29.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?30.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A'处,∠=︒,求'A BDABCBC为折痕.若54∠的度数;(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA重合,折痕∠的度数.为BE,如图2所示,求CBE四、压轴题31.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.32.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.33.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.2.D解析:D【解析】【分析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C表示的数为m,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,-=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.3.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.4.A解析:A【解析】1x (y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A5.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.6.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.7.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 8.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.10.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.11.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 17.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.18.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.19.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.20.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.21.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x =﹣2代入方程2x +a ﹣4=0求解.22.﹣1【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结【详解】∵a※b=a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,26.(1)二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;(2)1085.【解析】【分析】(1)应先算括号里的,再按从左到右的顺序计算,故可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)上面解题过程中有两个错误,第一处是第二步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第四步,错误的原因是两数相除,同号得正,符号应该是正的;(2)13 (15)3632⎛⎫-÷--⨯⎪⎝⎭=25 (15)66⎛⎫-÷-⨯⎪⎝⎭=186 5⨯=1085.故正确的结果是1085.故答案为:二;在同级运算中,没有按从左到右的顺序进行;四;两数相除,同号得正,符号应该是正的;1085.【点睛】此题主要考查了有理数的混合运算,运算顺序和符号问题是学生最容易出现错误的地方.27.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.28.①见解析;②两点之间线段最短【解析】【分析】分别根据直线、射线、相交直线和线段的延长线进行作图即可.【详解】解:如图所示:作图的依据是:两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题主要考查直线、射线和线段的画法,掌握作图的基本方法是解题的关键.29.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.30.(1)72°;(2)90°【解析】【分析】(1)由折叠的性质可得∠A ′BC =∠ABC =54°,由平角的定义可得∠A ′BD =180°-∠ABC -∠A ′BC ,可得结果;(2)由(1)的结论可得∠DBD ′=72°,由折叠的性质可得∠2=12∠DBD ′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【详解】 解:(1)54ABC =︒∠,54A BC ABC '∴∠=∠=︒,180A BD ABC A BC ''∠=︒-∠-∠ 1805454︒=︒--︒72=︒;(2)由(1)的结论可得72DBD '∠=︒,112723622DBD '∴∠=∠==︒⨯︒,108ABD '∠=︒, 1111085422ABD '∠=∠=⨯︒=︒, 1290CBE ∠=∠+∠=︒.【点睛】本题主要考查了角平分线的定义,根据角平分线的定义得出角的关系是解答此题的关键.四、压轴题31.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.32.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.33.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
【沪教版】静安区第一学期七年级数学期末测试
5.计算: 10x3 15x2 5x 5x ______________.
6.小明在考试前到文具店里买了 2 支 2B 的铅笔和一副三角板,2B 的铅笔每支 x 元,三角
板每副 3 元,小明总共应付_____________元(用含 x 的代数式表示).
20.解: (2m - n)2 + (m + n) (m - n) = 4m2 - 4mn + n2 + m2 - n2 ……………(4 分)
B
对称图形的图形为___________(填一个即可).
O
15.如图,将一副直角三角板叠在一起,使直角
第 15 题图
顶点重合于点 O,那么∠AOB+∠DOC=____________.
1
二、选择题(本大题共有 4 题,每题 3 分,满分 12 分) 16.下列运算中,正确的是 …………………………………—………………………( )
(A)
(B)
(C)
(D)
三、计算题(本大题共有 4 题,每题 6 分,满分 24 分)
20.计算: 2m n2 m nm n .
21.多项式 3x2 2x 1 减去一个多项式 A 的差是 4x2 3x 4 ,求这个多项式 A.
22.计算: x1 y1 x1 y1 .
2
23.小明今年 12 岁,小明的母亲今年 36 岁.求几年后小明的年龄是他母亲年龄 2 . 3
8.–1;
1 9 . - 2m2n ;
10 . 3 ;
11 . 0.00023 ;
13.45°; 14.圆、正方形等;
15.180°.
二、选择题 (本大题共 4 题,每题 3 分,满分 12 分) 16.B;17.D;18.C;19.A.
上海静安区教育学院附属学校人教版七年级上册数学期末试卷及答案-百度文库
