一元一次方程小测
最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x ) 4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 5.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .116.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 9.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 10.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31 11.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B = C .A B < D .无法确定 12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.15.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 16.a -b ,b -c ,c -a 三个多项式的和是____________17.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.19.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.20.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题21.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?24.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据单项式的定义可得8mx y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.6.A解析:A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.7.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1xx是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.10.C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.12.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A.﹣ab与4abc所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 二、填空题13.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0 解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值.【详解】 解:原式2213383x k xy y ⎛⎫=+--+ ⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =, 故答案为19. 【点睛】 本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0.14.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 15.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.16.0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.17.【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m的值【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【详解】解:∵多项式3x|m|y2+(m+2)x2y-1是四次三项式,m+≠∴m+2=4,20∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.20.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题21.(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭ =222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.25.(1)2a b c -+;(2)-9(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.26.(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= . 【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.。
初一数学一元一次方程测试题及答案
初一数学一元一次方程测试题及答案一元一次方程测试题一、填空题1、若2a与1-a互为相反数,则a等于-1/3.2、y=1是方程2-3(m-y)=2y的解,则m=5/3.3、如果3x-4=是关于x的一元一次方程,那么a=5.4、在等式S=(a+b)h/2中,已知S=800,a=30,h=20,则b=40.5、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得x=20/3.6、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒75升水。
二、选择题1、下列方程中,是一元一次方程的是(。
)A、x2+x-3=x(x+2)B、x+(4-x)=5C、x+y=1D、3x-2(x+1)=x+1答案:B2、与方程x-1=2x的解相同的方程是()A、x-2=1+2xB、x=2x+1C、x=2x-1D、x-(m-2)/3=x/(x+1)答案:C3、若关于x的方程mx-2x+3=mx/(x+1)的解为x=2,则m=3/2.答案:D4、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为44x+64(328-64)=328,解得x=4.答案:B5、XXX在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y-(115/y)=y-。
怎么呢?XXX想了一想,便翻看书后答案,此方程的解是y=5,很快补好了这个223常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是4.答案:D6、(2x-1)/(x-1)-1=1,去分母后,正确的是3x-2(x-1)=1.答案:A7、某商品连续两次9折降价销售,降价后每件商品的售价为a元,该产品原价为(10/9)^2a元。
答案:C三、解答题1、3-(x/(x-8))-1/(x+3)=12,化简得到x=11.2、3(x+1)-2(x+2)=2x+3,化简得到x=-1.3、x-(1/x)=4,移项得到x^2-4x-1=0,解得x=2+√5或x=2-√5.4、解方程(x+1)/(x-2)+(x-1)/(x+3)=5/3,化简得到3x^2+9x-10=0,解得x=-5/3或x=2/3,但由题目可知x必须是正数,因此x=2/3.四、解答题1、已知 $y_1=6-x,y_2=2+7x$,若① $y_1=2y_2$,求$x$ 的值;②当 $x$ 取何值时,$y_1$ 比 $y_2$ 小 $3$;③当$x$ 取何值时,$y_1$ 与 $y_2$ 互为相反数?① $y_1=2y_2 \Rightarrow 6-x=2(2+7x) \Rightarrow x=-\frac{10}{15}=-\frac{2}{3}$② $y_1\frac{5}{8}$ 或 $x<-2$③ $y_1=-y_2 \Rightarrow 6-x=-(2+7x) \Rightarrowx=\frac{8}{15}$2、已知 $ax+a+3-8=4$ 是关于 $x$ 的一元一次方程,试求$a$ 的值,并解这个方程。
七年级上数学:一元一次方程测试卷(含答案)
七年级上数学:一元一次方程测试卷(含答案)第三章《一元一次方程》测试卷一、填空题(每题3分,共30分)1.关于x的方程(k-1)x-3k=0是一元一次方程,则k的值为_______。
2.方程6x+5=3x的解是________。
3.若x=3是方程2x-10=4a的解,则a的值为______。
4.(1) -3x+2x的值为_______。
(2) 5m-m-8m的值为_______。
5.一个两位数,十位数字是9,个位数比十位数字小a,则该两位数为_______。
6.一个长方形周长为108cm,长比宽2倍多6cm,则长比宽大_______cm。
7.某服装成本为100元,定价比成本高20%,则利润为________元。
8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t,设需要这种稻谷x t,则列出的方程为______。
9.当m值为______时,4m-5/3的值为______。
10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,现我军以7千米/小时的速度追击______小时后可追上敌军。
二、选择题(每题3分,共30分)11.下列说法中正确的是(C)。
A。
含有一个未知数的等式是一元一次方程B。
未知数的次数都是1次的方程是一元一次方程C。
含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D。
2y-3=1是一元一次方程12.下列四组变形中,变形正确的是(A)。
A。
由5x+7=0得5x=-7B。
由2x-3=0得2x-3+3=0C。
由x1=2得x=1D。
由5x=7得x=35/6313.下列各方程中,是一元一次方程的是(D)。
A。
3x+2y=5B。
y^2-6y+5=0C。
11/x-3=xD。
3x-2=4x-714.下列各组方程中,解相同的方程是(B)。
A。
x=3与4x+12=0B。
x+1=2与(x+1)^2=2xC。
7x-6=25与(7x-1)/5=6D。
x=9与x+9=015.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x小时完成,下列方程正确的是(C)。
一元一次方程试题总集(含答案)
一元一次方程测试题A卷一、填空题1若2a与1 a互为相反数,则a等于___________2、y 1是方程2 3 m y 2y的解,则m _____________3、方程2 - x 4,则x34、如果3x2a 2 4 0是关于x的一元一次方程,那么 a ______(a b)h5、在等式S J 丄中,已知S 800, a=30, h 20,则b _______________26、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发 1.5小时后相遇,列方程可得____________7、将1000元人民币存入银行2年,年利息为5 %,到期后,扣除20%的利息税,可得取回本息和为___________ 元。
9、某品牌的电视机降价10 %后每台售价为2430元,则这种彩电的原价为每台__________ 元。
10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒_____ 升水。
