方程不等式专题综合习题
中考数学《方程与不等式》专题知识训练50题(含参考答案)
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.若3x >﹣3y ,则下列不等式中一定成立的是( ) A .x >yB .x <yC .x ﹣y >0D .x +y >02.如果1x -大于0,那么x 的取值范围是( ) A .1x >B .1x <C .0x <D .0x >3.一元一次不等式x +1<2的解集在数轴上表示为( ) A . B . C .D .4.不等式﹣3x≤9的解集在数轴上表示正确的是( ) A .B .C .D .5.用配方法解方程22990x x --=,配方后得( ) A .2(1)99x -=B .2(1)100x +=C .2(1)98x -=D .2(1)100x -=6.若关于x 的分式方程43233m xx x +=+--有增根,则m 的值为( ) A .2B .3C .4D .57.一项工程,A 独做10天完成,B 独做15天完成,若A 先做5天,再A 、B 合做,完成全部工程的23,共需( ) A .8天B .7天C .6天D .5天8.若关于x 的方程534x kx -=+有整数解,那么满足条件的所有整数k 的和为( ) A .20B .6C .4D .29.不等式组372378x x -≥⎧⎨-<⎩的所有整数解共有( )A .1个B .2个C .3个D .4个10.下列运用等式性质进行的变形中,正确的是( ) A .如果a b =,那么23a b +=+ B .如果a b =,那么23a b -=- C .如果2a a =,那么1a =D .如果a bc c=,那么a b = 11.下列是一元一次方程的是( ) A .231x y +=B .20x -=C .3x +D .11x= 12.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( ) A .30252=+x x B .30252=+x x C .30252=-x x D .30252=-x x13.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同. 设2,3月份利润的月增长率为x ,那么x 满足的方程为( ) A .B .C .D .14.如图所示两个天平都平衡,则3个球体的质量等于( )个正方体的质量,括号内应填A .2B .3C .4D .515.若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤516.下列变形中,正确的是( ) A .若a b =,则11a b +=-B .若32a b =,则a b =C .若2a b -=,则2a b =-D .若44b a -=-,则a b =17.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( )A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=3218.三元一次方程组10318x y z x y x y z ++=⎧⎪+=⎨⎪=+⎩的解是( )A .532x y z =⎧⎪=⎨⎪=⎩B .352x y z =⎧⎪=⎨⎪=⎩C .542x y z =⎧⎪=⎨⎪=⎩D .431x y z =⎧⎪=⎨⎪=⎩19.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A .3瓶B .4瓶C .5瓶D .6瓶20.甲、乙、丙三名打字员承担一项打字任务,已知如下信息:如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( )A .1316小时B .1312小时C .1416小时D .1412小时二、填空题21.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为____克. 22.如果方程23252x x -+=-的解与方程72x b -=的解相同,则b =________. 23.由4x ﹣3y +6=0,可以得到用y 表示x 的式子为x =__.24.已知不等式组212(1)43x x x+>⎧⎨-+>⎩,请写出一个该不等式组的整数解___________.25.已知关于x 的一元二次方程x 2+x+m =0有实数根,则m 的取值范围是_____.26.若关于x 的方程()21410k x x ---=是一元二次方程,则k 的取值范围是______.27.当a =_____时,分式32a a +-的值为-4. 28.三角形的三边长分别为7,1+2x ,13,则x 的取值范围是___ 29.25y x +=用含x 的式子表示y 为________________________.30.若关于x ,y 的二元一次方程组2630x my x y -=⎧⎨-=⎩的解是正整数,则整数m =_______.31.某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,则成本价为______元.32.已知A ∠与的B ∠两边分别平行,且A ∠比B ∠的3倍少20°,则A ∠的大小是__________.33.已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩, (1)代数式224x y +的值是_____. (2)代数式112x y+的值是______.34.已知关于x ,y 的方程组225,234x y m x y m +=-⎧⎨-=-⎩的解满足1x <,2y <,则m 的取值范围为______.35.已知关于x ,y 的不等式组100x x a ->⎧⎨-⎩有以下说法:①若它的解集是1<x ≤4,则a =4;①当a =1时,它无解;①若它的整数解只有2,3,4,则4≤a <5;①若它有解,则a ≥2.其中所有正确说法的序号是_____.36.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为__.37.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.38.如果关于x 的方程x2+2ax ﹣b2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a +b=_____.39.某车间 56 名工人,每人每天能生产螺栓 16 个或螺母 24 个,设有 x 名工人生产螺栓, 有 y 名工人生产螺母,每天生产的螺栓和螺母按 1:2 配套,所列方程组是________. 40.若分式方程2211x m x x x x x+-=++有增根,则m 的值是______.三、解答题 41.解下列方程: (1)3x +7=32﹣2x ; (2)121224x x +--=+. 42.解方程:242111x x x++=---. 43.解方程组:(1)32528x y x y +=⎧⎨-=⎩;(2)234347x y x y ⎧+=⎪⎨⎪-=-⎩.44.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元? 45.当k 为何值时,方程x 2﹣6x+k ﹣1=0, (1)两根相等; (2)有一根为0. 46.解方程组或不等式组:(1)20346x y x y +=⎧⎨+=⎩;(2)53231204x x x +≥⎧⎪⎨--<⎪⎩ 47.已知一个四位自然数N ,它的各个数位上的数字均不为0,且满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“和对称数”,将这个四位自然数N 的千位数字和百位数字互换,十位数字和个位数字互换,得到N ',规定()101N N F N '+=. 例如:4536N =,①4536+=+,①4536是“和对称数”,()45365463453699101F +==.2346N =,①2346+≠+,①2346不是“和对称数”.(1)请判断2451、3972是不是“和对称数”,并说明理由.若是,请求出对应的()F N 的值.(2)已知A ,B 均为“和对称数”,其中100010746A a b =++,1002026B m n =++(其38a ≤≤,05b ≤≤,29m ≤≤,512n ≤≤,且均为整数),令()()32k F A F B =+,当k能被77整除时,求出所有符合条件的A 的值. 48.解决以下问题:(1)221x y ±++,的算术平方根是5,求2318x y -+的立方根; (2)的值互为相反数,求a b c 、、的值. 49.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A 品牌足球共花费2880元,B 品牌足球共花费2400元,且购买A 品牌足球数量是B 品牌数量的1.5倍,每个足球的售价,A 品牌比B 品牌便宜12元. (1)求去年A ,B 两种足球的售价;(2)今年由于参加俱乐部人数增加,需要从该店再购买A ,B 两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A 品牌比去年提高了5%,B 品牌比去年降低了10%,如果今年购买A ,B 两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B 品牌足球?50.某生态柑橘园现有柑橘31吨,租用9辆A 和B 两种型号的货车将柑橘一次性运往外地销售.已知每辆车满载时,A 型货车的总费用500元,B 型货车的总费用480元,每辆B型货车的运费是每辆A型货车的运费的1.2倍.(1)每辆A型货车和B型货车的运费各多少元?(2)若每辆车满载时,租用1辆A型车和7辆B型车也能一次性将柑橘运往外地销售,则每辆A型货车和B型车货各运多少吨?参考答案:1.D【分析】利用不等式的性质由已知条件可得到x+y>0,从而得到正确选项.【详解】①3x>﹣3y,①3x+3y>0,①x+y>0.故选D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.Ax->,即可求得x的取值范围.【分析】1x-大于0即10【详解】根据题意得:x->10x>解得:1故选A.【点睛】本题主要考查了一元一次不等式的应用,把判断一个式子的值的取值范围的问题掌握不等式的问题,这是解本题的关键.3.B【分析】求出不等式的解集,表示出数轴上即可.【详解】解:不等式x+1<2,解得:x<1,如图所示:故选B.【点睛】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4.A【详解】试题分析:本题考查了在数轴上表示不等式的解集:利用数轴表示不等式的解集体现了数形结合的思想.