上海静安区教育学院附属学校人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 3.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .34.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1 C .3 D .﹣3 8.下列各数中,绝对值最大的是( ) A .2B .﹣1C .0D .﹣39.点()5,3M 在第( )象限. A .第一象限 B .第二象限C .第三象限D .第四象限10.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________. 15.已知方程22x a ax +=+的解为3x =,则a 的值为__________.16.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.17.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单日期交易明细10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+10.18体育用品¥64.00-10.19零食¥82.00-10.20餐费¥100.00-18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.禽流感病毒的直径约为0.00000205cm,用科学记数法表示为_____cm;20.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.21.52.42°=_____°___′___″.22.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x为_____.24.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度. 26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.27.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b表示在范围a b~中,可以取到a,不能取到b.根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.28.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.29.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.30.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误; B 、1+3×6+2×6×6=91(颗),故本选项正确; C 、2+3×6+1×6×6=56(颗),故本选项错误; D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.C解析:C 【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.5.B解析:B 【解析】 【分析】根据同底数幂的乘除法法则,进行计算即可. 【详解】解:(1.8−0.8)×220=220(KB ), 32×211=25×211=216(KB ), (220−216)÷215=25−2=30(首), 故选:B . 【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.8.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .9.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.10.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m 时水位变化记作0.6m +,∴水位下降0.8m 时水位变化记作0.8m -,故选:C .【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.B解析:B【解析】【分析】由CB =4cm ,DB =7cm 求得CD=3cm ,再根据D 是AC 的中点即可求得AC 的长【详解】∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm ,∴CD =DB ﹣BC =7﹣4=3(cm ),∵D 是AC 的中点,∴AC =2CD =2×3=6(cm ).故选:B .【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x 秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB 上;设乙再走y 秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC 上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD 上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA 上;乙在第5次追上甲时的位置又回到AB 上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD 上.故选:D .【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N 分别是AC,DB 的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB 被点C,D 分成2:4:7三部分,所以设AC =2x ,CD =4x ,BD =7x ,因为M,N 分别是AC,DB 的中点,所以CM =12AC x =,DN =1722BD x =, 因为mn =17cm,所以x +4x +72x =17,解得x =2,所以BD =14,故答案为:14. 14.-1;【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0. 解析:-1;【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.15.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.17.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 18.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.19.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大20.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.22.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.24.140【解析】【分析】【详解】解:∵OD 平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD 平分∠AOC ,∴∠AOC =2∠AOD =40°,∴∠COB =180°﹣∠COA =140°故答案为:140三、压轴题25.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健26.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+,11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯, m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=.本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 27.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.28.(1)13-;(2)P 出发23秒或43秒;(3)见解析.【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 29.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.30.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,。
一期静安七上期末数历年考试(A)
“学业效能实证研究”学习质量调研七年级数学学科答题纸姓名______________班级________学校_________________样本编号(满分100分,90分钟完成)2012.1请勿折叠请在黑色矩形边框内答题,超出黑色矩形边框地答题一律无效1 / 22 / 2三、简答题(第18~22题每小题4分,第23、24每题6分,共32分)5PCzV 。
18.计算:(ab b a b a a b a 4)128(2)4223÷--⋅-.19.计算:3132)3(---a y x .(结果用正整数指数幂地形式表示)20.分解因式:3)(2)(8m n m n mn -+-.21.分解因式:5)4(22-+x x .22.解方程:13992=---x xx .23.先化简,再求值:11)11211(22+-÷-+-++x x x x x x ,其中3-=x .24.已知△ABC 中,点B 、C 关于直线MN 对称,(1) 画出直线MN ;(2) 画出△ABC 关于直线MN 地对称图形.jLBHr 。
四、解答题(第25、26题每题6分,第27题10分,共22分)xHAQX 。