二、选择题1、卜列方程中,是兀一次方程的是()A2x x3x x 2 B、x 4 x0 C、x y 1 D、1 x 0y2、与方程x12x的解相同的方程是()A 、x 212x B、x 2x 1 C、x 2x 1x 1D、x23、若关于x的方程mx m 2 m 3 0是一元一次方程,则这个方程的解是()A、x 0B、x 3C、x 3D、x 24、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为()A、44x 328 64B、44x 64 328 c、328 44x 64 D、328 64 44x5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:1 1 52y y ,怎么呢?小明想了一想,便翻看书后答案,此方程的解是y2 2 3很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是()B、2x x 17、把方程1去分母后,正确的是()。
一元一次方程章节测试卷(含答案)
第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
完整版)七年级上册数学一元一次方程测试题及答案
完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。
2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。
3.方程x-2=2-x的解是(x=2)。
4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。
5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x个月后,两厂库存钢材相等,则x是(3)。
6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。
7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。
8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。
9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。
11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。
13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。
b。
c。
d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。
一元一次方程单元测试题
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
一元一次方程单元测试卷(三套含答案)
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S = 12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________. 11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3)6m x m x m ---= 四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
第五章 一元一次方程综合测评(一)
第五章 一元一次方程综合测评(一)一、选择题(每小题3分,共30分)1.下列方程为一元一次方程的是 ( ) A.2x-3=y B.x 2-2x-3=0 C.x=0D.y y=-112.下列运用等式的基本性质变形不正确的是 ( ) A.若a-b=0,则a=b B.若-21x=-4,则x=2 C.若a=b ,则2a-5=2b-5 D.若a=b ,则44-=-b a 3.下列方程中,解是x=-2的方程是 ( ) A.-2x-1=-5B.3(x-1)-2=11C.-21x+1=0D.0131=+-x 4.解方程131221=+--x x ,去分母正确的是 ( ) A.3(x-1)-2(2x+1)=6 B.3(x-1)-2(2x+1)=1 C.2(x-1)-3(2x+1)=6 D.3x-1-4x-1=65.若关于x 的方程3x+2m=1的解与方程-2x-1=5的解相同,则m 的值为 ( ) A.5 B.-5 C.4D.-46.若单项式-2x 2m-1y 2与3xy 4-n 是同类项,则代数式(m-n)2015的值为 ( ) A.2015 B.-2015 C.1D.-17.第17届亚洲运动会于2014年09月19日—2014年10月04日在韩国仁川举行.图1是本届亚运会的吉祥物,象征着希望、速度和乐观向上的体育精神.某商店将吉祥物按成本价提高40%后标价,又以9折(即标价的90%)优惠卖出,结果每个吉祥物仍可获利26%,设吉祥物的成本价为x 元,可列方程为( )A.(1+40%)x×26%-x=90%xB. 40%x×90%-x=26%xC.(1+40%)x×90%+x=(1+26%)xD.(1+40%)x×90%=(1+26%)x8.2014年8月3日16时30分在云南省昭通市鲁甸县发生了6.5级地震,为此,某校举行了“一方有难,八方支援”的捐款活动,全校共捐款8790元,已知八年级比七年级多捐款800元,九年级的捐款是七年级捐款的2倍少10元,则九年级的捐款为 ( )A.2000元B.2800元C.3990元D.4010元9.小虎在解关于x 的一元一次方程2x -m=x 时,由于粗心大意,移项时忘记了改变符号,变形为2x+x=-m. 求得方程的解为x=1,则原方程的解为 ( ) A.x=-1 B.x=1 C.x=2D.x=310.我们把称作二阶行列式,规定它的运算法则为=ad ﹣bc .如=2×5﹣3×4=﹣2.如果有=3,则x 的值为 ( ) A.3 B.2C.-2D.0二、填空题(每小题3分,共24分)11.请你写出一个关于y 的一元一次方程,并使方程的解不大于-1,则满足条件的一元一次方程为: .12.由-2x=-6,可得x=3的理论根据是:____________________.13.若m 为有理数,则关于x 的一元一次方程(m-1)x |m|-10=0的解为__________. 14.若3a-1与2(1-a)互为相反数,则a 的值为_________.15.一个圆柱形的容器装满纯净水,它的底面积为1200 cm 2,高为50 cm ,将这些纯净水完全倒入底面积为75 cm 2的40个圆柱形的玻璃杯中,每个杯子都刚好倒满,则玻璃杯的高为_______cm.16.如图2,小明用两根长度相等的铁丝,分别围成了正五边形和正六边形(正多边形的边长都相等),已知正五边形的边长比正六边形的边长多4 cm ,设正六边形的边长为x cm ,根据题意,可列一元一次方程为_____________.17.有下列结论:①若a=b ,则a-m=b-m ;②若m b m a =,则a=b ;③若a=b ,则mbm a =.其中正确的结论有__________(填序号).18.A 、B 两地相距720米,甲、乙二人分别从A 、B 两地同时出发,相向而行(二人分别到达B 、A 两地即刻停止),二人的速度分别为80米/分、100米/分,当他们出发_________分钟,二人相距100米.三、解答题(共46分)19.(每小题4分,共8分)解下列方程: (1)2(3-x)-3(2x-1)=-7;(2)6132121=---x x .20.(6分)已知关于x 的一元一次方程12133412=---x m x 的解是x=1,求m 的值.21.(6分)一件上衣的进价为200元,按标价的8折销售时,利润率为10%,求这件上衣的标价.22.(8分)某旅游景点的门票售价:成人票每张200元,儿童票每张80元.某日该景点售出门票800张,共得136 000元,求售出成人票多少张?23.(8分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15厘米,各装有10厘米高的水,下表记录了甲、乙、丙三个杯子的底面积.小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为1︰2︰3.若不计杯子厚度,求乙杯内水的高度变为多少厘米?24. (10分)九九重阳节,小明和父母以50米/分的速度步行去郊外的村庄探望外婆,走了5分钟后, 小明忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以70米/分的速度折返,取到礼物后立刻出发追赶父母,恰好在村庄口追上父母.求小明家到外婆所在村庄的距离.附加题(共20分)25.(10分)解方程:|3x |=1.解:①当3x ≥0时,原方程可化为一元一次方程为3x =1,它的解是x=31; ②当3x <0时,原方程可化为一元一次方程为-3x =1,它的解是x=-31. 请你模仿上面例题的解法,解方程:2|x-3|+5=13.26.(10分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.方案一:非会员购物,所 有商品价格可获9折优惠,方案二:如交纳200元会费成为该超市会员,则所有商品价格可获8折优惠. (1)若用x (元)表示商品价格,请你用含x的代数式分别表示两种购物方案中所付金额. (2)当商品价格是多少元时,两种方案所付金额相同?(3)若某人计划在该超市购买价格为2700元的电脑一台,请分析选择哪种方案更省钱.(拟题 陈晓明)第五章 一元一次方程综合测评(一)一、1. C 2. B 3. D 4. A 5. A 6. D 7. D 8. C 9. D 10. B 二、11. 答案不唯一,合理即可 12. 等式基本性质2或方程变形规则2 13.x=-5 14.-1 15.20 16.6x=5(x+4) 17.①② 18.941931或 三、19.(1)解:去括号,得6-2x-6x+3=-7.移项、合并同类项,得-8x=-16. 系数化为1,得x=2.(2)去分母,得3(x-1)-2(1-2x)=1. 去括号,得3x-3-2+4x=1. 移项、合并同类项,得7x=6. 系数化为1,得x=76. 20. 解:将x=1代入方程,得1213134112=⨯---⨯m . 去分母,得3-4(m-3)=1. 去括号,得3-4m+12=1.移项、合并同类项,得4m=14. 系数化为1,得m=27. 21. 解:设这件上衣的标价为x 元. 根据题意,得0.8x-200=200×10%. 解得x=275.答:这件上衣的标价是275元.22. 解:设售出成人票x 张,则售出儿童票(800-x )张. 根据题意,得200x+80(800-x)=136 000. 解得x=600.答:售出成人票600张.23. 解:设后来甲杯内的水高度为x 厘米,则后来乙、丙两杯内水的高度分别为2x 厘米、3x 厘米. 根据题意,得40×10+60×10+80×10=40×x +60×2x +80×3x . 解得x =4.5. 2×4.5=9(厘米).答:乙杯内水的高度变为9厘米.24.解:设小明与父母分开到追上父母一共用了t 分. 根据题意,可得70t-50×5=50(t+5). 解得t =25.所以小明家到外婆所在村庄的距离是50×(25+5)=1500(米). 25. 解:①当x ≥3时,原方程可化为2(x-3)+5=13,它的解是x =7; ②当x <3时,原方程可化为2(3-x )+5=13,它的解是x =-1. 26. 解:(1)方案一的金额:90%x ;方案二的金额:80%x +200. (2)由题意可得90%x =80%x +200.解得x=2000.答:当商品价格是2000元时,两种方案所付金额相同.(3)方案一:90%x=2700×90%=2430(元),方案二:80%x+200=80%×2700+200=2360(元).因为2360<2430,所以方案二更省钱.。
一元一次方程精编测试题
17.解方程
8x-12( =-4
18.(1)已知 是方程 的根,求代数式 的值.