也考查了解一元一次不等式.先解不等式得到x≥﹣3,在数轴上表示为﹣3的右侧部分且含﹣3,这样易得到正确选项. 考点:在数轴上表示不等式的解集;解一元一次不等式 5.D【分析】把常数项-99移项后,应该在左右两边同时加上一次项系数-2的一半的平方. 【详解】把方程x 2-2x -99=0的常数项移到等号的右边,得到x 2-2x =99 方程两边同时加上一次项系数一半的平方,得到x 2-2x +1=100 配方得(x -1)2=100. 故选D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 6.D【分析】根据分式方程有增根可求出3x =,方程去分母后将3x =代入求解即可. 【详解】解:①分式方程43233m xx x +=+--有增根, ①3x =,去分母,得()4323m x x +=+-, 将3x =代入,得49m +=, 解得5m =. 故选:D .【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键. 7.C【分析】此题是工程问题,它的等量关系是A 独做的加上A 、B 合做的是总工程的23,此题可以分段考虑,A 独做了5天,合作了(x -5)天,利用等量关系列方程即可解得. 【详解】设共需x 天. 根据题意得:5112(5)()1010153x +-+= 解得:x =6. 故选C .8.A【分析】先解方程可得75x k=-,再根据关于x 的方程534x kx -=+有整数解,k 为整数,可得51k -=±或57k -=±,从而可得答案. 【详解】解:①534x kx -=+, ①57x kx -=,即()57k x -=, 当50k -≠时, ①75x k=-, ①关于x 的方程534x kx -=+有整数解,k 为整数, ①51k -=±或57k -=±,解得:4k =或6k =或2k =-或12k =, ①()4621220++-+=,①满足条件的所有整数k 的和为20. 故选A .【点睛】本题考查的是一元一次方程的解与方程的解法,掌握“方程的整数解的含义以及求解整数解的方法”是解本题的关键. 9.B【分析】解不等式组,得到关于x 的解集,再找出符合x 取值范围的整数解即可. 【详解】解:解不等式3x −7≥2得:x ≥3, 解不等式3x −7<8得:x <5, 即不等式组的解集为:3≤x <5,符合3≤x <5的x 的整数解为:3,4共2个, 故选:B .【点睛】本题考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的方法. 10.D【分析】根据等式的基本性质进行分析判断即可.【详解】解:A 选项中,“如果a b =,那么23a b +=+”是不成立的,故不能选A ; B 选项中,“如果a b =,那么23a b -=-”是不成立的,故不能选B ;C选项中,“如果2a a=,那么1a=”不一定成立,因为a的值可能为0,故不能选C;D选项中,“如果a bc c=,那么a b=”成立,故选D.故选:D.【点睛】本题考查等式的基本性质,熟记“等式的基本性质:(1)等式的两边都加上或者减去同一个整式,所得结果仍是等式;(2)等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式”是解答本题的关键.11.B【分析】根据一元一次方程的定义逐项分析判断即可求解.【详解】解:A、不是一元一次方程,故本选项错误;B、是一元一次方程,故本选项正确;C、不是等式,即不是一元一次方程,故本选项错误;D、不是整式方程,即不是一元一次方程,故本选项错误.故选B.【点睛】本题考查了一元一次方程的定义,掌握一元一次方程的定义是解题的关键.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).12.C【详解】解:设甲每小时骑行x公里,根据题意得:30252=-x x.故选C.13.D【详解】试题分析:一月份获利10万元,二月份获利10(1+x)万元,三月份获利10万元,然后根据一季度的总获利得出方程.考点:一元二次方程的应用14.D【分析】根据等式的性质求解即可.【详解】解:由图可知,2个球体的质量=5个圆柱的质量,2个正方体的质量=3个圆柱的质量,①6个球体的质量=15个圆柱的质量,10个正方体的质量=15个圆柱的质量,①6个球体的质量=10个正方体的质量,①3个球体的质量=5个正方体的质量,故选D .【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式. 15.A【分析】先求出方程的解,再根据﹣3<a ≤3的范围,即可求解.【详解】解:由x +a =2,得:x =2-a ,①﹣3<a ≤3,①﹣1≤2-a <5,即:﹣1≤x <5,故选A .【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a 的代数式表示x ,是解题的关键.16.D【分析】根据等式的性质逐个判断即可得到答案.【详解】解:由题意可得,若a b =,则111a b b +=+>-,故A 选项错误不符合题意;若32a b =,则23a b =,故B 选项错误不符合题意; 若2a b -=,则2a b =+,故C 选项错误不符合题意;若44b a -=-,则a b =,故D 选项正确符合题意;故选D .【点睛】本题考查等式的性质:等式两边同时加上或减去同一个数等式性质不变,等式两边同时乘以或除以同一个不为0的数等式性质不变.17.C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 18.A【分析】由①代入①、①消去x,解二元一次方程组得出y、z的数值,再进一步求得x的数值解决问题.【详解】10318x y zx yx y z++=⎧⎪+=⎨⎪=+⎩①②③,把①代入①得:y+z=5①,把①代入①得:4y+3z=18①,①×4–①得:z=2,把z=2代入①得:y=3,把y=3,z=2代入①得:x=5,则方程组的解为532xyz=⎧⎪=⎨⎪=⎩,故选A.【点睛】此题考查三元一次方程组的解法,注意逐步消元是解决问题的关键.19.C【详解】试题分析:因为15÷4=3余3空瓶,所以可换3瓶喝完,还剩3+3=6空瓶,拿出4空瓶换一瓶,还剩3个空瓶子,找人借一个瓶子凑齐四个喝完还剩一个再把这个瓶子还给那个人,故最多可以喝五瓶矿泉水.故选C.考点:命题.20.C【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【详解】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则5x x -解得x =20.经检验x =20是原方程的根,且符合题意.①x =20是所列方程的解.①x -5=15.①甲的工作效率是120,乙的工作效率是115, 则丙的工作效率是110. ①一轮的工作量为:1111320151060++=. ①4轮后剩余的工作量为:52216015-=. ①还需要甲、乙分别工作1小时后,丙需要的工作量为:211115201560--=. ①丙还需要工作16小时. 故一共需要的时间是:3×4+2+16=14 16小时. 故选:C . 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 21.2【分析】根据题意直接列一元一次不等式,并求解即可.【详解】解:设蛋白质的含量至少应为x 克,依题意得:0.4%500x ≥, 解得x ≥2,则蛋白质的含量至少应为2克.【点睛】本题考查了一元一次不等式的应用,根据题意正确列出不等式是解题的关键. 22.7 【分析】先解方程23252x x -+=-,得97x =,因为这个解也是方程72x b -=的解,根据方程的解的定义,把x 代入方程72x b -=中求出b 的值. 【详解】解:由23252x x -+=-,得2420(515),x x -=-+7所以可得97277b =⨯-= 故答案为:7.【点睛】本题考查了解一元一次方程和方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.23.364y - 【详解】方程4x −3y +6=0,解得:x =364y -, 故答案为364y -. 24.0##1【分析】分别求出两个不等式的解集,再求出两个解集的公共部分,即可得到答案.【详解】()212143x x x +>⎧⎪⎨-+>⎪⎩①② 解不等式①得:1x >-;解不等式①得:2x <;所以不等式组的解集为:12x -<<;则其整数解为0与1.故答案为:0(或1).【点睛】本题考查了求一元一次不等式组的整数解,正确并熟练地解一元一次不等式是解题的关键.25.m≤14【分析】一元二次方程有实数根,则①≥0,建立关于m 的不等式,求出m 的取值范围.【详解】解:由题意知,①=1﹣4m≥0, ①m≤14, 故答案为m≤14. 【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,①≥0. 26.1k ≠【分析】根据一元二次方程的定义列式计算即可得解.【详解】①关于x 的方程()21410k x x ---=是一元二次方程,①10k -≠,①1k ≠,故答案为:1k ≠.【点睛】本题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.27.1【分析】根据题意列出方程即可求出答案. 【详解】解:由题意得:342a a +=--, 去分母得,()342a a +=-- ,解得,1a =,经检验1a =是分式方程的解,故答案为:1【点睛】本题考查分式方程,解题的关键是熟练运用分式方程的解法.28.3<x <6【详解】试题分析:根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,可得13-7< 1+2x <20,解得3<x <6 .考点:三角形三边之间的关系点评:该题考查了三角形三边之间的关系,已知三角形的两边长,可以求第三边的范围,即两边之差<第三边长<两边之和.29.y=-2x+5【分析】把x 看做已知数求出y 即可.【详解】解:方程y+2x=5,解得:y=-2x+5.故答案为:y=-2x+5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .30.0,3,4,5【分析】先解方程组2630x myx y-=⎧⎨-=⎩,用m表示出方程组的解,根据方程组有正整数解得出m的值.