25.某服装厂接到加工400套校服地任务,在加工完160套后,采用了新技术,这样每天加工服装地套数是原来地2倍,结果共用了14天完成任务.问原来每天加工服装多少套?LDAYt 。
26.有些数值问题可以通过字母代替数转化成代数式问题来解决,请先阅读下面地解题过程,再解答后面地问题.计算:6789×6786-6788×6787. 解:设6788=a ,那么原式=2)(2)1()2)(1(22-=----=---+a a a a a a a a .请运用上述方法,计算:235.4235.3235.0235.4235.2235.1⨯⨯-⨯⨯.27.如图,在长方形ABCD 中,AB =a ,BC =b (a >b ),将长方形ABCD 绕点D 逆时针旋转90°,点A 、B 、C 分别对应点E 、F 、G .Zzz6Z 。
静安区七年级第一学期期末数学试卷及答案
七年级第一学期期末数学复习试卷班级_______姓名_______学号______成绩_________一、选择题(每小题2分,共12分)1.下列运算正确的是 … … … … … …( )(A ) 235()a a = (B )4223432y y =⎪⎭⎫ ⎝⎛- (C ) 236a a a =÷ (D )532a a a =⋅2.下列计算中,正确的是 … … … … … …( )(A )224)2)(2(x y y x y x -=--- (B )844x x x =+(C )22224)2(n mn m n m +-=- (D )156=-a a 3.在x x -237、y x 32π、x1、-4、a 中单项式的个数是… … … … … …( )(A )1 (B )2 (C )3 (D )44.当x =2时下列各式中值为0的是 (A )422--x x (B )21-x (C )942--x x (D )22-+x x 5.下列标志既是..轴对称图形又是..中心对称图形的是… … … … … …( ) (A )(B )(C )(D )6.如图,将网格中的三条线段沿网格的水平方向或垂直方向平移后组成一个首尾顺次相接的三角形,那么这三条线段在水平方向与 垂直方向移动的总格数最小是… … … … … …( ) (A )6 (B )7 (C )8 (D )9二、填空题(每小题3分,共36分)7. “12减去y 的41的差”用代数式表示是: .8.计算:)2)(2(b a b a -+= . 9.分解因式:286b b -= .10.如果关于x 的多项式m x x +-62是一个完全平方式,那么m = . 11.如果a -b =-3,c +d =2,那么(b +c )-(a -d )的值为 .12.甲型H1N1流感病毒的直径约是0.00000011米,用科学记数法表示为 米.第6题图第16题图第18题图 13.如果分式1212+-x x 无意义,那么x 的取值范围是 . 14.计算:21212+--+-a aa a = . 15.计算:32)3(3-⋅-= (结果用幂的形式表示). 16.上海将在2010年举办世博会.公园池塘边一宣传横幅上的“2010” 如下右图所示.从对岸看,它在平静的水中的倒影所显示的数是____________.17.如图,一块含有30°角(∠BAC =30°)的直角三角板ABC ,绕着它的一个锐角顶点A 旋转后它的直角顶点落到原斜边上, 那么旋转角是________.18.如图,用黑白两色正方形地砖铺设地面,第n 个图案中白色地砖块数为_________.三、简答题(满分30分)19.计算:m n m n n m 2)61(6)3(2÷⎥⎦⎤⎢⎣⎡+-+. 20. 计算:11111122-+--++x x x x21.已知622+-+=y ax x A ,1532-+-=y x bx B ,且A -B 中不含有x 的项, 求:3b a +的值.第1个图案 第2个图案 第3个图案第17题图C22.因式分解:22444y xy x +--. 23.因式分解:24)(14)(222+---x x x x .24.因式分解:mn n m n m 2243322-- 25.计算:11111-----+yx y x (结果不含负整数指数幂).26.解方程: 26321311-=+-x x .27.先化简,再求值:11)1112(22+÷+-+-x x x x x ,其中x =-2.四、解答题(第28、29题每题5分,第30、31题每题6分,共22分)28.某商厦进货员在苏州发现了一种应季围巾,用8000元购进一批围巾后,发现市场还有较大的需求,又在上海用17600元购进了同一种围巾,数量恰好是在苏州所购数量的2倍,但每条比在苏州购进的多了4元.问某商厦在苏州、上海分别购买了多少条围巾?29. A 、B 两地相距80千米,一辆公共汽车从A 地出发,开往B 地,2小时后,又从A 地同方向开出一辆小汽车,小汽车的速度是公共汽车速度的3倍,结果小汽车比公共汽车早40分钟到达地,求两车的速度?30.如图, 在一个10×10的正方形网格中有一个△ABC , (1)在网格中画出△ABC 绕点P 逆时针方向旋转90°得到的△A 1B 1C 1;(2)在网格中画出△A 1B 1C 1向下平移三个单位得到的△A 2B 2C 2.31.序进行(其中阴影部分表示纸条的反面如果由信纸折成的长方形纸条(图①)长为2 6 厘米,分别回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M 与点A 的距离为3厘米,那么在图②中,BE = 厘米; 在图④中,BM = 厘米.(2)如果长方形纸条的宽为x 厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点A 的距离(结果用x 表示).第28题图FABM①④③ ②AM 第29题图参考答案1.D2.A3.C4.C5.D6.B7.12-y 41; 8.2a 2-3ab-2b 2; 9.2b(3-4b); 10.9; 11.5; 12.1.1×10-7; 13.x=-0.5; 14.a-1; 15.35; 16.5010; 17.150°; 18.3n+2; 19.m 29; 20.xx+-11; 21.A-B=(2-b)x 2+(a+3)x-6y+7,因为不含x 字母项,所以2-b=0,a+3=0,所以a=-3,b=2; 所以a+b 3=5;22.原式=(x-2y+2)(x-2y-2); 23.原式=(x-2)(x+1)(x-4)(x+3); 24.原式=-2mn(mn-1)2;25.原式=1-+xy yx ;26.x=2; 27.原式=x+x1=2.5; 28.解:设苏州进价为x 元/条,所以41760080002+=⨯x x ,解之x=4; 29.解:设公共汽车为xkm/h ,所以32380280++=x x ,解之x=20; 30.画图略;31.(1)图②中BE=26-3-2=21(厘米), 图④中BM=21-2×3=15(厘米). 故答案为:21,15;(2)∵图④为轴对称图形, ∴AP=BM=2526x -,∴AM=AP+PM=2526x -+x=13-x 23, 即开始折叠时点M 与点A 的距离是13-x 23cm 。
2009学年第一学期七年级数学期末考答案
2009学年第一学期期末考试七年级数学参考答案一.选择题 (每小题3分, 共30分)二.填空题 (每小题4分,共24分)11. 8 ; 12. 35 ; 13. -5或1 ;14. 2008 9.8 ; 15. 28 ; 16. 6n-1 ;三.解答题 (本大题有8个小题,共66分) 17.(每题4分,共16分) (1)22-31+13 (2) 16)2(32722⨯-÷+- 解:原式=4解:原式=-4+3÷(-2)×4――――3分=-10――――――――――1分(3)1800-(38°45′+72.5°)(结果用度分秒表示) 解:原式=1800-111015′―――――2分=68045′ ―――――――――2分)21232(3)432(2 4ab a ab a ---)(---2分解原式ab a ab a 23222322 +--==0―――――――――――――2分18.解方程:(每小题4分,共8分)(1)53(2)8x x +-= (2)212143x x -+=- 解:5x+6-3x=8――――1分 解:6x-3=12-4x-8――――――2分2x=2――――――2分 10 x=7―――――――――1分BA X=1――――――1分分1-----107x =19.(本小题满分6分)分解:2---273121-1221-3221-23s =⨯⨯⨯⨯⨯⨯= 2个作图个2分20.(本小题满分6分)分)(2------- 20071-20051 1;分)()原式(2---3041-3011--51-4141-1312++= 分)(1---3041-131=分-1---304101=21.(本小题满分6分)∠∠∠ 求出∠CDB=850---------2分 ∠CBE=300---------1分 ∠CDF=600---------2分 ∠DBF=250---------1分22.(本小题满分6分)解:设甲的速度为x 千米∕小时,则乙的速度为3x 千米∕小时 根据题意得X+2(X+3X)=180――――――3分 解得X=20 ―――――――2分 答 ―――――――――-1分23.(本小题满分8分) (1)40人(2) 图略(8人)(3)108NOONNOO N(4)100人以上每小题个2分24.(本小题满分10分)(1)ME =3cm 或6cm ―――――――――2分 (2)本小题共有4种情况,每小题2分 ①如图可得∠MON=9x ②29xMON =∠如图可得③如图因∠BOM =x,29X X 323MON 3x,MOA =⨯=∠=∠则④492323 MON ,23,xx x MOA x MOB =⨯=∠=∠=∠则所以因。