19.如果方程 的解与方程3x﹣(3a+1)=x+(2a﹣1)的解相同,求式子 的值.
20.一项工程,甲队单独施工需要10天完成,乙队单独施工需要5天完成.现在由甲队先工作1天,剩下的由甲、乙两队合作,还需要几天才能完成任务?
6.关于x的方程 x 1变形正确的是( )
A. x 1B. x 1
C. 10x 100D. 100x 100
7.从-4,-2,-1,1,2,4中选一个数作为k的值,使得关于x的方程 的解为整数,则所有满足条件的k的值的积为( )
A.-32 B.-16C.32D.64
8.小强从家里骑自行车到学校,每小时骑15km,可早到15分钟;每小时骑12km 就会迟到7分钟.问他家到学校的路程是多少千米?设他家到学校的路程是xkm,则可列方程是( )
17.一项工程,A组单独做需要10天完成,B组单独做需要15天完成.若A组先做5天,然后再由A、B两组合做________天,才能完成全部工程的三分之二.
三、解决问题
18.解方程
19.已知关于的方程 与方程4 的解相同,求k的值.
20.某校七年级组织师生爬山,一人一座,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.
A.赔了90元 B.赚了90元 C.赚了100元 D.不赔不赚
5.下列方程变形中,正确的是( )
A.方程 ,未知数系数化为1,得x=-1
B.方程3x+5=4x+1,移项,得3x-4x=1+5
C.方程3x-7(x-1)=3-2(x+3),去括号,得3x-7x+7=3-2x-3
一元一次方程单元测试题及答案
四、应用题(每题8分,共32分)
23.(8分)某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3 间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?
24.(8分)如图,有9个方格,要求每个方格填入不同的数,使得每行、每列、 每条对角线上三个数的和相等,问图中的m是多少?
C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程
D.2y—3=1是一元一次方程
12.下列四组变形中,变形正确的是( )
A.由5x+7=0得5x=-7 B.由2x-3=0得2x-3+3=0
C.由 =2得x= D.由5x=7得x=35
13.下列各方程中,是一元一次方程的是( )
A.3x+2y=5 B.y2-6y+5=0 C. x-3= D.3x-2=4x-7
C.2(x—1)—3(4—x)=6 D.2x-2—12-3x=6
19.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时, 已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )
A.280千米,240千米 B.240千米,280千米
C.200千米,240千米 D.160千米,200千米
14.下列各组方程中,解相同的方程是( )
A.x=3与4x+12=0 B.x+1=2与(x+1)x=2x
C.7x-6=25与 =6 D.x=9与x+9=0
15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x小时完成,下列方程正确的是( )
一元一次方程测试题(含答案)
一元一次方程测试题(含答案)一、选择题1.对等式x 2=y 3进行变形,则下列等式成立的是( ) A .2x =3y B .3x =2y C .x 3=y 2 D .x =32y 2.如果方程x 2n−5−2=0是关于x 的一元一次方程,则n 的值为( )A .2B .3C .4D .53.下列方程的变形正确的是( )A .x 5+1=x 2,去分母,得2x +1=5xB .5−2(x −1)=x +3,去括号,得5−2x −1=x +3C .5x +3=8,移项,得5x =8+3D .3x =−7,系数化为1,得x =−734.如图①,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即12+3=15.如图①,当y =505时,b 的值为( )A .205B .305C .255D .3155.学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x 人去甲处,则( )A .48=2(42﹣x )B .48+x =2×42C .48﹣x =2(42+x )D .48+x =2(42﹣x )6.方程|x|+|x −2022|=|x −1011|+|x −3033|的整数解共有( )A .1010B .1011C .1012D .20227.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;①一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;①一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3208.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为()A.21B.24C.27D.36二、填空题9.写出一个以x=−2为解的一元一次方程:(任写一个即可).10.定义运算:a⊗b=a2−2ab,例如3⊗1=32−2×3×1=3,则关于x的方程(−3)⊗x=2的解是.11.已知非负实数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5,设S=5a+4b+7c的最大值为m,最小值为n,则n−m等于.12.学校为“中国共产党建党100周年合唱比赛”印制宣传册,某复印店的收费标准如下:①印制册数不超过100册时,每册2元;①印制册数超过100册但不超过300册时,每册按原价打八折;①印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省..元.三、计算题13.解方程:x+13−x−32=1.14.在数学实践课上,小明在解方程2x−15+1=x+a2时,因为粗心,去分母时方程左边的1没有乘10,从而求得方程的解为x=4,试求a的值及原方程正确的解.四、解答题15.五一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.求甲、乙两种商品的每件进价分别是多少元?16.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?17.若|x+3|=6,|y−4|=2,且|x|−|y|≥0,求|x−y|的值.五、综合题18.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3−1|可以理解为数轴上表示3 和 1 的两点之间的距离;|3+1|可以理解为数轴上表示3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为:4-(-3).根据以上阅读材料探索下列问题:(1)数轴上表示3 和9 的两点之间的距离是;数轴上表示 2 和﹣5 的两点之间的距离是;(直接写出最终结果)(2)①若数轴上表示的数x 和﹣2 的两点之间的距离是4,则x 的值为;①若x 为数轴上某动点表示的数,则式子|x+1|+|x−3|的最小值为.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】A5.【答案】D6.【答案】C7.【答案】C8.【答案】C9.【答案】2x=−4(答案不唯一)10.【答案】−7611.【答案】-212.【答案】76.8或4813.【答案】解:2(x+1)−3(x−3)=62x+2−3x+9=62x−3x=6−2−9−x=−5x=5 14.【答案】解:把x=4代入2(2x−1)+1=5(x+a),可得2×(2×4−1)+1=5(4+a)20+5a=15a=−1把a=−1代入原方程,可得2x−15+1=x−1 22(2x−1)+10=5(x−1) 4x−2+10=5x−54x−5x=−5+2−10−x=−13x=13∴a=−1,x=1315.【答案】解:设乙种商品每件进价为x元.由题意可得,7(x−20)+2x=760解得x=100100−20=80元答:甲商品的每件进价是80元,乙商品的每件进价100元.16.【答案】解:设初一(1)班有x人,则初一(2)班有(x-5)人,初一(3)班有[101-x-(x-5])人.①初一(1)班有20多人,不足30人,①(1)班最多29人,(2)班最多24人,则(3)班最少48人;(1)班最少21人,(2)班最少16人,则(3)班最多64人.根据题意,①当初一(3)班的人数不超过60人时,有15x+15(x −5)+12[101 −x −(x −5)]=1365;解得:x=28.①x −5=23,101 −x −x+5= 50;①当初一(3)班的人数超过60人时,有15x+15(x −5)+10[101 −x −(x −5)]=1365解得:x= −38.①人数不能为负,①这种情况不存在;答:初一(1)班有28人.初一(2)班有23人.初一(3)班有50人.17.【答案】解:由|x+3|=6可知若x+3>0,则有x+3=6,解得x=3,|x|=3若x+3<0,则有-3-x=6,解得x=-9,|x|=9由|y−4|=2可知若y-4>0,则有y-4=2,解得y=6,|y|=6若y-4<0,则有4-y=2,解得y=2,|y|=2①|x|−|y|≥0①当|x|=3时,|y|=2满足条件则|x−y|=|3−2|=1当|x|=9时,|y|=6满足条件则|x−y|=|−9−6|=|−15|=15当|x|=9时,|y|=2满足条件则|x−y|=|−9−2|=|−11|=11综上所述|x−y|的值为1,11,15 18.【答案】(1)6;7(2)-6或2;4。