【详解】解:2630x myx y-=⎧⎨-=⎩①②由①得:x=3y ①,把①代入①得:6y−my=6,①y=66-m,①x=186-m,①方程组2630x myx y-=⎧⎨-=⎩的解是正整数,①6−m>0,①m<6,并且66-m和186-m是正整数,m是整数,①m的值为:0,3,4,5.故答案是:0,3,4,5.【点睛】本题考查了二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.31.185【分析】设每件服装标价为x元,再根据无论亏本或盈利,其成本价相同,列出方程,求出x的解,最后根据成本价=服装标价×折扣,即可得出答案.【详解】解:设每件服装标价为x元,根据题意得:0.5x+35=0.8x-55,解得:x=300.则每件服装标价为300元,成本价是:300×50%+35=185(元),故答案为:185.【点睛】此题主要考查了一元一次方程的应用,正确找出等量关系是解题的关键.32.10°或130°【分析】根据A ∠与B ∠两边分别平行,由A ∠比B ∠的3倍少20°列方程求解即可得到答案.【详解】①A ∠比B ∠的3倍少20°,①A ∠=3B ∠- 20°,①A ∠与B ∠两边分别平行,①①A 与①B 相等或互补,①当A ∠=B ∠时,得到①A =3①A - 20°,①①A =10°;①当①A +①B =180°时,得到①A =3(180°-①A )-20°,①①A =130°,故答案为:10°或130°.【点睛】此题考查平行线的性质,解一元一次方程,能正确理解两边分别平行的两个角的关系是解题的关键.33. 17 54± 【分析】(1)令224n x y m xy +==,,将原方程组可化为关于m 、n 的二元一次方程组,进行求解即可;(2)先根据完全平方公式求出25x y +=±,再将112x y+通分进行计算即可. 【详解】(1)令224n x y m xy +==,,原方程组可化为3247236m n m n -=⎧⎨+=⎩, 解得172m n =⎧⎨=⎩, 即221724x y xy +==,,故答案为:17;(2)222(2)4178254x y x y xy +=+=+=+,25x y ∴+=±1125224x y x y xy +±∴+==,故答案为:54±. 【点睛】本题考查了解二元一次方程组,完全平方公式的变形,异分母分式相加等,熟练掌握知识点并运用整体代入法是解题的关键.34.823m -<< 【分析】先解出方程组的解,再根据解的情况列出关于m 的不等式组,解不等式组即可求解.【详解】解:225234x y m x y m +=-⎧⎨-=-⎩①② ①+①得:x =-1-m ,将x =-1-m 代入①中,得:y =342m -, ①该方程组的解满足1x <,2y <, ①113422m m --<⎧⎪⎨-<⎪⎩, 解得:823m -<<. 故答案为:823m -<<. 【点睛】本题考查解二元一次方程组的应用、解一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法,正确解出x 、y 值是解答的关键.35.①①①【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:解不等式x ﹣1>0得,x >1;解不等式x ﹣a ≤0得,x ≤a ,故不等式组的解集为:1<x ≤a .①①它的解集是1<x ≤4,①a =4,故本小题正确;①①a =1,x >1,①不等式组无解,故本小题正确;①①它的整数解只有2,3,4,则4≤a <5,①4≤a <5,故本小题正确;①①它有解,①a >1,故本小题错误.故答案为:①①①.【点睛】本题主要考查了解一元一次不等式组,掌握解一元一次不等式组是解题的关键. 36.13k <<【分析】先求出方程组的解,根据题意得出关于k 的不等式组,再求出不等式组的解集即可.【详解】解:解方程组221x y x y k +=⎧⎨+=+⎩得:13x k y k=-⎧⎨=-⎩, 关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数, ∴1030k k ->⎧⎨->⎩, 解得:13k <<,故答案为:13k <<.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和解一元一次不等式组等知识点,能得出关于k 的不等式组是解此题的关键.37.22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式①得,x ≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).38.±2.【分析】根据根的判别式求出△=0,求出a 2+b 2=2,根据完全平方公式求出即可.【详解】解:①关于x 的方程x 2+2ax-b 2+2=0有两个相等的实数根,①①=(2a )2-4×1×(-b 2+2)=0,即a 2+b 2=2,①常数a 与b 互为倒数,①ab=1,①(a+b )2=a 2+b 2+2ab=2+2×1=4,①a+b=±2,故答案为±2.【点睛】本题考查了根的判别式和解高次方程,能得出等式a 2+b 2=2和ab=1是解此题的关键.39.5621624x y x y +=⎧⎨⨯=⎩【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=56人;①每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量.【详解】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y .列方程组为:5621624x y x y +=⎧⎨⨯=⎩故答案为5621624x y x y +=⎧⎨⨯=⎩【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.40.1-或2【分析】根据增根是化为整式方程后产生的不适合分式方程的根,先把分式方程去分母化为整式方程,再通过使最简公分母不为0确定增根的可能值,将其代入整式方程即可算出m 的值.【详解】解:①2211x m x x x x x+-=++, ①()2221x m x -=+,①221m x x =--. ①2211x m x x x x x+-=++有增根, ①0x =或=1x -.当0x =时,2211m x x =--=-;当=1x -时,2212m x x =--=.①m 的值为1-或2.故答案为:1-或2【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;①化分式方程为整式方程;①把增根代入整式方程即可求得相关字母的值. 41.(1)x =5;(2)x =4.【分析】(1)移项,合并同类项,系数化成1即可;(2)去分母,然后移项,合并同类项,系数化成1即可.【详解】解:(1)移项合并得:5x =25,解得:x =5;(2)去分母得:2x +2﹣4=8+2﹣x ,移项合并得:3x =12,解得:x =4.【点睛】本题考查一元一次方程的解法,掌握一元一次方程的解法是关键.42.13x = 【分析】观察可得最简公分母是(x +1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:242111x x x ++=--- 整理,得:421(1)(1)1x x x x +-=-+-- 方程两边都乘以(x +1)(x ﹣1),得4﹣(x +1)(x +2)=﹣(x 2﹣1),整理,得,3x =1, 解得1x=3. 经检验,1x=3是原方程的根.①原方程的解是1x=3.【点睛】本题考查解分式方程,注意解分式方程,结果要检验.43.(1)32x y =⎧⎨=-⎩;(2)34x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求出解即可.(2)去分母后,加减法消元解方程.【详解】解:(1)32528x yx y+=⎧⎨-=⎩①②,①×2得,4x﹣2y=16①,①+①得,7x=21,解得x=3,把x=3代入①得,2×3﹣y=8,解得y=﹣2,所以,方程组的解是32xy=⎧⎨=-⎩;(2)方程组可化为4324347x yx y+=⎧⎨-=-⎩①②,①×4得,16x+12y=96①,①×3得,9x﹣12y=﹣21①,①+①得,25x=75,解得x=3,把x=3代入①得,3×3﹣4y=﹣7,解得y=4,所以,方程组的解是34xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.44.在这两笔生意中,商场共盈利90260元.【分析】盈利=总售价-总进价,应求出某商品的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价-4.【详解】设商场第一次购进某商品x件,则第二次购进某商品2x件,根据题意得:8000017600042x x-=.160000=176000-8x解这个方程得:x=2000.经检验:x=2000是原方程的根.商场利润:(2000+4000-150)×58+58×0.8×150-80000-176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.45.(1)k=10;(2)k=1.【分析】(1)方程由两个相等的根,则△=0;(2)有一个根是0,则两根之积为0.【详解】解:(1)△=36﹣4(k-1)=40-4k,①两根相等,①①=0,即k=10;(2)①有一根为0,①0∆≥,即10k≤,由根与系数的关系可得,k﹣1=0,①k=1.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握是解题的关键.一元二次方程根的情况与判别式①的关系:(1)①>0⇔方程有两个不相等的实数根;(2)①=0⇔方程有两个相等的实数根;(3)①<0⇔方程没有实数根.46.(1)63xy=⎧⎨=-⎩;(2)13x-≤<【分析】(1)方程组利用代入消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分求出不等式组的解集,表示在数轴上即可.【详解】(1)解:20 346 x yx y+=⎧⎨+=⎩①②方程①可化为2x y=-①把①代入①,得解得y=-3把y=-3代入①,得x=()236-⨯-=所以原方程组的解为:63x y =⎧⎨=-⎩(2)53231204x x x +≥⎧⎪⎨--<⎪⎩①② 解不等式①得1x ≥-解不等式①得3x <所以不等式组的解集为13x -≤<将其在数轴上表示如下:【点睛】本题两个小题分别考查了解二元一次方程组和解一元一次不等式组,根据相关题目要求按步骤求解是解题的关键47.(1)3972不是“和对称数”,2451是“和对称数”,理由见解析,()F N 值为66(2)A 的值为3746,4756,6776,5766,7786,8796【分析】(1)根据“和对称数”的定义,即可求解;(2)根据题意分别表示出()(),F A F B ,再由()()32k F A F B =+,k 能被77整除,并结合a ,m 的取值范围进行分类讨论,即可求解.【详解】(1)解:3972不是“和对称数”,①3924+≠,①3972不是“和对称数”.2451是“和对称数”,①2451+=+,。