09-10第一学期期末七年级试题
2009~2010学年度第一学期期末考试七年级数学试题亲爱的同学,你好!本学期即将结束,今天是展示你才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现!可要注意喽,本试卷分卷Ⅰ和卷Ⅱ两部分,收卷时只收卷Ⅱ,卷Ⅰ由学生自己保留.不使用计算器. 卷Ⅰ(共40分)一、选一选,比比谁细心(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在卷Ⅱ的相应位置). 1.绝对值最小的数是A .0B .1C .-1D .没有 2.下列说法正确的是A .两个锐角的和一定是钝角B .用一个放大倍率是3倍的放大镜看一个︒10的角就成了︒30C .钝角是大于︒90小于︒180的角D .一条直线就是一个平角 3.下列各图中,射线OA 表示北偏东32º方向的是4.下列整式运算正确的是A .222(2)x x x x -+=B .222(2)x x x x +-= C .2(2)x y x y ++= D .222(2)x x x x --= 5.下列说法正确的是A .近似数3.90与近似数3.9的精确度一样B .近似数3.90与近似数3.9的有效数字一样C .近似数2.0610⨯与近似数200万的精确度一样 D .近似数39.0与近似数3.9的精确度一样北南西东O︒32北南西东O︒32北南西东O︒32北南西东O︒32 A B C D(第3题图)AAAA6.多项式23332--xy y x 的次数和项数分别为A .5,3B .5,2C .2,3D .3,37.如图所示的物体是一个几何体,从正面看,它应是下列图形中的图是8.轮船在静水中速度为每小时20km ,水流速度为每小时4km ,从甲码头顺流航行到乙码头, 再返回甲码头, 共用5小时(不计停留时间), 求甲、乙两码头的距离.设两码头间的距离为x km ,则列出方程正确的是 A . (20+4)x +(20-4)x =5 B .20x +4x =5 C .54x 20x =+D .5420x420x =-++9.下列解方程去分母正确的是A .由1132x x--=,得2x -1=3-3x B .由232124x x ---=-,得2(x -2)-3x -2=-4C .由131236y y y y +-=--,得3y +3=2y -3y +1-6yD .由44153x y +-=,得12x -15=5y +4 10.如图(1)是一个小正方体的侧面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是 A .健B .康C .仪D .文文明 礼 仪 健康图1文 明礼 1 2 3图2(第10题图)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分,把最简答案填在卷Ⅱ的相应位置).11.七年级(1)班学生在办黑板报时,两个同学拉紧一根细线的两端,用力弹出一条笔直的线,这样做的几何道理是: 点确定一条直线. 12.如果823=+x ,那么16+x 的值为 .13.从百度搜索“涿州”两个字,百度一下,找到相关网页约3 540 000篇,将3 540 000用科学记数法表示为 .14.如图,已知D 是线段AC 的中点,线段BD =8cm ,线段BC = 6cm ,则线段AB 的长是 cm .15.如图,点A 、O 、B 在一条直线上,且∠AOC =48°32′,OD 平分∠AOC ,则图中 ∠BOD= 度.16.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=︒36,则∠AOB 是__ ____°. 17.-次拔河比赛共有15个队的330人参加.已知每个队的人数相等,且每队有1位裁判和5名女运动员,其余的都是男运动员.设每个队的男运动员有x 人,那么可列出-元-次方程为________________.18.如果a 表示最小的正整数,b 表示最大的负整数,c 表示相反数是它本身的的有理数,那么a+b+c = .(第14题图) A B C D (第13题图)A O BC D(第15题图)A B C D(第16题图)19.有一个计算程序如下图,当输入a 的数值为-3时,最后输出的结果是________.20.用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).(第19题图)第1个图2个图3个图…(第20题图)2009~2010学年度第一学期期末考试七年级数学试题卷II (共60分)一、选择题(本大题共10个小题;每小题2分,共20分.把卷Ⅰ每个选择题符合题目的答案填在下面的表格里)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分,把卷Ⅰ填空题的最简答案填在下面的横线上).11. . 12. . 13. . 14. . 15. . 16. .17. . 18. . 19. . 20. .三、解答题:(本大题共6小题,共60分,解答应写出文字说明,说理过程或演算步骤)21.(每个4分,共16分) (1)计算:①()220103611-⨯-- ②])21(43)1[()4(352-++-⨯-(2)化简2242(32)(71)a ab a ab +---(3)解方程12(36)365x x -=-22.(本题满分6分) 有5颗白菜,以每颗3千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重后的纪录如下:回答下列问题:(1)这5颗白菜中最接近标准重量的这颗白菜重 千克; (2)与标准重量比较,5颗白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这5颗白菜可卖多少元?23.列方程解应用题(本题满分8分) 苏宁电器卖场购进一种家电后,标价为1904元,如果按这种家电标价的八折出售,利润率是12%,求这种家电的进价为多少元?1.5 -2 0.5 2 -124.列方程解应用题(本题满分10分)从甲地到乙地有一条普通公路,长途汽车需要行使7个小时.两地自从开通高速公路后,由于路程缩短了30千米,同时车速提高了30千米∕时,现只需行驶4个小时就可到达.求甲、乙两地之间普通公路的长是多少千米?25.(本题满分10分) 如图,点O 为直线AB 上一点,OE 、OF 、OC 是射线,OE ⊥OF ,OC 是∠COE的角平分线,∠AOF=40°,求∠EOC 的度数.(第25题图)26.(本题满分10分)一家蔬菜公司有一种蔬菜140吨,而这种蔬菜在市场上的销售情况是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行细加工,每天可加工6吨,但每天两种方式不能同时进行.因为受季节等条件的限制,必须用不超过15天的时间将这批蔬菜全部销售完毕.为此,公司研制了二种方案:方案一:将蔬菜全部进行粗加工;方案二:将一部分蔬菜进行细加工,其余蔬菜进行粗加工,并刚好15天完成. 如果你是公司经理,你会选择哪一种方案获得最大利润?请你通过计算说明理由.。
上海初一数学上学期期末考试试题