七年级上册第三章《一元一次方程》测试题 难度较大
第三章《一元一次方程》测试题班级: 姓名:得分:一、单选题(每题3分)1.下列各式:①3+7=10;②3x-5=x2+3x;③2x+1=1;④21x;⑤3x+2.其中是一元一次方程的有() A.1个B.2个C.3个D.4个2.已知x−y=0,下列等式不成立的是()A. x=yB. 3x=3yC. x=y+1D. x2=y23.关于x的方程8+2x=6的解为()A.x=﹣3 B.x=﹣2 C.x=﹣1 D.x=14.下列方程中,解是x=−32的方程是()A.3x=−2B.−2x=3C.−13x=−32D.−32x=15.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿,现有12m3木材,要使生产出来的桌面和桌腿恰好都配成方桌,应安排()m3木材用来生产桌面.A.2 B.6 C.8 D.106.若x=0是方程的解,则k值为()A.0 B.2 C.3 D.47.甲组人数是乙组人数的1.5倍,从甲组抽调8人到乙组,这时甲组的人数比乙组的人数的一半多2人.设乙组原有x人,则可列方程为( )A.1.5x=12x+2 B.1.5x=12(x+8)+2C.1.5x-8=12x+2 D.1.5x-8=12(x+8)+28.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A.8岁B.9岁C.10岁D.11岁9.甲、乙两船航行于A,B两地之间,由A地到B地航速为35千米/时,由B地到A地航速为25千米/时.现甲船由A地开往B地,乙船由B地开往A地,甲船先航行2小时,两船在距B地120千米处相遇,求A,B两地之间的距离.若设A,B两地之间的距离为x千米,根据题意可列方程为()A .12012023525x -=+B .12012023525x -+=C .12012022535x -=+D .12012022535x -+= 10.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( )A .B .C .D .二、填空题(每题4分)11.当x =___ ____时,代数式3x -2与12互为倒数. 12.如果(m +2)x |m|−1+8=0是一元一次方程,则m = __ ____ .13.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)14.某商品降价20%后售价为20元,则该商品的原价为 .15.已知关于的方程323a x bx --=的解是x =2,其中0a ≠,0b ≠,则代数式a b=__ _____. 16.已知关于x 的一元一次方程4kx x =-的解为正整数,则满足条件的k 的正整数值有________________.17.如果等式ax −3x =2+b 不论x 取什么值时都成立,则a = ______ ,b = ______ .三、解答题(每题6分)18.解方程:4−x 2−2x+13=119. 三个连续偶数的和比其中最大的一个数大10,这三个连续偶数是多少?x20.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?四、解答题(每题8分)21. 某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,求剩余部分还需多少天完成?22.如图,长方形纸片的长是15cm,若在长、宽上各剪去两个宽为3cm的长条(A与B),(1)若剩下的C的周长是38,求原长方形纸片的宽.(2)剩下的C面积是原面积的3,求原长方形纸片的面积.523.小明用的练习本可以到甲、乙两家商店购买,已知两商店该练习本的标价都是每本1元.甲商店的优惠方案是购买10本以内(包括10本)没有优惠,购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠方案是从购买第一本起按标价的80%出售.(1)若小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款______元,当小明到乙商店购买时,须付款______元;(2)买多少本练习本时,两家商店付款相同?(3)若小明要购买50本练习本,应到哪家商店购买较便宜?。
一元一次方程测试题
一元一次方程测试题一元一次方程测试题姓名。
学号。
成绩:一、选择题(每题3分,共30分)1.下列方程是一元一次方程的是:A、x+2y=9.B、x2-3x=1.C、1/x-1=3x/2.D、x-1=3x/22.方程2x+a-4=0的解是x=-2,则a等于:A、-8.B、0.C、2.D、83.下列方程变形正确的是:A、方程3x-2=2x+1移项得3x-2x=-1+2B、方程3-x=2-(5x-1),去括号,得3-x=2-5x+1C、方程t=2x-3,未知数系数化为1,得x=1D、方程(-1)/(2x-5)=1化成3x=6.4.解方程(-1)/(2x-5)=2/3时,去分母正确的是:A、3x-3=2x-2.B、3x-6=2x-2.C、3x-6=2x-1.D、3x-3=2x-15.方程x-2=2-x的解是:A、x=1.B、x=-1.C、x=2.D、x=06.下列两个方程的解相同的是:A、方程5x+3=6与方程2x=4B、方程3x=x+1与方程2x=4x-1C、方程x+1/2=2与方程2x-1/5=3D、方程6x-3(5x-2)=5与6x-15x=37.x的2倍比它的5倍少3,列方程得:A、2x=5x+3.B、2x=5x-3.C、3x=5x-3.D、3x=5x+38.某种品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为:A、80元。
B、85元。
C、90元。
D、95元9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱:A、元。
B、元。
C、元。
D、元10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水:A、3瓶。
B、4瓶。
C、5瓶。
D、6瓶二、填空题(每空3分,共24分)11.如果-3x+2a-1+6=0是一元一次方程,那么a=5/2,方程的解为x=-1.12.若x=-4是方程ax2-6x-8=0的一个解,则a=-1.13.一件进货价为60元的衬衫,提高50%后的标价为90元,八折优惠价为72元。
一元一次方程章测试
一元一次方程检测题一.填空题(30分)1.已知98489=--+m x 是关于x 的一元一次方程,则m m 52+= .2.比10531的数是小的x ,列出的方程为 ,这个方程的解为=x .3.如果:106=-x ,则x = .4.当=x 时,2x x 4)1(--与+1的和等于0.5. 如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是______________6.一条环城公路长18千米,甲沿公路骑自行车,每分钟行550米,乙沿公路跑步,每分钟跑250米,两人同时从同一起点向相反的方向出发,经 小时两人第一次相遇.7.某商品的进价为250元,按标价的9折销售时,利润率为15.2%,商品的标价是 元.8.若2=y 是方程 -102=+b y 的解,则=b .9.若x=1时,代数式ax 3+bx +1的值为5,则x=- 1时,代数式ax 3+bx +1的值等于_______10.若a 、b 互为相反数,c.d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd •x-p 2=0的解为________.二.选择题(30分)1.下列方程中是一元一次方程的是( ) A.055=+x B.9352=-x C.652=-y y D.798=-y x 2.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( )秒.A.60B.50C.40D.303. 某厂原计划每天生产a 个零件,实际每天多生产b 个零件,那么生产m 个零件可以提前的天数为( ) A.b m a m - B.b a m + C.a m b a m -+ D.ba m a m +-4.方程 m y y 253+=-的解为3=y ,则m 的值为( ) A.21 B.-21 C.3 D.-3 5.三角形三边之比是7:5:4,最短边的长为8㎝,则这个三角形三边的长分别为( )㎝A.4.5.7B.8.10.14C.10.12.17D.以上都不对6.方程532=+x ,则106+x 等于( )A.15B.16C.17D.347.下列各种变形中,正确的是( )A .从3+2x =2可得到2x =5B .从6x =2x -1可得到6x -2x =-1C .从3212-=-x x 可得到3x -1=2(x -2) D .从21%+50%(60-x )=60×42%可得到21+50(60-x )=6000×428. 某商人一次卖出两件商品.一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人( )A.赔了90元B.赚了90元C.赔了100元D.不赔不赚9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( )A. 17200元,B. 16000元,C. 10720元,D. 10600元;10.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
人教版数学七年级上册 第3章 一元一次方程能力检测