等式与不等式综合练习
等式与不等式综合练习等式和不等式是数学中的重要概念,它们在解方程、证明不等式、表示数值关系等方面起着重要的作用。
通过综合练习,我们可以加深对等式和不等式的理解,并进一步提高解题能力。
本文将介绍一些等式和不等式的综合练习题,帮助读者更好地掌握这些概念。
1. 等式练习题1.1 方程求解(1) 解方程:3x + 7 = 22(2) 解方程组:2x + y = 10, 3x - y = 4(3) 求二次方程:x^2 - 5x + 6 = 0 的根1.2 应用题(1) 一个数的三倍减去5的结果等于17,求这个数。
(2) 甲和乙共有50元,如果甲的钱数是乙的2倍,求甲和乙各有多少钱。
2. 不等式练习题2.1 不等式求解(1) 求解不等式:2x + 3 > 7(2) 求解不等式组:{ x + y > 5, 2x - y < 10 }2.2 应用题(1) 甲和乙的身高相差不超过5厘米,甲的身高不低于158厘米,乙的身高至少为多少?(2) 一辆车从A地到B地,总共行驶了200公里,已知非高速路段行驶的里程不超过120公里,求高速路段行驶的里程至少为多少?3. 等式与不等式综合练习题3.1 求解等式和不等式(1) 解方程:2x + 5 = 9(2) 解不等式:3x - 4 > 10(3) 解方程组与不等式组:{ x + y = 5, 2x - y < 10 }3.2 应用题(1) 一个数减去5的绝对值大于8,求这个数的取值范围。
(2) 甲和乙同时从A地到B地,已知甲的车速为60km/h,乙的车速至少为多少,才能保证乙能在不超过2小时的时限内到达B地?通过以上综合练习题,我们可以加深对等式和不等式的理解和运用。
在解等式和不等式的过程中,需要灵活应用各种解题方法,如加减消元、代入法、图像法等。
同时,注意题目中的应用题,将数学知识与实际问题相结合,培养解决实际问题的能力。
总结:等式和不等式是数学中重要的概念,通过综合练习题可以加深对其理解和运用。
中考数学《方程不等式》专项练习题及答案
中考数学《方程不等式》专项练习题及答案一、单选题1.若关于x 、y 的二元一次方程组 {x −3y =4m +3x +5y =5的解满足x+y> 0,则m 的取值范围是( ) A .m > -2B .m < -2C .m > -1D .m < -12.若x 1,x 2是一元二次方程x-2x-3=0的两个根,则x 1·x 2的值是( )A .-2B .-3C .2D .33.设x ,y ,c 是实数,则下列判断正确的是( )A .若 x =y ,则 x +c =y −cB .cy cx =y xC .若 x =y ,则 x c =ycD .若 x2c =y 3c ,则 2x =3y4.某班m(m <50)人去科技馆参观,科技馆票价是每人10元,但若购团体票(不低于50张),则可享受八五折优惠.班长算了算,购买50张票反而更合算,则m 至少为( ) A .42B .43C .44D .455.关于 x 的方程 a(x +m)2+b =0 的解是 x 1=−2 , x 2=1(a ,m ,b 均为常数, a ≠0) ,则方程 a(x +m +2)2+b =0 的解是( ) A .x 1=0 , x 2=3 B. x 1=−4 C .x 1=−4 , x 2=2D .x 1=46.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了3540张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x +1)=3540 B .2x(x +1)=3540 C .x(x −1)=3540D .x(x−1)2=35407.根据等式的基本性质,下列变形正确的是( )A .若2x=3,则x=23B .若ax=ay ,则x=yC .若x=y ,则x+y=2xD .若12x-13y=1,则3x-2y=18.已知关于 x 的方程 (2k −1)x 2−(2k +1)x +3=0 是一元一次方程,则 k 的值为( )A .12B .1C .0D .29.已知 {x =−2y =1 是方程 mx +2y =5 的解,则 m 的值是( )A .−32B .32C .-2D .210.方程x 2﹣3x ﹣1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.关于x 的不等式2x+a 3≥1的解集如图所示,则a 的值是( )A .−1B .1C .2D .512.如图,在11月的日历表中用框数器框出3,5,11,17,19五个数,它们的和为55,若将在图中换个位置框出五个数,则它们的和可能是( )A .40B .88C .107D .110二、填空题13.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的100元降至81元,那么平均每次降价的百分率是 .14.在某种药品的说明书上的部分内容是“用法用量:每天 30~60mg ,分2~3次服用”.则一次服用这种药品的剂量 x 的范围是 mg .15.九宫格是一款数学游戏,起源于河图洛书,河图与洛书是我国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为“宇宙魔方”.在如图所示的九宫格中,其每行、每列、每条对角线上三个数字之和都相等,则对于这个九宫格中a = ,b = .16.若关于x 的方程3x+2m=2的解是正数,则m 的取值范围是 . 17.已知关于x 的方程 kx −2x =5 的解为正整数,则整数k 的值为 .18.不等式 {4−2x ≥5x +6>4解集是 . 三、综合题19.平面直角坐标系xOy 中,有点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,点P平移后对应点为P′(a+15,b+4),求点P和P′的坐标;(3)当a≤4<b时,求m的最小整数值.20.随着疫情形势稳定向好,“复工复产”成为主旋律.某生产无人机公司统计发现,公司今年2月份生产A型无人机2000架,4月份生产A型无人机达到12500架.(1)求该公司生产A型无人机每月产量的平均增长率;(2)该公司还生产B型无人机,已知生产1架A型无人机的成本是200元,生产1架B型无人机的成本是300元,现要生产A、B两种型号的无人机共100架,其中A型无人机的数量不超过B型无人机数量的3倍,公司生产A、B两种型号的无人机各多少架时才可能使生产成本最少?21.(1)如果|m−5|+(n+6)2=0,求(m+n)2021+m3的值;(2)已知实数a,b,c,d,e,且ab互为倒数,c,d互为相反数,e的绝对值为2,求−12×ab+c+d5−e2的值.22.已知a是最大的负整数,b是-5的相反数,且a、b、c 分别是点A、B、C在数轴上对应的数,C是AB的中点.(1)求a、b、c 的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,速度是每秒3个单位长度,动点Q同时从点B 出发也沿数轴正方向运动,速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?23.为加强中小学生安全教育,某校九(1)班组织了“防溺水”知识竞赛,班委会决定购买钢笔和圆珠笔对表现优异的同学进行奖励,同学们前往商店采购,商店里的阿姨说:“购买3支钢笔和2支圆珠笔共需8元,并且3支钢笔比2支圆珠笔多花4元”(1)求钢笔和圆珠笔每支各需多少元?(2)班委会决定购买钢笔和圆珠笔共30支,且支出不超过50元,则最多能够购买多少支钢笔?24.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)如果某人每月通话时间一般在300到400分钟,此人选择哪种付费方式更合算,请你通过方程知识给出合理化的建议.参考答案1.【答案】A 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】B 6.【答案】C 7.【答案】C 8.【答案】A 9.【答案】A 10.【答案】A 11.【答案】D 12.【答案】D 13.【答案】10% 14.【答案】10≤x≤30 15.【答案】-2;-10 16.【答案】m<1 17.【答案】3或718.【答案】−2<x≤−1 219.【答案】(1)6(2)解:∵点P落在x轴上∴b=0∴3 ×0-2m-16=0∴m=-8∴2a-3 ×(-8)+1=0∴a=−25 2∴a+15=−252+15=52∴点P的坐标是(−252,0),点P′的坐标是(52,4)(3)解:∵2a-3m+1=0∴a=3m−1 2∵3b-2m-16=0∴b=2m+163,且a≤4<b∴3m−12≤4<2m+163解不等式组{3m−12≤42m+163>4∴解得:−2<m≤3∴m的最小整数值是-1.20.【答案】(1)解:设该公司生长A型无人机每月产量的平均增长率为x,根据题意可得:2000(1+x)2=12500解得:x1=1.5=150%,x2=﹣3.5(不合题意舍去)答:该公司生长A型无人机每月产量的平均增长率为150%;(2)解:设生产A型号无人机a架,则生产B型号无人机(100﹣a)架,需要成本为w元,依据题意可得:a≤3(100﹣a)解得:a≥75w=200a+300(100﹣a)=﹣100a+30000∵﹣100<0∴当a的值增大时,w的值减小∵a为整数∴当a=75时,w取最小值,此时100﹣75=25w=﹣100×75+30000=22500∴公司生产A型号无人机75架,生产B型号无人机25架成本最小.21.【答案】(1)解:∵|m−5|+(n+6)2=0,且|m−5|⩾0,(n+6)2⩾0∴m−5=0∴m=5∴原式=[5+(−6)]2021+53=(−1)2021+125=−1+125=124;(2)∵ab互为倒数∴ab=1∵c,d互为相反数∴c+d=0∵e的绝对值为2∴e 2=|e|2=4∴ 原式 =−12×1+05−4=−12−4 =−92 .22.【答案】(1)解:∵a 是最大的负整数,即a=-1;b 是-5的相反数,即b=5 C 是AB 的中点,则c=−1+52=2 则点A 、B 、C 在数轴上位置如图所示:(2)解:设运动t 秒后,点P 可以追上点Q 则点P 表示数-1+3t ,点Q 表示5+t 依题意得:-1+3t=5+t 解得:t=3答:运动3秒后,点P 可以追上点Q .23.【答案】(1)解:设购买一支刚笔x 元,一支圆珠笔y 元,可得方程组: {3x +2y =83x −2y =4 . 解得: {x =2y =1 .答:购买一支刚笔2元,一支圆珠笔6元(2)解:设购买刚笔z 支,则购买圆珠笔(30﹣z )支,根据题意得 2z+(30﹣z )≤50 解得:z≤20答:最多能购买20支钢笔24.【答案】(1)解:甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元 (2)解:设一个月通话x 分钟时两种付费的费用相同 由题意得:18+0.10x =0.15x 解得x =360.有方程结果及已知条件可知:通话时间为300分钟但不超过360分钟时,选择甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟但不超过400分钟时,选择乙种付费方式合算。