静安区2007学年第一学期期末七年级教学质量检测数学试卷 2008.1.18(满分100分,考试时间90分钟)一、填空题(每小题2分,共32分)1.计算:=32)3(a .2.计算:2246y x y x ÷= .3.肥皂泡表面厚度大约是0.0007毫米,将这个数用科学记数法表示为 毫米.4.“比a 的23大1的数”用代数式表示是 . 5.因式分解: 2218x -= .6.因式分解:=+-412a a . 7.已知31=x a ,那么=x a 2________________.8.若m +n =8,mn =14,则=+22n m .9.当x 时,分式242--x x 有意义. 10.如果分式522-+x x 的值为1,那么=x . 11.计算:x x x x 444122-⋅+-=______________.12.将12)(2--+y x x 表示成只含有正整数的指数幂形式为________.13.如图, 画出方格上的小鱼图形向右平移4格,再向上平移3格后的图形.14.如图,一块含有30°角(∠BAC =30°)的直角三角板ABC ,在水平的桌面上绕A 点按顺时针方向旋转到AB ’C’的位置,点B 、A 、C ’在一直线上,那么旋转角是_______度. 第13题第14题’第15题15.如图,把图中的某两个..小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.16.下面是用棋子摆成的“上”字:第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,如果按照这样的规律继续摆下去,那么第n个“上”字需用 枚棋子.二、选择题(每小题3分,共12分)[每题只有一个正确答案]17. 24)(a -÷3a 的计算结果是……………………………………………………( )(A )-3a ; (B )-5a ; (C )5a ; (D )3a18.下列计算中,正确的是…………………………………………………………( )(A )623a a a =⋅; (B )22))((b a b a b a -=-+;(C )222)(b a b a -=-; (D )222)2)((b ab a b a b a -+=-+.19.下列图案中是轴对称图形的是 …………………………………………………()(A) (B) (C) (D) 20.如果将分式y x y x +-22中的x 和y 都扩大到原来的3倍,那么分式的值………( )(A )扩大到原来的3倍; (B )扩大到原来的9倍;(C )缩小到原来的31; (D )不变.三、简答题(第21、22题每小题5分,第23~28题,每小题6分,共46分)21.计算:2)(2)2)(2(n m n m n m ---+. 22.因式分解:12422+--a b a .23.因式分解:12)(8)(222++-+x x x x . 24.计算:1122----+-y x y x (结果不含负整数指数幂).25.解方程:13223311-=--x x . 26.先化简,再求值:53222x x x x -⎛⎫+-÷ ⎪--⎝⎭, 2008年北京 2004年雅典 1988年汉城 1980年莫斯科其中2-=x .27.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,两队分别每天安装几台空调?28.如图,已知△ABC ,按下列要求画出图形:(1)作出△ABC 绕点C 逆时针方向旋转90°后的△A 1B 1C ;(2)作出△A 1B 1C 关于直线AC 对称的△A 2B 2C .四、(本题10分)29.在长方形ABCD 中,AB=8cm ,BC =10cm ,现将长方形ABCD 向右平移x cm, 再向下平移)1(+x cm 后到长方形A'B'C'D' 的位置,B(1)如图,用x的代数式表示长方形ABCD与长方形A'B'C'D' 的重叠部分的面积,这时x应满足怎样的条件?(2)如图,用x的代数式表示六边形ABB'C'D'D(阴影部分)的面积;(3)当这两个长方形没有重叠部分时,第(2)小题的结论是否改变,请说明理由.D′′。
2009-2010学年度第一学期期末检测七年级数学试卷(精)
2009-2010学年度第一学期期末检测七年级数学试卷一、选择题(每小题3分,共18分1.下列运算正确的是((Aa10÷a5=a2(B(a34=a7(C(-2(-22=-23=-8(D(4a3·(-3a3=-12a62.若单项式2x3y m与2x n y4和是单项式,则它们的和为( (A4x3y4(B2x3y4(C4x6y8(D2x3+2y33.如图是一个立方体图形的展开图,则这个立体图形是((A四棱柱(B四棱锥(C三棱柱(D三棱锥4.某人将甲、乙两种股票卖出,其甲种股票卖价1200元,盈利20%,其乙种股票卖价也是1200元,但亏损20%,该人此次交易的结果是((A不赚不赔(B赚100元(C赔100元(D赚90元5.五羊中学学生郊游,沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为(米。
(A2075(B1575(C2000(D15006.已知(a2+1(b2+1=3(2ab-1。
则b·(的值为((A0(B1(C-2(D-1二、填空题(每小题3分,共24分7.多项式xy2-x3y2+2x2y2是(次(项式,最高次项是(。
8.用“>”、“<”或“=”号填空(138°15′(38.15°(2 38°9′(38.15°(319°4′30″×2=((用度表示9.若从A点看B点,B点在北偏东15°;则从B点看A点,A点在(。
10.已知(3x-45=a0+a1x+a2x2+…+a5x5,则a0+2a1+4a2+8a3+16a4+32a5=(11. x12+3x5+2除以x2-x所得余式为(。
12. 已知x-=3,则等于(13. 8条直线两两相交,且任3条直线不交于同一点,则共可形成(对内错角。
2009学年第一学期七年级数学期末试卷
2009学年第一学期七年级数学期末试卷(时间90分钟,满分100分) (2010.1)一、填空题(本大题共14小题,每小题2分,满分28分) 1.计算:32)2(x -=_________.2.计算:)6(3xy x -⋅= .3.计算:=⋅÷x xx 1____________________. 4.计算:=+-)2)(3(b a b a ______________________. 5.因式分解:=+++by bx ay ax .6.因式分解:281419x x ++-= . 7.填空:ba ab b a 2)(=+. 8.对单项式a 4,我们可以这样解释:某一个正方形的边长为a 厘米,则这个正方形的周长为a 4厘米.请模仿这样的说明解释代数式2a 的几何意义: . 9.用科学记数法表示甲型11N H 流感病毒的直径0000000810.= . 10.当233=+-xx时,代数式x x 2233-+的值是_________.11.当10=+y x ,673=+y x 时,代数式229123y xy x ++的值是 .12.在线段、角、正方形、圆中,是轴对称图形但不是中心对 称图形的图形是_________. 13.如图1,将ABC △右平移3cm 得到DEF △,点A 与点D 是对应点,点B 与点E 是对应点.如果8=BC cm ,那么EC = cm.ABCEDF图1图214.图2是“俄罗斯方块”游戏的一个画面,若将左上角的阴影图案经过平移、旋转插入到下面的空白处,使阴影区域成为一个长方形,请在横线上写出关于左上角阴影图形的操作方法: .二、选择题(本大题共4小题,每小题3分,满分12分)15.下列运算正确的是 ( ) (A )532x x x =+; (B )2222)(---+-=+b ab a b a ; (C )639)()(x x x =-÷-; (D )x x x x x x ---=+--232)1(. 16.下列四个选项中,正确的是 ( ) (A )221212y x y x +=--; (B )y x x y x y x y --=+-+1))((; (C )6321052xx x =⋅; (D )52.05.02.01.0-=-x x . 17.如果4)()(22=--+b a b a ,那么下列四个选项中一定成立的是 ( ) (A )a 与b 互为倒数; (B )a 与b -互为倒数; (C )a 与b 互为相反数; (D )a 与b -互为相反数.18.下列说法中正确的是 ( ) (A )互相重合的两个图形,一定关于某条直线成轴对称; (B )平移前后的两个图形,一定关于某条直线成轴对称; (C )翻折前后的两个图形,一定关于某条直线成轴对称; (D )旋转前后的两个图形,一定关于某个点成中心对称.三、(本大题共4小题,每小题6分,满分24分) 19.计算:)2)(3(2)7)(2(x x x x +--+-.20.计算:)2()284(222232xy xy y x y x -÷--.21.分解因式:12)(8)(222++-+a a a a . 22.计算:255562--+++x xx x .四、(本大题共3小题,每小题8分,满分24分) 23.解方程:xx -=--38234.24.先化简,再求值:41)4422(22-÷-++-x x x x x ,其中5-=x .25. 关于2010年上海世博会,中国新闻网上有这样一段报道:“上海世博会不设赠票,身高2.1米以下(含2.1米)儿童可免票.指定日优惠票和平日优惠票适用于残疾人士,1950年及之前出生的人士,普通高等教育阶段、高中教育阶段和义务教育阶段在校学生,身高超过2.1米的儿童和中国现役军人等.指定日门票每张可优惠80元,平日门票每张可优惠60元”.A 校王老师用6000元为学生统一订购指定日门票,B 校李老师用5000元为学生统一订购平日门票,结果发现他们所订购的票数一样多.已知指定日门票比平日门票多40元,依据现有信息,你能求出2010年上海世博会的指定日门票与平日门票的价格吗?试试看!五、(本大题共2小题,每小题6分,满分12分)26.如图3,44⨯方格纸中的每个小正方形的边长都是一个单位长.(1)请在方格纸上画出三角形ABC 绕点C 逆时针旋转︒90之后的三角形C B A 11,并涂上阴影;(2)请在方格纸上画出三角形ABC 向上平移一个单位长之后的三角形222C B A ,并涂上阴影;(3)在直线MN 的右侧,画出与左侧三个阴影三角形成轴对称的图形,并涂上阴影.27.