3.1从算式到方程1.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣32.下列方程的变形正确的是()A.由3+x=5,得x=5+3B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣33.已知等式3a=2b+5,则下列等式不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc D.a=+4.下列方程中为一元一次方程的是()A.2x+3=0B.2x+y=3C.x2+x=3D.x﹣=35.下列变形正确的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得y=﹣C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+46.如果是关于x的一元一次方程,那么n的值为()A.0B.1C.D.7.方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.48.若3a=2b,下列各式进行的变形中,不正确的是()A.3a+1=2b+1B.3a﹣1=2b﹣1C.9a=4b D.﹣=﹣9.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣110.下列等式变形正确的是()A.﹣2x=5,则x=﹣B.,则2x+5(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=6+8D.若7(x+1)﹣9x=1,则7x+7﹣9x=1二.填空题11.由3x=2x+1变为3x﹣2x=1,是方程两边同时加上.12.若关于x的方程(k﹣2)x|k﹣1|+5k+4=0是一元一次方程,则k+x=.13.若关于x的一元一次方程|a|x+2=0的解是x=﹣2,则a=.14.如果关于x的方程(a+2)x|a|﹣1=﹣2是一元一次方程,那么其解为.15.已知(m﹣4)x|m|﹣3﹣16=11是关于x的一元一次方程,则m=.三.解答题16.若关于x的方程=x﹣与方程3+4x=2(3﹣x)的解互为倒数,求m的值.17.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.18.已知m,n是有理数,单项式﹣x n y的次数为3,而且方程(m+1)x2+mx﹣tx+n+2=0是关于x的一元一次方程.(1)若该方程的解是x=3,求t的值.(2)若题目中关于x的一元一次方程的解是整数,请求出整数t的值.19.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.参考答案与试题解析一.选择题1.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.2.【解答】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.3.【解答】解:A.3a=2b+5,等式两边同时减去5得:3a﹣5=2b,即A项正确,B.3a=2b+5,等式两边同时加上1得:3a+1=2b+6,即B项正确,C.3a=2b+5,等式两边同时乘以c得:3ac=2bc+5c,即C项错误,D.3a=2b+5,等式两边同时除以3得:a=+,即D项正确,故选:C.4.【解答】解:根据题意得:A.符合一元一次方程的定义,是一元一次方程,即A项正确,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.属于一元二次方程,不符合一元一次方程的定义,即C项错误,D.属于分式方程,不符合一元一次方程的定义,即D项错误,故选:A.5.【解答】解:A.﹣3+2x=1,等式两边同时加上3得:2x=1+3,即A项错误,B.3y=﹣4,等式两边同时除以3得:y=﹣,即B项错误,C.3=x+2,等式两边同时减去2得:x=3﹣2,即C项错误,D.x﹣4=9,等式两边同时加上4得:x=9+4,即D项正确,故选:D.6.【解答】解:∵是关于x的一元一次方程,∴2﹣n=1,解得n=1,故选:B.7.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.8.【解答】解:A、∵3a=2b,∴3a+1=2b+1,正确,不合题意;B、∵3a=2b,∴3a﹣1=2b﹣1,正确,不合题意;C、∵3a=2b,∴9a=6b,故此选项错误,符合题意;D、∵3a=2b,∴﹣=﹣,正确,不合题意;故选:C.9.【解答】解:把x=2代入ax﹣b=1,得2a﹣b=1.所以1﹣4a+2b=1﹣2(2a﹣b)=1﹣2×1=﹣1.故选:D.10.【解答】解:A.﹣2x=5,等式两边同时除以﹣2得:x=﹣,即A项错误,B.+=1,等式两边同时乘以10得:2x+5(x﹣1)=10,即B项错误,C.若5x﹣6=2x+8,移项得:5x﹣2x=8+6,即C项错误,D.7(x+1)﹣9x=1,去括号得:7x+7﹣9x=1,即D项正确,故选:D.二.填空题(共5小题)11.【解答】解:由3x=2x+1变为3x﹣2x=1,在此变形中,方程两边同时加上﹣2x.故答案为:﹣2x.12.【解答】解:由题意得:|k﹣1|=1,且k﹣2≠0,解得:k=0,﹣2x+4=0,解得:x=2,则k+x=0+2=2,故答案为:2.13.【解答】解:根据题意,得﹣2|a|+2=0,且a≠0,解得:a=±1.故答案为:±1.14.【解答】解:∵关于x的方程(a+2)x|a|﹣1=﹣2是一元一次方程,∴,解得a=2.∴方程为4x=﹣2,解得x=,故答案为:.15.【解答】解:由题意得:|m|﹣3=1,且m﹣4≠0,解得:m=﹣4,故答案为:﹣4.三.解答题(共4小题)16.【解答】解:解方程3+4x=2(3﹣x)得:x=,∵关于x的方程=x﹣与方程3+4x=2(3﹣x)的解互为倒数,∴把x=2代入方程=x﹣得:=2﹣,解得:m=.17.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.18.【解答】解:(1)由题意得:n=2,m=﹣1;∴﹣x﹣xt+4=0,当x=3时,则﹣3﹣3t+2+2=0,∴t=;(2)(m+1)x2+mx﹣tx+n+2=0,∵n=2,m=﹣1,∴﹣x﹣xt+4=0,x=,t==﹣1,∴t≠﹣1,x≠0∵t是整数,x是整数,∴当x=1时,t=3,当x=4时,t=0,当x=﹣1时,t=﹣5,当x=﹣4时,t=﹣2,当x=2时,t=1,当x=﹣2时,t=﹣3.19.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.3.2解一元一次方程合并同类项及移项一.选择题1.一元一次方程+++=4的解为()A.30B.24C.21D.122.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.103.下列解方程过程中,变形正确的是()A.由5x﹣1=3得5x=3﹣1B.由﹣75x=76得x=﹣C.由x﹣3(x+4)=5得x﹣3x﹣4=5D.由2x﹣(x﹣1)=1得2x﹣x=04.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣5 5.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=96.下列各题正确的是()A.由5x=﹣2x﹣3,移项得5x﹣2x=3B.由=1+,去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x﹣9=1D.把﹣=1中的分母化为整数,得﹣=1 7.如图,小红做了四道方程变形题,出现错误有()A.①②③B.①③④C.②③④D.①②④8.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.把方程﹣x=1.4整理后可得方程()A.﹣x=1.4B.C.D.10.在梯形的面积公式S=中,已知S=48,h=12,b=6,则a的值是()A.8B.6C.4D.2二.填空题11.已知y1=x+2,y2=4x﹣7,当x=时,y1﹣y2=0.12.规定一种运算“*”,a*b=a﹣2b,则方程x*3=2*3的解为13.定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.则4⊗x =13,则x=.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.15.对于任意有理数a,b,c,d,规定一种运算:=ad﹣bc,例如=5×(﹣3)﹣1×2=﹣17.如果=2,那么m=.三.解答题16.解方程:(1)x﹣3(x+2)=6;(2)﹣y=3﹣.17.解方程:(1)x﹣2(2+x)=﹣4;(2)﹣x=3﹣.18.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x19.定义:若A﹣B=m,则称A与B是关于m的关联数.例如:若A﹣B=2,则称A与B是关于2的关联数;(1)若3与a是关于2的关联数,则a=.(2)若2x﹣1与3x﹣5是关于2的关联数,求x的值.(3)若M与N是关于m的关联数,M=3mn+n+3,N的值与m无关,求N的值.参考答案与试题解析一.选择题1.【解答】解:+++=4,﹣+﹣+﹣+﹣=4,﹣=4,4x=4×21,x=21,故选:C.2.【解答】解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.3.【解答】解:选项A,移项没有变号,故变形不正确;选项B等号的两边除以﹣75,结果应该是x=﹣,故变形错误;选项C去括号时,4没有乘﹣3,故变形错误;选项D的变形正确.故选:D.4.【解答】解:由题意,得5x+2+(﹣2x+7)=0,2﹣x=5,故选:C.5.