2022年中考数学一轮复习:方程与不等式 综合练习
2022年中考数学一轮复习:方程与不等式综合练习一、单选题1.下列式子变形正确的是( )A .若a =b ,则23a b =B .若m =n ,则m ﹣2=2﹣nC .若a =b ,则ac =bcD .若2x =3,则x =6 2.如图中“●、■、▲”分别表示三种不同的物体,已知前两架天平如图(1)、(2)所示均保持平衡.为了使第三架天平如图(3)所示也能保持平衡,现在“?”处只放置“■”物体.那么应放“■”的个数是( )A .3个B .4个C .5个D .6个 3.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物30件,若设有n 人参加聚会,根据题意可列出方程为( )A .()1302n n += B .n (n ﹣1)=30 C .()12n n -=30 D .n (n +1)=304.关于x 的分式方程21311x a x x --=--的解为非负数,则a 的取值范围为( ) A .a ≤4 B .a ≤2且a ≠1 C .a ≤4且a ≠3 D .a ≥﹣2且a ≠0 5.一个球从地面竖直向上弹起时的速度为8米/秒,经过t 秒时球的高度为h 米,h 和t 满足公式:ℎ=v 0t −12gt 2(v 0表示球弹起时的速度,g 表示重力系数,取10g =米/秒)2,则球不低于3米的持续时间是( )A .0.4秒B .0.6秒C .0.8秒D .1秒6.已知x =2,是分式方程3+131k x x -=-的解,那么实数k 的值为( ) A .3 B .4 C .5 D .6 7.将方程3x +6=2x ﹣8移项后,四位同学的结果分别是(1)3x +2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个8.若关于x 的不等式组412274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且关于y 的分式方程2a y -+22y-=2有正数解,则所有满足条件的整数a 的值有( )个.A .4 B .5C .6D .79.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点...若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后2分钟内,两人相週的次数为( )A .7B .6C .5D .410.若关于x 的二次函数()223y x a x =+--,当0x ≤时,y 随x 的增大而减小,且关于y 的分式方程21111ay y y+-=--有整数解,则符合条件的所有整数a 的和为( ).A .1 B .2-C .8D .4 二、填空题11.如果关于x 的一元二次方程ax 2+bx +1=0的一个解是x =1,则2021﹣a ﹣b =_____. 12.为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,甲工程队每天改造的道路长度是______米. 13.已知:33(1)(2)12x A B x x x x -=++-+-,则A +B =_____. 14.某手机生产商将推手机生产工作交由旗下A 、B 、C 三个工厂完成,A 、B 两个工厂有半自动、全自动、外包三种生产方式,C 工厂只有半自动一种生产方式,且三个工厂同种生产方式每天的生产量相等,全自动每天的生产量是外包每天的生产量的2.5倍,B 、C 两工厂生产总量相等,均比A 厂多40%,A 厂用3天进行半自动生产,2天进行全自动生产,1天进行外包生产完成全部工作;B 厂用2天进行半自动生产,3天进行全自动生产,2天进行外包生产完成全部工作;则C 厂需要______天生产完成全部工作.15.成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.三、解答题16.解方程(1)配方法解方程2x 2﹣12x ﹣12=0;(2)(x +2)(x +3)=117.解不等式组:510334x x x x >-⎧⎪⎨--≥⎪⎩并把解集在数轴上表示出来.18.若规定“⊕”的运算过程表示为:a ⊕b =13a ﹣2b ,如3⊕1=13×3﹣2×1=﹣1 (1)则(﹣6)⊕12= .(2)若(2x ﹣1)⊕12x =3⊕x ,求x 的值.19.为了构建节水型社会,提倡居民节约用水.某市对居民生活用水实施“阶梯式”计量水价.每户居民按月用水量实行“三级”阶梯式计量水价,具体每户每月用水量(立方米)与水价(元/立方米)的关系如表所示:(1)若一户居民8月份用水量为27立方米,则该月应缴纳水费为 元.(2)某户居民10月份激纳的水费为66元,则该月用水量为多少立方米?20.已知关于x 的分式方程:322122x mx x x---=---. (1)当m =3时,解分式方程;(2)若这个分式方程无解,求m 的取值范围.21.一元二次方程2260x ax a ++-=的根12,x x 分别满足以下条件,求出实数a 的对应范围.(1)两个根同为正根;(2)两个根均大于1; (3)123x x =.22.肥西县祥源花世界管理委员会要添置办公桌椅A ,B 两种型号,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)直接写出A 型桌椅每套 元,B 型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A 型桌椅不少于12套,B 型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A 型桌椅x 套,总费用为y 元. ①求y 与x 之间的函数关系,并直接写出x 的取值范围;②求出总费用最少的购置方案.23.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润y 元,要求购进空调数量不超过电冰箱数量的2倍,且购进电冰箱不多于40台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调(0100)k k <<元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.参考答案:1.C2.C3.B4.C5.A6.D7.B8.A9.C10.A11.202212.8013.314.2115.1016.(1)解:∵2x2﹣12x﹣12=0,∴x2﹣6x﹣6=0,∴x2﹣6x=6,∴x2﹣6x+9=6+9,即(x﹣3)2=15,∴x﹣3∴x1=x2=3(2)解:整理成一般式,得:x2+5x+5=0,∴a=1,b=5,c=5,∴Δ=52﹣4×1×5=5>0,则x∴x1x217.解:解不等式5x>x−10,得:x>−2.5,解不等式334xx--≥,得:x≤3,所以不等式组的解集是−2.5<x≤3,将解集表示在数轴上如下:18.(1)(-6)⊕12=13×(-6)-2×12=-2-1=-3,故答案为:-3;(2)(2x-1)⊕12x=3⊕x,1 3×(2x-1)-2×12x=13×3-2x,2 3x-13-x=1-2x,2 3x-x+2x=1+13,5 3x=43,∴x=45.19.(1)解:一户居民8月份用水量为27立方米,则该月应缴纳水费为183251842725654281294(元)故答案为:94(2)解:183=54,1837482,而546684,所以某户居民10月份的用水量大于18立方米小于25立方米,设10月用水x立方米,则18341866,x解得:21,x=答:某户居民10月份激纳的水费为66元,则该月用水量为21立方米.20.(1)解:把m=3代入得:322122x mxx x---=---,去分母得:3﹣2x+3x﹣2=2﹣x,解得:x=12,检验:把x=12代入得:x﹣3≠0,∴分式方程的解为x=12;(2)解:去分母得到:3﹣2x+mx﹣2=2﹣x,整理得:(m﹣1)x=1,当m﹣1=0,即m=1时,分式方程无解;当m≠1时,由分式方程无解,即x=2,把x=2代入整式方程得:3﹣4+2m﹣2=0,解得:m=32,综上所述,m的值为1或32.21(1)由一元二次方程2260x ax a++-=有两个正根,可列不等式组2121224602060aa x x a x x a ①②③,再解不等式组即可; (2)由一元二次方程2260x ax a ++-=两个均大于1,可得12110,x x 即121210,x x x x 再结合根与系数的关系列不等式,结合0≥,从而可得答案;(3)由123x x =可得123,x x 结合122,x x a 求解12,,x x 再利用126,x x a 再解方程求解a 的值,再检验即可.(1) 解: 一元二次方程2260x ax a ++-=有两个正根,2121224602060aa x x a x x a ①②③由①得:260,a a解得:2a ≥或3,a由②得:0,a <由③得:6,a所以a 的取值范围为:3a ≤-;(2)解: 由(1)得:3,a一元二次方程2260x ax a ++-=两个均大于1,12110,x x 即121210,x x x x 而12122,6,x x a x x a 6210,a a 解得:7,a综上73a(3) 解:123x x =,则123,x x122,x x a解得:1231,,22x a x a 126,x x a236,4a a整理得:234240,a a 44192219,63a 2a ≥或3,a经检验:22193a 或22193a 都符合题意. 