某同学做一道数学题,题目要求“两个式子A 、B ,其中B 为652-+-x x ,试求B A -的值”,该同学误把B A -看成了B A +,结果求出的答案是222--x x ,那么B A -的正确答案是多少?六、附加题(满分3分,供学有余力的同学选做.假如前面题目得分是98分,那么本题只取2分计入总分,假如前面已经是满分,则本题得分不再计入总分,本卷的最高得分为100分) 28.已知:d cx bx ax x +++=+233)13(,试求代数式d c b a -+-的值.2009学年第一学期七年级数学期末试卷(2010.1) 参考答案(若有错误,请老师们自行更正)一、填空题(本大题共14小题,每小题2分,满分28分)1、68x -;2、y x 218-;3、3x ;4、226b ab a -+;5、))((y x b a ++;6、2)219(-x ;7、ba ab a ab b a 22+=+;8、边长是a 的正方形的面积;9、8101.8-⨯;10、2;11、2010;12、角;13、5cm ;14、先将左上角的图形顺时针旋转︒90,然后再分别向右平移四个方格、向下平移四个方格.二、选择题(本大题共4小题,每小题3分,满分12分) 15、C ;16、B ;17、A ;18、C.三、(本大题共4小题,每小题6分,满分24分) 19.解:)2)(3(2)7)(2(x x x x +--+-=)236(214522x x x x x --+--+ …………………………………………2分 =2224612145x x x x x ++---+ …………………………………………2分 =26332-+x x . …………………………………………2分20. 解:)2()284(222232xy xy y x y x -÷--=)2(2)2(8)2(422222232xy xy xy y x xy y x -÷--÷--÷………………2分 =142++-x xy . …………………………………………4分21.解:12)(8)(222++-+a a a a=)6)(2(22-+-+a a a a …………………………………………3分 =)2)(3)(1)(2(-+-+a a a a .…………………………………………3分22.解:255562--+++x xx x =)5)(5(556+--+++x x xx x …………………………………………1分 =5156+-++x x x …………………………………………1分 =516+-+x x …………………………………………2分=155=++x x . …………………………………………2分 其他方法,请参考答案评分.四、(本大题共3小题,每小题8分,满分24分) 23.解:方程两边同时乘以)3(-x ,得8)3(24-=--x . ………………………………3分去括号,得 8624-=+-x . ………………………………1分 移项,化简 得 182-=-x . ………………………………1分 方程两边同除以2-,得 9=x . ………………………………1分检验:将9=x 分别代入原方程的左右两边,得 左边=342322394-=-=--;右边=34938-=-;左边=右边.………1分 所以,9=x 是原方程的根. ………………………………1分 24.解:41)4422(22-÷-++-x x x x x =)4()4422(22-⋅-++-x x xx x ……………………2分 =)4(4444222-⋅-++-x x x x x =42+x . ………………………………4分 当5-=x 时,原式=2942542=+=+x . ………………………………2分25. 解:设2010年上海世博会平日门票价格是x 元,则指定日门票为)40(+x 元.……1分根据题意,得60500080406000-=-+x x ,即605406-=-x x . ………………………………2分方程两边同时乘以)60)(40(--x x ,得 )40(5)60(6-=-x x . ……………………1分解方程,得 160=x . ………………………………1分 经检验,160=x 是原方程的解. ………………………………1分 当160=x 时,20040=+x . ………………………………1分 答:2010年上海世博会平日门票价格是160元,则指定日门票为200元. …………1分五、(本大题共2小题,每小题6分,满分12分)画出旋转之后的图4,可得到2分;画出平移之后的图5,可再得2分;画出翻折之后的图6,可再得2分.27.解:由题意,得B A +=222--x x ,B =652-+-x x .……………………2分)65()22()(22-+----=-+=x x x x B B A A =4632+-x x . ……2分 10114)65()463(222+-=-+--+-=-x x x x x x B A . ……2分六、附加题(满分3分,供学有余力的同学选做,假如前面题目得分是98分,那么本题只取2分计入总分,假如前面已经是满分,则本题得分不再计入总分,本卷的最高得分为100分)28.解:令1-=x ,得 d c b a +-+-=+-3)13(, ……………………1分 整理,得 8-=+-+-d c b a . ……………………1分 所以 8=-+-d c b a . ……………………1分图4 图5 图6。
2008-2009学年(上)期末考试七年级数学试卷(答案)
2008-2009学年(上)期末考试七年级数学试卷(答案)[]923)6()1(3224)1(322949)1(-=⎪⎭⎫ ⎝⎛-⨯-⨯-=⎪⎭⎫ ⎝⎛-÷--⨯-=⎪⎭⎫ ⎝⎛-÷⎥⎦⎤⎢⎣⎡-⨯-⨯-=2008-2009学年(上)期末考试七年级数学试卷(答案)一、DCABDBDABC二、1、小; 2、4 ; 3、35 ;4、8×108 ;5、150 °;6、20% ;7、144°;8、70三、1、原式=(-9)×5+6×5+3×11 (2分) =-45+30+33 (2分) =18 (1分)2、原式(2分)(2分)(1分)3、原式=4a 2-18b -15a 2+12b=-11a 2-6b (3分) 把a=-2,b=-2代入 ,原式=-32 (2分)4、 去分母,得 6 (x+15)=15-10(x-7)去括号,得 6x+90=15-10x+70 (2分)移项,得 6x+10x=15+70-90合并同类项,得 16x=-5 (2分)系数化为1,得x=165 (1分)四、1、两种情况各3分 m=7或m=12、求得∠MOC =55°(2分)求得∠NOC =15°(2分)求得∠MON =40°(2分)3、平均数增加1的可能性最大。
理由如下:由于平均数增加1的区域最大,转动转盘时指针落在这一区域的可能性最大(2分)。
设添加一个数X,则14 (2+3+7+X) =13(2+3+7) +1,解得X=8。
(2分)因此添加8的可能性最大(2分)4、每问2分。
最少8块 最多11块五、1、(1).60÷30%=200, 本次一共调查了200名学生(3分)2008—2009(上)期末试题七年英语试卷参考答案(满分100分)听力部分20分Ⅰ. 1——20 B C A C C A C B B A B A C A CTennis ; science ; watches TV ; at six/6:00 ;on Sunday afternoon笔试部分80 分Ⅱ. 21——35 共15分,每题1分。
(word版)上海初一数学上学期期末考试试题
静安区2007学年第一学期期末七年级教学质量检测数学试卷〔总分值 100分,考试时间 90分钟〕一、填空题〔每题 2分,共 32分〕1.计算:(3a 2)3.2.计算:x 6y 4x 2y 2=.3.肥皂泡外表厚度大约是 毫米,将这个数用科学记数法表示为4.“比a 的3大1的数〞用代数式表示是.25.因式分解: 2x 218.6.因式分解:a 2a 1.47.ax1,那么a2x________________.38.假设m+n=8,mn=14,那么m 2n 2.9.当x时,分式x24 有意义.x 210.如果分式x2的值为 1,那么x .2x 511.计算:1x 2 4x24x4x =______________.第13题12.将2x 2(x y)1表示成只含有正整数的指数幂形式为________.毫米.13.如图,画出方格上的小鱼图形向右平移14.如图,一块含有 30°角 〔∠BAC=30°〕的直角三角板ABC ,在水平的桌面上绕A 点按顺时针方向旋转到AB ’C 的’位置,点B 、A 、C ’在一直线上, 那么旋转角是_______度.B4格,再向上平移 3格后的图形.CA第14题B ’C ’七年级数学—1—15.如,把中的某两个小方格涂上阴影,使整..个形是以虚称的称形.第15题16.下面是用棋子成的“上〞字:第一个“上〞字需用6枚棋子,第二个“上〞字需用10枚棋子,第三个“上〞字需用14枚棋子,如果按照的律下去,那么第n个“上〞字需用枚棋子.二、〔每小3分,共12分〕[每只有一个正确答案]17.(a4)2÷a3的算果是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕〔A〕-a3;〔B〕-a5;〔C〕a5;〔D〕a318.