【解答】解:A、∵x+1=6x﹣7,∴x﹣6x=﹣7﹣1,选项A错误;B、∵4﹣2(x﹣1)=3,∴4﹣2x+2=3,选项B错误;C、∵,∴2x﹣3=0,选项C正确;D、∵,∴2x=﹣9,选项D错误.故选:C.6.【解答】解:A、由5x=﹣2x﹣3,移项得5x+2x=﹣3,不符合题意;B、由=1+,去分母得2(2x﹣1)=6+3(x﹣3),不符合题意;C、由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x+9=1,不符合题意;D、把﹣=1中的分母化为整数,得﹣=1,符合题意,故选:D.7.【解答】解:方程7x=4,解得:x=;方程3+x=5,方程y=,解得:y=2,故选:C.8.【解答】解:根据题意得:5x﹣10+3+2x=0,移项合并得:7x=7,解得:x=1,故选:C.9.【解答】解:∵﹣x=1.4,∴﹣x=1.4故选:A.10.【解答】解:把S=48,h=12,b=6代入公式得:48=×(a+6)×12,解得:a=2,故选:D.二.填空题(共5小题)11.【解答】解:由题意可得,(x+2)﹣(4x﹣7)=0,去括号,得x+2﹣4x+7=0,移项,得x﹣4x=0﹣2﹣7,合并同类项,得﹣3x=﹣9,系数化1,得x=3.故答案为:3.12.【解答】解:依题意得:x﹣2×3=2﹣2×3,解得:x=2,故答案为:x=213.【解答】解:根据题意得:4(4﹣x)+1=13,去括号得:16﹣4x+1=13,移项合并得:4x=4,解得:x=1.故答案为:1.14.【解答】解:当>1,即x>时,可得x=1;当<1,即x<时,可得=x,即x=﹣,综上,x=﹣或1,故答案为:﹣或115.【解答】解:由题意可得:3×4﹣m(﹣2)=212+2m=22m=2﹣12m=﹣5.故答案为:﹣5三.解答题(共4小题)16.【解答】解:(1)x﹣3(x+2)=6,去括号,得x﹣3x﹣6=6,移项,x﹣3x=6+6,合并同类项,得﹣2x=12,系数化1,得x=﹣6;(2)﹣y=3﹣,去分母,得4(1﹣y)﹣12y=36﹣3(y+2),去括号,得4﹣4y﹣12y=36﹣3y﹣6,移项,得﹣4y﹣12y+3y=36﹣6﹣4,合并同类项,﹣13y=26,系数化1,得y=﹣2.17.【解答】解:(1)去括号得:x﹣4﹣2x=﹣4,移项合并得:﹣x=0,解得:x=0;(2)去分母得:4(1﹣x)﹣12x=36﹣3(x+2),去括号得:4﹣4x﹣12x=36﹣3x﹣6,移项合并得:﹣13x=26,解得:x=﹣2.18.【解答】解:(1)原式=(﹣+)×(﹣36)=﹣8+9﹣2=﹣1;(2)去括号得:5x﹣5﹣3=2﹣2x,移项合并得:7x=10,解得:x=.19.【解答】解:(1)根据题意得:3﹣a=2,解得:a=1;故答案为:1;(2)根据题意得:2x﹣1﹣3x+5=2,移项合并得:﹣x=﹣2,解得:x=2;(3)根据题意得:M﹣N=m,把M=3mn+n+3代入得:3mn+n+3﹣N=m,即(3n﹣1)m+n+3=N,由N的值与m无关,得到3n﹣1=0,解得:n=,则N=3.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是( )A.2x -4-12x +3=9B.2x -4-12x -3=9C.2x -4-12x +1=9D.2x -2-12x +1=97.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( )A.-1B.1C.12D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x-2)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,求k的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12. (2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.第2课时利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x+30(20-x)=650.解得x=5.则20-x=15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x=2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意,得(x+2)×2=118-x,解得x=38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h,则顺风时飞行的速度为(x+24) km/h,逆风飞行的速度为(x -24) km/h.根据题意,得 176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km. 6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30. 则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2) 去括号,得9x +15=4x -2.(去括号法则) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6). 2x +2=12+x -6. 2x +2=x +6. x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10, 移项合并,得-3x =27, 解得x =-9. 6.B7.解:设应先安排x 人工作, 根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10. 解得x =2.答:应先安排2人工作. 8.C 9.B 10.C11. 1.12.(1)x -13-x +26=4-x 2;解:去分母,得2(x -1)-(x +2)=3(4-x). 去括号,得2x -2-x -2=12-3x. 移项,得2x -x +3x =2+2+12. 合并同类项,得4x =16. 系数化为1,得x =4. (2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6. 去括号,得4x +2-5x +1=6. 移项、合并同类项,得-x =3. 系数化为1,得x =-3. (3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1, 移项合并,得4x =8, 解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21. 去括号,得30x -119+140x =21.移项、合并同类项,得170x =140. 系数化为1,得x =1417.13.解:设A ,B 两地间的距离为x 千米,依题意,得 x 7.5+2.5+x +107.5-2.5=4,解得x =203.答:A ,B 两地间的距离为203千米.14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a.因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)],整理,得4a =16. 解得a =4,故a 的值为4.3.4实际问题与一元一次方程一.选择题1.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( )A.x﹣3=98+x B.x﹣3=98﹣xC.x=(98﹣x)+3D.x﹣3=(98﹣x)+32.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元3.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是()A.20岁B.16岁C.15岁D.12岁4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x﹣2)=2x+9C.D.5.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了()折.A.5B.5.5C.7D.7.56.篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2B.3C.4D.57.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的()A.81B.90C.108D.2168.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知甲种文具比乙种文具单价少1元,如果设乙种文具单价为x元/件,那么下面所列方程正确的是()A.3(x﹣1)+2x=23B.3x+2(x﹣1)=23C.3(x+1)+2x=23D.3x+2(x+1)=239.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10D.+1010.某中学的学生自己动手整理图书馆的图书,如果让七年级(1)班学生单独整理需要5小时;如果让七年级(2)班学生单独整理需要3小时.如果(2)班学生先单独整理1小时,(1)班学生单独整理2小时,剩下的图书由两个班学生合作整理,则全部整理完还需()A.小时B.1小时C.小时D.2小时二.填空题11.某商品标价为125元,现按标价的8折销售,仍可获利25%,则此商品的进价是元.12.为配合枣庄市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小丽同学不买卡直接购书,则她需付款元.13.