22(1) 解:设A 型桌椅每套a 元,B 型桌椅每套b 元,根据题意,得:2200033000a b a b +=⎧⎨+=⎩, 解得:600800a b =⎧⎨=⎩, 所以A 型桌椅每套600元,B 型桌椅每套800元;(2)解:①据题意,总费用y =600x +800(20-x )+20×10=-200x +16200, ∵A 型桌椅不少于12套,B 型桌椅不少于6套,∴12206x x ≥⎧⎨-≥⎩,解得:12≤x ≤14, 所以y 与x 之间的函数关系为y =-200x +16200(12≤x ≤14,x 为整数); ②由①知y =-200x +16200,且-200<0,∴y 随x 的增大而减小,∴当x =14时,总费用y 最少,最少费用为-200×14+16200=13400元,即购买A 型桌椅14套、B 型桌椅6套,总费用最少,最少总费用为13400元. 23.解:()1设每台空调的进价为x 元,则每台电冰箱的进价为()400x +元,根据题意得:8000064000400x x=+, 解得:1600x =,经检验,1600x =是原方程的解,且符合题意,40016004002000x +=+=,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.()2设购进电冰箱x 台,这100台家电的销售总利润为y 元,则()()()21002000175016001005015000y x x x =-+--=-+,根据题意得:100240x x x -≤⎧⎨≤⎩, 解得:133403x ≤≤, x 为正整数,34x ∴=,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;5015000y x =-+,500k =-<,y ∴随x 的增大而减小,∴当34x =时,y 有最大值,最大值为:50341500013300(-⨯+=元), 答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.()3当厂家对电冰箱出厂价下调(0100)k k <<元,若商店保持这两种家电的售价不变, 则利润()()()()21002000175016001005015000y k x x k x =-++--=-+, 当500k ->,即50100k <<时,y 随x 的增大而增大,答案第7页,共7页 133403x ≤≤, ∴当40x =时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台; 当50k =时,15000y =,各种方案利润相同;当500k -<,即050k <<时,y 随x 的增大而减小, 133403x ≤≤,, ∴当34x =时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台; 答:当50100k <<时,购进电冰箱40台,空调60台销售总利润最大; 当50k =时,15000y =,各种方案利润相同;当050k <<时,购进电冰箱34台,空调66台销售总利润最大.答案第8页,共1页。
第二章《方程与不等式(组)》综合测试卷答案解析
第二章《方程与不等式(组)》综合测试卷一、选择题(每小题3分,共30分)1.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为(C ) A .1 B .2 C .3 D .42.不等式3x +2≥5的解是(A ) A .x ≥1 B .x ≥73C .x ≤1D .x ≤-13.某地即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000 m 的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20 m ,就能提前15天完成任务.设原计划每天铺设钢轨x (m),则根据题意可列方程为(A )A.6000x -6000x +20=15B.6000x +20-6000x =15C.6000x -6000x -15=20D.6000x -15-6000x =204.小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1.他核对时发现所抄的c 比原方程的c 值小2,则原方程的根的情况是(A )A .不存在实数根B .有两个不相等的实数根C .有一个根是x =-1D .有两个相等的实数根【解析】 ∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1,∴(-1)2-4+c =0,解得c =3,故原方程中c =5,则b 2-4ac =16-4×1×5=-4<0, ∴原方程不存在实数根.5.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后每千米收费y 元,则可列方程组为(D )A.⎩⎪⎨⎪⎧x +7y =16,x +13y =28B.⎩⎪⎨⎪⎧x +(7-2)y =16,x +13y =28C.⎩⎪⎨⎪⎧x +7y =16,x +(13-2)y =28D.⎩⎪⎨⎪⎧x +(7-2)y =16,x +(13-2)y =28 6.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是(D )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3【解析】 由题意,得2x +3=1或2x +3=-3, 解得x 1=-1,x 2=-3.7.已知关于x 的一元二次方程x 2+2x +m -2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为(B )A .6B .5C .4D .3【解析】 ∵a =1,b =2,c =m -2,关于x 的一元二次方程x 2+2x +m -2=0有实数根,∴Δ=b 2-4ac =22-4(m -2)=12-4m ≥0,∴m ≤3. 又∵m 为正整数,且该方程的根都是整数, ∴m =2或3,∴2+3=5.8.已知关于x 的分式方程m -2x +1=1的解是负数,则m 的取值范围是(D )A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 【解析】 解m -2x +1=1,得x =m -3.∵关于x 的分式方程m -2x +1=1的解是负数,∴m -3<0,解得m <3.又∵当x =m -3=-1时,方程有增根,∴m ≠2. 综上所述,m <3且m ≠2.9.已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则下列判断正确的是(D )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根【解析】 ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0, ∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.10.已知关于x 的不等式ax -2>0的解是x <-2,若关于x 的不等式组⎩⎪⎨⎪⎧ax +b ≥0,-2x +2<x -3恰有4个整数解,则实数b 的取值范围是(C )A .5<b <6B .5<b ≤6C .5≤b <6D .5≤b ≤6【解析】 由不等式ax -2>0得ax >2. ∵解是x <-2,∴a <0,∴x <2a,∴2a=-2,解得a =-1. ∴关于x 的不等式组为⎩⎨⎧-x +b ≥0,-2x +2<x -3,解得53<x ≤b .∵不等式组恰有4个整数解, ∴x 应取2,3,4,5,∴5≤b <6.二、填空题(每小题4分,共24分)11.一元二次方程x 2-8x +4=0配方后可化为(x -4)2=12.12.若关于x 的方程(m -5)x 2+4x -1=0有实数根,则m 的取值范围是m ≥1. 【解析】 ①当该方程是一元一次方程时,m -5=0,得m =5,此时x =14;②当该方程是一元二次方程时,二次项系数m -5≠0,Δ=42+4(m -5)≥0,解得m ≥1且m ≠5.综上所述,m ≥1.13.若关于x 的一元二次方程ax 2-x -14=0(a ≠0)有两个不相等的实数根,则点P (a +1,-a -3)在第__四__象限.【解析】 ∵关于x 的一元二次方程ax 2-x -14=0(a ≠0)有两个不相等的实数根,∴⎩⎪⎨⎪⎧a ≠0,Δ=(-1)2-4·a ·⎝⎛⎭⎫-14>0, 解得a >-1且a ≠0, ∴a +1>0,-a -3<0,∴点P (a +1,-a -3)在第四象限.14.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为自然数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__13≤x <15__.【解析】 由题意,得6-0.5≤0.5x -1<6+0.5,解得13≤x <15.15.爸爸沿街匀速行走,发现每隔7 min 从背后驶过一辆103路公交车,每隔5 min 从迎面驶来一辆103路公交车.假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶的速度是爸爸行走速度的__6__倍.【解析】 设103路公交车行驶的速度为x (m/min),爸爸行走的速度为y (m/min),两辆103路公交车间的间距为s (m),根据题意,得⎩⎨⎧7x -7y =s ,5x +5y =s ,∴x =6y .16.对于实数p ,q ,我们用符号min{p ,q }表示p ,q 两数中较小的数,如min{1,2}=1.因此min{-2,-3}若min{(x -1)2,x 2}=1,则x =-1或2.【解析】 ∵2<3,∴-2>- 3.∴min{-2,-3}=- 3. 若(x -1)2>x 2,则x 2=1,x =±1.当x =1时,(x -1)2=0,而x 2=1,∴x =1不合题意,舍去,∴x =-1. 若(x -1)2<x 2,则(x -1)2=1,x 1=2,x 2=0.当x =0时,(x -1)2=1,而x 2=0,∴x =0不合题意,舍去,∴x =2. 综上所述,x =-1或2. 三、解答题(共66分) 17.(6分)解方程: (1)y -12-y -24=3.【解析】 去分母,得2(y -1)-(y -2)=12. 去括号,得2y -2-y +2=12. 合并同类项,得y =12. (2)4x -3-1x=0. 【解析】 去分母,得4x -(x -3)=0. 去括号,得4x -x +3=0.移项、合并同类项,得3x =-3. 系数化为1,得x =-1.