以下算中,正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕〔A〕a3a2a6;〔B〕(a b)(a b)a2b2;〔C〕(ab)2a2b2;〔D〕(a b)(a2b)a2ab2b2.19.以下案中是称形的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯〔〕七年级数学—2—2021年北京2004年雅典1988年汉城1980年莫斯科〔A〕〔B〕〔C〕〔D〕20.如果将分式x2y2中的x和y都扩大到原来的3倍,那么分式的值〔〕x y〔A〕扩大到原来的3倍;〔B〕扩大到原来的9倍;〔C〕缩小到原来的1;〔D〕不变.3三、简答题〔第21、22题每题5分,第23~28题,每题6分,共46分〕21.计算:(2m n)(2mn)2(mn)2.22.因式分解:a24b22a1.23.因式分解:(x2x)28(x2x)12.x2y24.计算:1yx整数指数幂〕.2〔结果不含负25.解方程:132.26.先化简,再求值:x25x3,13x23x1x2x2其中x2.七年级数学—3—27.甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,两队分别每天安装几台空调?28.如图,△ABC,按以下要求画出图形:〔1〕作出△ABC绕点C逆时针方向旋转90°后的△A1B1C;2〕作出△A1B1C关于直线AC对称的△A2B2C.AB C(四、〔此题10分〕(29.在长方形ABCD中,AB=8cm,BC=10cm,现将长方形ABCD向右平移x cm,再向下(平移(x 1)cm后到长方形A'B'C'D'的位置,(1〕如图,用x的代数式表示长方形ABCD与长方形A'B'C'D'的重叠局部的面积,这时x 应满足怎样的条件?七年级数学—4—2〕如图,用x的代数式表示六边形ABB'C'D'D〔阴影局部〕的面积;3〕当这两个长方形没有重叠局部时,第〔2〕小题的结论是否改变,请说明理由.A DA′D′B CB′C′七年级数学—5—。
学年静安区第一学期七年级数学期末卷
1.下列运算结果正确的是(A )6332x x x =⋅; (B)623)(x x -=-; (C )338)2(x x =; (D)326x x x =÷.2.下列二次三项式是完全平方式的是(A)4842+-x x ; (B)422++x x ; (C )4442++x x ; (D)442--x x . 3.下列各式从左到右的变形是因式分解的是(A )ab a b a a +=+2)(;(B)322224⨯⨯⨯=;(C)1)2(122++=++a a a a ;(D))3(2622b a a ab a -=-. 4.下列分式化简正确的是(A)b a b a b a +=++2)(22; (B )2322322a a a a +-=+-; (C )b a b ab a 21326192-=--; (D )ba ba b a b a -+=-+2222.5.把下列4个字母看作4个图形, 其中轴对称图形的个数为F I N E(A)0; (B)1; (C)2;(D )3.6.下列说法中正确的是(A)如果把一个图形绕着一个定点旋转后和另一个图形重合,那么这两个图形成中心对称; (B )如果两个图形关于一点成中心对称,那么其对应点之间的距离相等; (C )如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形; (D)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形. 二、填空题(每小题3分,共36分)[不必写过程,直接填入答案] 7.“x 与y 的和的倒数”,用代数式表示为 . 8.如果单项式mbc a 235为9次单项式,那么m 的值为 . 9.下列四组单项式:①232ab 与232ba ,②232ab 与a b 223-,③34与3a ,④z y x 422与422y x ,其中是同类项的组为 .(只填序号)10.已知一个多项式与239x x +的和等于2341x x +-,那么这个多项式是 .11.分解因式:a a 1692-= . 12.计算:)1(4)1(2-+-a a = .13.计算:22442x xx -+-= . 14.分式方程1212=+xx 的解为 .15.计算: 32)1()1()1(---+-+-= .16.纳米是一种长度单位:1纳米=910-米,已知某植物花粉的直径为1560纳米,那么用科学记数法表示该种花粉的直径为 米.17.已知线段AB 的长度为9厘米,现将线段AB 向左平移5厘米得到线段C D,那么CD 的长度为 厘米.18.如图,点O 为正方形ABCD 的一边BC 的中点,那么正方形AB CD 绕点O 至少旋转 度与它本身重合.三、简答题(第19~24题每小题4分,共24分)19.计算:2422332)3024(y x y x y x ÷÷-. 20.计算:232)4()2(-⋅ab b a (结果不含负整数指数幂).21.分解因式:xy y x 44422-+-. 22.分解因式:a ax ax 321424--. .23.已知232=+y y ,求代数式)2)(2()3(2---++y y y 的值. 24.计算:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭.第18题图四、解答题(第25、26题每题6分,第27、28题每题8分,共28分) 25. 观察下列各式,你发现了什么规律?632166112⨯⨯=== ; 653263052122⨯⨯===+; 674368414321222⨯⨯===++; 695461803043212222⨯⨯===+++; ……(1)填空:=+-+++++222222)1(4321n n (用含有n 的代数式表示); (2)计算:22222230288642++++++ .26.甲、乙两辆客车分别从相距120千米的A 、B 两站同时出发,相向而行,相遇时甲车行驶了55千米,如果甲车每小时比乙车少走10千米,求甲、乙两车速度.(列分式方程解应用题)27.如图,“Z ”字形图形的顶点在小方格顶点上(小方格的边长为1个单位长度).按下列要求画出图形: (1)画出“Z ”字形图形关于对角线MN 对称的图形;(2)画出“Z ”字形图形关于点O 对称的图形;所画出的图形还.可以用原“Z ”字形图形通过怎样的运动得到?请你完整 地描述具体的运动过程.28.如图,已知长方形ABCD ,点E 在线段AD 上,将△ABE 沿直线B E翻折后,点A 落在线段CD 上的点F. (1)用圆规和直尺画出△FBE (保留作图痕迹);(2)如果△F DE 的周长为6,△F CB 的周长为a(a >6),用含有a 的代数式表示FC 的长度.ABCD。
上海民办上海上外静安外国语中学七年级上册数学期末试题及答案解答
上海民办上海上外静安外国语中学七年级上册数学期末试题及答案解答一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒4.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b5.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠6.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2 C .1,4 D .1,3 7.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.09.在下边图形中,不是如图立体图形的视图是()A.B.C.D.10.观察下列算式,用你所发现的规律得出22015的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.811.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠212.下列各数中,比73-小的数是()A.3-B.2-C.0D.1-二、填空题13.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.把5,5,35按从小到大的顺序排列为______. 16.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 17.36.35︒=__________.(用度、分、秒表示)18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 20.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.数字9 600 000用科学记数法表示为 .23.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.24.用度、分、秒表示24.29°=_____.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.28.