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款元.14.已知两个完全相同的大长方形,长为a,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是(用含a的代数式表示).15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.三.解答题16.为方便市民出行,减轻城市中心交通压力,青岛市掀起一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁1、2、3、11号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元,且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3、11号线外,青岛市政府规划未来五年,还要再建182千米的地铁线网,据预算,这182千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?17.如图,已知数轴上的点C表示的数为6,点A表示的数为﹣4,点B是AC的中点,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)点B表示的数是,x=秒时,点P到达点B.(2)运动过程中点P表示的数是.若另一动点Q,从B出发,以每秒1个单位长度的速度沿数轴匀速运动,且P,Q同时出发,当x为多少秒时,点P与点Q之间的距离为2个单位长度?18.已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.请回答问题:(1)A、B两点间的距离是,若点M到点A、点B的距离相等,那么x的值是;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2017次时,求点P所对应的有理数.(3)当x为何值时,点M到点A、点B的距离之和是8;(4)如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M运动到点A、点B之间,且点M到点A、点B的距离相等?19.2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得……,例如:某人月收入6000元,他应缴纳个人所得税为(6000﹣5000)×3%=30(元).按此通知完成下面问题:(1)某人月收入为5800元,他应缴纳个人所得税多少元?(2)当月收入超过5000而又不超过8000元时,假设月收入为x(元),那么应缴纳个人所得税是多少元?(用含x的代数式表示);(3)如果某人2020年1月缴纳个人所得税78元,那么此人本月收入是多少元?参考答案与试题解析一.选择题1.【解答】解:设甲班原有人数是x人,可列出方程为:x﹣3=(98﹣x)+3.故选:D.2.【解答】解:由题意可得,每件还能盈利为:100×(1+20%)×0.9﹣100=8(元),故选:A.3.【解答】解:设今年甲的年龄为x岁,则今年乙的年龄为(x﹣12)岁,根据题意得:x+4=2(x﹣12+4),解得:x=20.故选:A.4.【解答】解:设有x个人,则可列方程:.故选:C.5.【解答】解:设一件商品原价为a元,买2件商品共打了x折,根据题意可得:a+0.5a=2a,解得:x=7.5,即相当于这2件商品共打了7.5折.故选:D.6.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.7.【解答】解:设中间的数为x,则左右两边数为x﹣1,x+1,上行邻数为(x﹣7),下行邻数为(x+7),左右上角邻数为(x﹣8),(x﹣6),左右下角邻数为(x+6),(x+8),根据题意得x+x﹣1+x+1+x﹣7+x+7+x﹣8+x﹣6+x+6+x+8=9x,如果9x=81,那么x=9,不符合题意;如果9x=90,那么x=10,不符合题意;如果9x=108,那么x=12,不符合题意;如果9x=216,那么x=24,此时最大数x+8=32,不是日历表上的数,符合题意;故选:D.8.【解答】解:设乙种文具单价为x元/件,则甲种文具的单价为(x﹣1)元/件,根据题意可得:3(x﹣1)+2x=23,故选:A.9.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.10.【解答】解:设全部整理完还需x小时,根据题意得:+=1,解得:x=.答:全部整理完还需小时.故选:A.二.填空题(共5小题)11.【解答】解:设此商品的进价为x元,根据题意得:125×0.8﹣x=25%x,解得:x=80.故答案为:80.12.【解答】解:根据题意得:x﹣(0.8x+20)=10,解得:x=150,答:此次小丽同学不买卡直接购书,则她需付款150元.13.【解答】解:第一次购物显然没有超过100元,即在第二次消费70元的情况下,小敏的实质购物价值只能是70元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:小敏消费超过100元但不足350元,这时候小敏是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:小敏消费不低于350元,这时候小敏是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,小敏的实际购物价值可能是320元或360元.综上所述,小敏两次购物的实质价值为70+320=390或70+360=430,均超过了350元.因此均可以按照8折付款:390×0.8=312(元),或430×0.8=344(元).故应付款312或344元.故答案为:312或344.14.【解答】解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a﹣x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b ﹣2y)=2a+2b﹣4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)﹣(2a+2b﹣4y)=4y =a,故答案是:a.15.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.三.解答题(共4小题)16.【解答】解:(1)设2号线每千米的平均造价为x亿元,则3号线每千米的平均造价为(x+0.2)亿元,依题意,得:32x+66(x+0.2)=581.6,解得:x=5.8,∴x+0.2=6.答:2号线每千米的平均造价为5.8亿元,3号线每千米的平均造价为6亿元.(2)6×1.2×182=1310.4(亿元).答:还需投资1310.4亿元.17.【解答】解:(1)∵点C表示的数为6,点A表示的数为﹣4,∴AC=10,∵点B是AC的中点,∴AB=BC=5,∴点B表示的数是1,x=秒时,点P到达点B,故答案为:1,;(2)∵动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴AP=2x,∴运动过程中点P表示的数是2x﹣4,故答案为:2x﹣4;(3)∵点P与点Q之间的距离为2个单位长度,∴|2x﹣4﹣(x﹣1)|=2,解得:x=1或x=5,∴当x为1或5秒时,点P与点Q之间的距离为2个单位长度.18.【解答】解:(1)∵A,O,B对应的数分别为﹣5,0,1,点M到点A,点B的距离相等,∴AB=1﹣(﹣5)=6,x的值是﹣2,故答案为:6,﹣2;(2)依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2016﹣2017,=﹣5+1008﹣2017,=﹣1014.答:点P所对应的有理数的值为﹣1014;(3)根据题意得:|x﹣(﹣5)|+|x﹣1|=8,解得:x=﹣6或2,∴当x为=﹣6或2时,点M到点A、点B的距离之和是8;(4)设运动t秒时,点M对应的数是﹣3t,点A对应的数是﹣5﹣t,点B对应的数是1﹣4t.①当点A和点B在点M两侧时,有两种情况.情况1:如果点A在点B左侧,MA=﹣3t﹣(﹣5﹣t)=5﹣2t.MB=(1﹣4t)﹣(﹣3t)=1﹣t.因为MA=MB,所以5﹣2t=1﹣t,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,不符合题意,舍去.情况2:如果点A在点B右侧,MA=3t﹣t﹣5=2t﹣5,MB=﹣3t﹣(1﹣4t)=t﹣1.因为MA=MB,所以2t﹣5=t﹣1,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,符合题意.综上所述,三点同时出发,4秒时点M到点A,点B的距离相等.19.【解答】解:(1)由题意可得,某人月收入为5800元,他应缴纳个人所得税为:(5800﹣5000)×3%=800×3%=24(元),即某人月收入为5800元,他应缴纳个人所得税24元;(2)由题意可得,当月收入超过5000而又不超过8000元时,应缴纳个人所得税为(x﹣5000)×3%=(3%x ﹣150)(元),即当月收入超过5000而又不超过8000元时,应缴纳个人所得税(3%x﹣150)元;(3)设此人本月收入x元,3%x﹣150=78,解得x=7600,答:此人本月收入7600元.。
2022学年人教版第I学期七年级数学上册第三章《一元一次方程》过关检测题附答案