经检验,x =-1是原分式方程的解. (3)(x -3)2+4x (x -3)=0.【解析】 (x -3)(x -3+4x )=0, 即(x -3)(5x -3)=0, ∴x 1=3,x 2=35.18.(6分)解不等式组⎩⎪⎨⎪⎧2x -7<3(x -1),5-12(x +4)≥x ,并将解在数轴上表示出来.【解析】 ⎩⎪⎨⎪⎧2x -7<3(x -1),①5-12(x +4)≥x ,②解①,得x >-4;解②,得x ≤2,∴原不等式组的解为-4<x ≤2,在数轴上表示如解图所示.,(第18题解))19.(6分)已知关于x 的一元二次方程x 2-3x +k =0有实数根. (1)求k 的取值范围.(2)如果k 是符合条件的最大整数,且一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.【解析】 (1)由题意,得Δ=(-3)2-4k ≥0,解得k ≤94.(2)符合条件的k 的最大整数为2,方程x 2-3x +k =0可变形为x 2-3x +2=0,解得x 1=1,x 2=2.∵一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,∴当x =1时,m -1+1+m -3=0,解得m =32;当x =2时,4(m -1)+2+m -3=0,解得m =1. 又∵m -1≠0,∴m 的值为32.20.(8分)某社区计划对面积为3600 m 2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,两队各自独立完成面积为600 m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若甲队每天的绿化费用是1.2万元,乙队每天的绿化费用是0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?【解析】 (1)设乙工程队每天能完成的绿化面积是x (m 2),则甲工程队每天能完成的绿化面积是2x (m 2).由题意,得600x -6002x=6,解得x =50.经检验,x =50是原分式方程的解,∴甲工程队每天能完成的绿化面积是50×2=100(m 2).答:甲、乙两工程队每天能完成的绿化面积分别是100 m 2,50 m 2. (2)设甲工程队施工a 天,乙工程队施工b 天刚好完成绿化任务,由题意,得100a +50b =3600,则a =72-b 2=-12b +36.由题意,得1.2×⎝⎛⎭⎫-12b +36+0.5b ≤40, 解得b ≥32.答:至少应安排乙工程队绿化32天.21.(8分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,且进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率.(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.【解析】 (1)设进馆人次的月平均增长率为x ,由题意,得128+128(1+x )+128(1+x )2=608. 化简,得4x 2+12x -7=0,解得x 1=0.5=50%,x 2=-3.5(不合题意,舍去). 答:进馆人次的月平均增长率为50%. (2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为128(1+50%)3=128×278=432<500.答:校图书馆能接纳第四个月的进馆人次. 22.(10分)已知关于x 的方程2x 2-5x ·sin A +2=0有两个相等的实数根,其中∠A 是锐角三角形ABC 的一个内角. (1)求sin A 的值.(2)若关于y 的方程y 2-10y +k 2-4k +29=0的两个根恰好是△ABC 的两边长,求△ABC 的周长.【解析】 (1)根据题意,得Δ=25sin 2A -16=0,∴sin 2A =1625,∴sin A =±45.又∵∠A 为锐角,∴sin A =45.(2)∵方程y 2-10y +k 2-4k +29=0有两个实数根, ∴Δ=100-4(k 2-4k +29)≥0,∴(k -2)2≤0. 又∵(k -2)2≥0,∴k =2.把k =2代入方程,得y 2-10y +25=0,解得y 1=y 2=5, ∴△ABC 是等腰三角形,且腰长为5.分两种情况讨论:当∠A 是顶角时,如解图①,过点B 作BD ⊥AC 于点D .在Rt △ABD 中,AB =AC =5. ∵sin A =45,∴AD =3,BD =4,∴DC =AC -AD =2,∴BC =25, ∴△ABC 的周长为10+2 5.,(第22题解))当∠A 是底角时,假设∠B 为顶角,如解图②,过点B 作BD ⊥AC 于点D.在Rt △ABD 中,AB =BC =5.∵sin A =45,∴AD =DC =3,∴AC =6,∴△ABC 的周长为16.综上所述,△ABC 的周长为10+25或16.23.(10分)如图,在矩形ABCD 中,AB =6 cm ,BC =12 cm ,点P 从点B 出发,沿线段BC ,CD 以2 cm /s 的速度向终点D 运动;同时,点Q 从点C 出发,沿线段CD ,DA 以1 cm /s 的速度向终点A 运动(P ,Q 两点中,只要有一点到达终点,则另一点立即停止运动).(第23题)(1)哪一点先到终点?运动停止后,另一点离终点还有多远?(2)在运动过程中,△APQ 的面积能否等于22 cm 2?若能,需运动多长时间?若不能,请说明理由.【解析】 (1)点P 从开始到运动停止所用的时间为(12+6)÷2=9(s),点Q 从开始到运动停止所用的时间为(6+12)÷1=18(s).∵9<18,∴点P 先到终点,此时点Q 离终点的距离是(6+12)-1×9=9(cm). 答:点P 先到终点,运动停止后,点Q 离终点的距离是9 cm. (2)在运动过程中,△APQ 的面积能等于22 cm 2.当点P 从点B 运动到点C 的过程中,设点P 运动的时间为a (s),此时点Q 在线段CD 上运动.∵△APQ 的面积等于22 cm 2,∴12×6-2a ×62-(12-2a )×a 2-(6-a )×122=22,此方程无解.当点P 从点C 运动到点D 的过程中,设点P 运动的时间为b (s),此时点Q 在线段DA 上运动.∵△APQ 的面积等于22 cm 2,∴12(18-b )(18-2b )=22, 解得b 1=7,b 2=20(不合题意,舍去), 故运动7 s 后,△APQ 的面积等于22 cm 2.24.(12分)对x ,y 定义一种新运算,规定:T (x ,y )=ax +by2x +y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ·0+b ·12×0+1=b .(1)已知T (1,-1)=-2,T (4,2)=1. ①求a ,b 的值.②若关于m 的不等式组⎩⎨⎧T (2m ,5-4m )≤4,T (m ,3-2m )≥P恰好有3个整数解,求实数P 的取值范围.(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立[这里T (x ,y )和T (y ,x )均有意义],则a ,b 应满足怎样的关系?【解析】 (1)①∵T (1,-1)=a -b2-1=-2,∴a -b =-2.∵T (4,2)=4a +2b8+2=1,∴2a +b =5.联立⎩⎨⎧a -b =-2,2a +b =5,解得⎩⎪⎨⎪⎧a =1,b =3.②由题意,得⎩⎪⎨⎪⎧2m +3(5-4m )4m +5-4m ≤4,m +3(3-2m )2m +3-2m ≥P ,解得-12≤m ≤9-3P 5.∵不等式组恰好有3个整数解, ∴m =0,1,2,∴2≤9-3P 5<3,解得-2<P ≤-13.(2)由T (x ,y )=T (y ,x ),得 ax +by 2x +y =ay +bx 2y +x. 整理,得(x 2-y 2)(2b -a )=0.∵T (x ,y )=T (y ,x )对任意实数x ,y 都成立, ∴2b -a =0,即a =2b .。
一元一次方程与不等式综合练习题
一元一次方程与不等式综合练习题问题一解方程:3x + 5 = 17解题过程将常数项5移到等号右边,得到3x = 17 - 5,即3x = 12。
再将方程继续求解得到x的值,即x = 4。
答案x = 4问题二解不等式:2x - 3 > 7解题过程将常数项3移到不等号右边,得到2x > 7 + 3,即2x > 10。
再将不等式继续求解得到x的范围,即x > 5。
答案x > 5问题三综合考察一元一次方程与不等式:2x + 5 < 3x - 4解题过程将方程转化为不等式形式,得到2x + 5 < 3x - 4。
将方程中的x项移到一边,常数项移到另一边,得到2x - 3x < -4 - 5,即-x < -9。
注意到当变号时,不等号方向也要改变,所以不等式变为x > 9。
答案x > 9问题四解方程组:{ x + y = 7{ 2x - y = 1解题过程通过联立方程组的方法,消去y项,得到3x = 8。
再将方程继续求解得到x的值,即x ≈ 2.67。
将x的值代入其中一个原方程,求解y的值,即2 * 2.67 - y = 1,化简得y ≈ 3.34。
答案x ≈ 2.67, y ≈ 3.34问题五解不等式组:{ x + y > 5{ 2x - y < 3解题过程通过联立不等式组的方法,将不等式组化简为x > (5 - y) 和 y > (2x - 3)。
根据上述不等式组的要求,并结合不等号的特性,可以得到x 和y的范围。
答案当x > (5 - y) 且 y > (2x - 3)时,x和y的范围满足条件。
注意:具体x和y的范围需要根据具体的y值和x值进行计算得出。
以上是关于一元一次方程与不等式综合练习题的解答,希望对你有帮助!。
中考数学《方程与不等式》专题训练50题(含参考答案)
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
中考数学《方程与不等式》专题知识训练50题(含答案)