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1=?PQ AB2()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.29.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数30.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.31.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.32.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.4.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.6.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.7.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.9.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.10.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x =12+6x ,解得:x =3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 16.四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四 三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.17.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.18.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.20.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.21.110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.22.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.23.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠ 160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠7120()(44120)2x y x y ∴-+=+-36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI ,∴3t=3(30-3t )或3t=3(3t-30), 解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°),解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解. 27.探究三:16,6;结论:n², ;应用:625,300.【解析】 【分析】探究三:模仿探究一、二即可解决问题; 结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题. 【详解】 解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个. 结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.28.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】 【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2=()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2=()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.29.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18题图
)
)
如图,将网格中的三条线段沿网格的水平方向或垂直方向平移后组成一个首尾顺次相接的三角形,那么这三条线段在水平方向与垂直方向移动的总格数最小是第1个图案 第2个图案 第3个图案
请在黑色矩形边框内答题,超出黑色矩形边框的答题一律无效
静安区2009学年第一学期期末七年级“学业效能实证研究”
学习质量调研 参考答案与评分标准(2010.1)
一、选择题(每小题2分,共12分)
1.D ; 2. A ; 3.C ; 4. C ; 5. D ; 6.B . 二、填空题(每小题3分,共36分) 7. y 4112-
; 8.22232b ab a --; 9.2b (3-4b ); 10.9; 11.5;12. 7101.1-⨯;13.2
1-≠x ; 14. a -1; 15.5
3; 16. ; 17.30º; 18.23+n . 三、简答题(第19~24题每小题4分,第25题6分,共30分)
19.解:原式=(2
2
2
669n mn n mn m --++)÷2m …………………………………(2分)
=m m 292÷………………………………………………………………(1分) =
m 2
9
……………………………………………………………………(1分) 20.解:A -B =)153()62(22-+--+-+y x bx y ax x =(2-b )2
x +(a +3)x -6y +7,(2分),
因为A -B 中不含x 的项,所以2-b =0,a +3=0,即b =2,a =-3,……………(1分) 所以3
3
23+-=+b a =5.…………………………………………………………(1分) 21.解:原式=4)2(2--y x …………………………………………………………(2分)
=)22)(22(+---y x y x .…………………………………………(2分)
22.解:原式=)12)(2(22----x x x x ……………………………………………(2分) =(x +1)(x -2) (x +3)(x -4) .……………………………………………………(2分)
23.解:原式=xy
y x xy
y x )1()(1111-----+…………………………………………………………(2分)
=
1
-+xy y
x .……………………………………………………………………(2分) 24.解:方程两边同乘以)13(2-x , 3)13(2=-+-x ,…………………………(2分)
2=x .……………………… (1分)
经检验:2=x 是原方程的解,所以原方程的解是2=x .……………………(1分)
25.解:原式=1
1
]1)1)(1()1([2+÷
+-+-x x x x x ………………………………………(2分) =)1()1
11(
+⨯++-x x
x x ……………………………………………………(1分) =)1()
1(12+⨯++x x x x ………………………………………(1分) =x x 12+.…………………………………………………(1分)
当2-=x 时,原式=2
5
21)2(2-=-+-.…………………………………(1分)
四、解答题(第26、27题每题6分,第28题10分,共22分)
26.解:设进货员在苏州购买了x 条围巾,则在上海购买了2x 条围巾,…………(1分)
根据题意得:
48000
217600=-x
x .………………………………………………(2分) 方程两边同乘以x ,x 480008800=-.解得:200=x .……………………(1分) 经检验200=x 是原方程的解,且符合题意.……………………………………(1分) 4002=x .
答:进货员分别在苏州、上海购买了200条、400条围巾.……………………(1分) 27.(1)作出△A 1B 1C 1;…………………………………………………………………(3分) (2)作出△A 2B 2C 2.…………………………………………………………………(3分) 28.解:(1)图②中BE =21厘米, ……………………………………………………(2分),
图④中BM =15厘米.………………………………………………………(2分) (2)因为图④为轴对称图形
所以2
526x
BM AP -==…………………………………………………(3分) x x
PM AP AM +-=
+=2526……………………………………(2分) =x 2
3
13-…………………………………………(1分)
即开始折叠时点M 与点A 的距离是x 2
3
13-厘米.
请 在 黑 色 矩 形 边 框 内 答 题,超 出 黑 色 矩 形 边 框 的 答 题 一 律 无 效。