2022学年第I 学期七年级数学上册第三章《一元一次方程》过关检测题【满分:150分】一、选择题(每题4分,共48分).1. 已知下列方程:①x-2=3x;②0.3x=1;③x2=5;④x 2-4x=3;⑤5x=0;⑥x+2y=0,其中是一元一次方程的有 ( ) A.2个B.3个C.4个D.5个2. 下列等式变形错误的是 ( ) A.由a=b 得a+5=b+5 B.由a=b 得a-6=b-6 C.由x+2=y-2得x=yD.由7+x=y+7得x=y3. 如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg 的砝码,天平两端正好平衡,那么一块砖的质量是 ( )A.1kgB.2kgC.3kgD.4kg4. 某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x 人,其中列方程不正确的是( ) A.200x+50(22-x)=1400 B.1400-200x=50(22-x) C.1 400−200x50=22-x D.50x+200(22-x)=14005. 解方程3-(x+6)=-5(x-1)时,去括号正确的是( ) A.3-x+6=-5x+5 B.3-x-6=-5x+5 C.3-x+6=-5x-5 D.3-x-6=-5x+16. 方程x−13-x+26=4−x 2的解是 ( )A.x=1B.x=2C.x=4D.x=67. 某同学解方程5x-1=□x+3时,把□处数字看错得x=-43,他把□处看成了( ) A.3B.-9C.8D.-88. 服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元9. “地球熄灯一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-2610. 三角形三边长比为2∶2∶3,周长为70,则其中一边长可以是( )A.35B.20C.15D.1011. 一只高为7m的长方体水箱,其底面是边长为5m的正方形,箱内盛水,水深4m,现把一个棱长为3m的正方体沉入箱底,水的深度将是( )A.5.4mB.7mC.5.08mD.6.67m12. 陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.15二.填空题(每题4分,共40分).13. 请写出一个解为x=-2的一元一次方程.14. 若x=2是关于x的方程2x+3m-1=0的解,则m的值为.15. 已知当x=2,y=1时,代数式kx-y的值是3,那么k的值是.16. 在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如:1⊕5=-2×1+3×5=13,则方程(x-1)⊕4=0的解为.17. 如果2(x+3)的值与3(1-x)的值互为相反数,那么x= .18. 已知y1=-2(x+1),y2=-3(x-2),若y1-y2=3,则x= .19. 若单项式-4x m-1y n+1与23x2m-3y 3n-5是同类项,则m= ,n= .20. 在日历中圈出一横行中相邻的三个数,使它们的和为42,则所圈出的最小数字为 .21. 某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为 .22. 小明和5位朋友均匀地围坐在圆桌旁聚餐.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两位朋友,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程为 .三.解答题(共62分)23.(10分)解方程:(1) 2x+3=x-1 (2). 3y+14=2-2y−13.24.(8分) 关于x 的方程4x+2m=3x+1和3x+2m=4x+1的解相同,求m 的值和方程的解.25.(8分)某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.26.(8分)如图,用10块相同的长方形墙砖拼成一个矩形,求长方形墙砖的长为多少?27.(8分)如图,折线AC-CB是一条公路的示意图,AC=8km.甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.28.(8分)某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m,求甲、乙两个工程队分别整治了多长的河道.29.(9分)如图所示,甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400m,乙每秒钟跑6m,甲的倍.速度是乙的43(1)如果甲、乙在跑道上相距8m处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙前面8m处同时同向出发,那么经过多少秒两人首次相遇?13. x+1=-1(答案不唯一) 14. -1. 15. 2 16. x=7 17. 9 18.11 19. 2 3 20. 13 21. (16+14)x=1(或16x +14x =1)22.2π(60+10)6=2π(60+10+x)823.解:(1)移项,得2x-x=-1-3.合并同类项,得x=-4.(2)解:去分母,得3(3y+1)=24-4(2y-1), 去括号,得9y+3=24-8y+4,移项、合并同类项,得17y=25,方程两边同除以17,得y=2517.24.解:解两个方程得x=1-2m 和x=2m-1.因为它们的解相同,所以1-2m=2m-1,解得m=12.将m=12代入x=1-2m 或者x=2m-1,得x=0.所以m=12,x=0.25.解:设王叔叔购买甲种人参x 棵,则乙种人参(15-x)棵,根据题意,得:100x+70(15-x)=1200, 解得:x=5,则15-x=10(棵).答:王叔叔购买甲种人参5棵,乙种人参10棵.26.解:由图可知大长方形的长为2个小长方形的长之和,也等于一个小长方形的长加上3个小长方形的宽,所以可得方程2x=x+3×75−x 2.解方程2x=x+3×75−x 2,得x=45,所以这种长方形墙砖的长是45cm.27.解:设这条公路的长为xkm,由题意,得 x 40=x−810-660.解这个方程,得x=12. 答:这条公路的长为12km.28.解:设甲工程队整治了xm 的河道,则乙工程队整治了(360-x)m 的河道,根据题意得:x24+360−x 16=20,解得:x=120.所以360-x=240.答:甲工程队整治了120m 的河道,乙工程队整治了240m 的河道.29.解:(1)设经过xs 甲、乙两人首次相遇,由题意得:6×43x+6x=400-8,解方程得x=28. 答:经过28s 甲、乙两人首次相遇.(2)设经过ys 甲、乙两人首次相遇,由题意得:6×43y=6y+400-8,解方程得:y=196. 答:经过196s 甲、乙两人首次相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程小测
1.根据下列条件,能列出方程的是( )(3分)
A 一个数的2倍比1小3
B a 与1的差的1/4
C 甲数的3倍与乙数的1/2的和
D a 与b 的和的3/5
2.下列等式变形中,不正确的是( ) (3分)
A 若 x =y ,则x+5=y+5
B 若a y a x =(a ≠0),则x =y
C 若-3x =-3y ,则x =y
D 若mx =my ,则x =y 3.关于x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为 ( ) A.0 B.1 C.0.5 D.2
4.某商品提价25%后要恢复原价,则应降价( ) A 15% B 20% C 25% D 40% (3分)
5.小明上大学向某商人贷款1万元,月利率为5‰,1年后小明需还给商人( )元(3分)
A 17200
B 16000
C 10600
D 10720
6.甲携带30kg 行李乘飞机,按规定旅客最多免费携带20kg 行李,超重部分每kg 按飞机票价的1.5%购买行李费;该旅客购买了120元行李费,则它的飞机票价应是( )元(3分) A .1000 B .600 C .800 D .400
7.已知-3x 4y 2+b 与6y 5x a-2是同类项,则a b
= (3分) 8.方程2x+1=3的解与方程032=--
x a 的解的绝对值相等,则a= (3分) 9.如果53
4+-x 的相反数是它本身,则x 的值为 (3分) 10.已知a ,b 满足3︱a-1︱= -4(b+2)2,则方程ax+b=0的解x= (3分)
11.解方程(30分)
① 0.7x+1.37=1.5x-0.23 ② 70%x+(30-x)×55%=30×65% ③
35.0102.02.01.0=+--x x
④ 32222-=---x x x ⑤ 323)12(2334=-⎢⎣⎡⎥⎦
⎤--x x
12.甲爸爸现在的年龄比甲大25岁,8年后甲爸爸的年龄是甲的3倍多5岁,求甲现在的年龄(10分)
13.老师让七年级学生练习打字,限时40分钟打完-篇文章.已知甲独立打完这篇文章需要50分钟,而乙只需要30分钟.为了完成任务,甲打了30分钟后,请求乙帮助合作,问甲能在要求的时间打完吗?(10分)
14.某种风扇因季节原因准备打折出售,如果按标价的七五折出售将赔10元,如果按标价的九折出售,将赚20元,问这种风扇的进价是多少元?(10分)
15.甲骑车从家到学校,他如果每小时行10千米,则迟到15分钟;他如果每小时行12千米,则可提前5分钟到达;若出发时间不变,班主任要求甲提前半小时到校,那么他每小时要骑多少千米?(10分)
16.一名医生经过多年研究后得出结论:吸烟者容易得癌症、心肌梗死、脑出血、心脏病等病,如果600名吸烟者与700名不吸烟者进行比较,可以发现后者的健康人数比前者的健康人数多320人,两者患病的共500人,试问600名吸烟者中健康人数有多少人?(10分)
17.如图,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影部分的面积为224cm2,求重叠部分面积(10分)。