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列是二元一次方程的是( )A .B .C .D .2.不等式510x -≤的解集为( ) A .2x ≤B .2x ≤-C .2x ≥D .x≥-23.定义a b ab a b *=++,若535x *=,则x 的值是( ) A .4B .5C .6D .74.已知m n <,则下列不等式一定成立的是( ) A .20202020m n ->- B .20202020m n< C .20202020m n +>+D .20202020m n >5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A .5x 2-4x-4=0B .x 2-5=0C .5x 2-2x+1=0D .5x 2-4x+6=06.用配方法解下列方程时,配方正确的是( ) A .方程x 2﹣6x ﹣5=0,可化为(x ﹣3)2=4 B .方程y 2﹣2y ﹣2015=0,可化为(y ﹣1)2=2015 C .方程a 2+8a+9=0,可化为(a+4)2=25 D .方程2x 2﹣6x ﹣7=0,可化为2323()24x -=7.已知关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,则k 的值为( )A .1B .2C .1或2D .-1或-28.由a ﹥b 得到an 2﹥bn 2成立的条件是( ) A .n ﹥0B .n <0C .n ≠0D .n 是任意实数9.关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根,则m 的取值范围是( )A .m <34B .m >34且m≠2C .m≤34D .m≥34且m≠210.“a 是正数”用不等式表示为( ) A .a ≤0B .a ≥0C .a <0D .a >011.一元一次方程2152236x x -+-=,去分母后变形正确的是( ) A .42522x x --+= B .42522x x ---= C .425212x x --+= D .425212x x ---=12.不等式组30{30x x +>-≥的解集是( ) A .3x >-B .3x ≥C .33x -<≤D .3x ≤13.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .714.下列方程中,是一元一次方程的是( ) A .3x+2y=0B .4x=1C .21x - =1 D .3x ﹣5=3x+215.取一张长与宽之比为5:2的长方形纸板,剪去四个边长为5cm 的小正方形(如图).并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为3200cm (纸板的厚度略去不计).这张长方形纸板的长为多少厘米?( )A .24cmB .30cmC .32cmD .36cm16.一元二次方程2920x -=的一个根可能在( ) A .4,5之间B .6,7之间C .7,8之间D .9,10之间17.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .﹣6<t <112-B .1162t -≤<-C .1162t -<≤-D .1162t -≤<-18.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是( )A .20021x +()=2500 B .200(1+x )+20021x +()=2500 C .20021x ()-=2500 D .200+200(1+x )+20021x +()=250019.若关于x 的一元二次方程ax 2+bx +5=0(a≠0)的一个解是x =1,则2014-a -b 的值是( ) A .2019B .2009C .2014D .201620.下列判断正确的是( ) A .若a b =,则33a b -=- B .若22 a b =,则a b = C .若b da c=,则b d = D .若a b =,则ac bc =二、填空题21.如果:□+□+△=14,□+□+△+△+△=30,则□=______.22.已知二元一次方程24x y -=,用含x 的代数式表示y 为_______.23.若23x y =⎧⎨=⎩是关于,x y 的二元一次方程1ax by -=的解,则463a b -+=_________.24.上海玩具厂2008年1月份生产玩具3000个,后来生产效率逐月提高,3月份生产玩具3630个,设平均每月增长率为x ,则可列方程________. 25.方程233x k x x=---无解,那么k 的值为________. 26.一元二次方程x(x-1)=2(1-x)的一般形式是________.27.已知4311237a b a b +=⎧⎨+=⎩,则a b +=__________.28.某单位在两个月内将开支从25万元降到16万元,如果每月降低开支的百分率均为(01)<<x x ,那么这个x 的值是________.29.一个不透明的袋子中装有6个红球和若干个黑球,这些球除了颜色外都相同,从袋子中随机摸出一个球是红球的概率为25,则袋子中有________个黑球.30.等腰三角形的一边长为4,另两边的长是关于x 的方程212=0x x k -+的两个实数根,则该等腰三角形的周长是______.31.若2|8|()0x y x y +++-=,则2x y +=_____________.32.某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是__________元.33.某公司2010年12月份的利润为160万元,要使2012年12月份的利润达到250万元,则平均每年增长的百分率是_________.34.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______35.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.36.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为________.37.某气象台发现:在一段时间里有10天下了雨,且这10天中下雨有如下规律:如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间里有9天晚上是晴天,7天早晨是晴天,则这段时间有______天.38.若(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,则a 的值是______.39.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水流速度是3千米/小时,则轮船在静水中的速度是______________千米/小时.三、解答题40.(1)解方程组:4103235x y x y +=⎧⎨-=⎩;(2)解不等式组:()2151422x x ->-⎧⎪⎨+<⎪⎩. 41.解方程:5278x x +=+. 42.解方程:43.解不等式(组):(1)解不等式:()5522x x -<+.(2)解不等式组241342163x x x x -<-⎧⎪⎨--≤⎪⎩①②,并在数轴上表示该不等式组的解集.44.某超市采购某种商品1000件,将这种商品按采购价提高30%作为标价出售,当售完700件后,刚好是“双11”,商家决定,把余下的300件按标价出售的8.8折出售,最后这批商品共盈利12660元.问这种商品每件采购价多少元?45.计算:(1)202211(1)|4|()2--+-+ (2)解方程:2420x x --=. 46.解下列不等式组和不等式组:(1)34225x y x y +=⎧⎨-=⎩ (2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩47.(1(3223⎛⎫+ ⎪⎝⎭;(2)解方程组:32(21)7214322x y y x x -+=-⎧⎪⎨+++=⎪⎩.48.解下列不等式,并将解集在数轴上表示出来. (1)()()52121x x +>-- (2)3136x x ->- 49.(1)解不等式组()32421132x x x x ⎧--≥⎪⎨-->⎪⎩并把它的解集在数轴上表示出来.(2)解方程31133x x x=--- .参考答案:1.B【详解】试题分析:含有两个未知数,并且所含未知项都为1次方的整式方程就叫做二元一次方程.A 、是一元一次方程,C 、是分式方程,D 、是二元二次方程,故错误;B 、符合二元一次方程的定义,本选项正确. 考点:二元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握二元一次方程的定义,即可完成. 2.D【分析】根据一元一次不等式的解法,即可得到答案. 【详解】解:∵5x 10-≤, ∵x 2≥- 故选择:D.【点睛】本题考查了一元一次不等式的解法,解题的关键是掌握一元一次不等式的解法. 3.B【分析】先根据题意理解“*”所表示的运算法则,然后根据此运算法则将535x *=化为5535x x ++=,解出即可.【详解】由题意得:535x *=,可化为:5535x x ++=, 移项合并得:5355x x +=-, 系数化为1得:5x =. 故选:B .【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 4.B【分析】根据不等式的性质的内容逐个判断即可. 【详解】解:A .∵m <n ,∵m-2020<n-2020,故本选项不符合题意; B .∵m <n , ∵20202020m n<,故本选项符合题意; C .∵m <n ,∵m+2020<n+2020,故本选项不符合题意; D .∵m <n ,∵2020m <2020n ,故本题选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 5.A【详解】试题分析:((+(2x-1)2=0即x 2-2+4x 2-4x+1=0,移项合并同类项可得5x 2-4x-4=0,故答案选A . 考点:一元二次方程的一般形式. 6.D【详解】试题分析:选项A ,由原方程得到:方程x 2﹣6x+32=5+32,可化为(x ﹣3)2=14,故本选项错误;选项B ,由原方程得到:方程y 2﹣2y+12=2015+12,可化为(y ﹣1)2=2016,故本选项错误;选项C ,由原方程得到:方程a 2+8a+42=﹣9+42,可化为(a+4)2=7,故本选项错误;选项D ,由原方程得到:方程x 2﹣3x+(32)2=72+(32)2,可化为2323()24x -=,故本选项正确;故选D .考点:解一元二次方程-配方法. 7.B【分析】根据方程有两个相等的根,可知它是一元二次方程且判别式的值为零,进而即可求解.【详解】∵关于x 的方程(k ﹣1)x 2﹣(k ﹣1)x +14=0有两个相等的实数根,∵k ﹣1≠0且[]21(1)4(1)04k k ----⨯=, ∵k=2. 故选B .【点睛】本题主要考查一元二次方程的判别式,熟练掌握一元二次方程的判别式与根的关系,是解题的关键. 8.C【分析】根据不等式的基本性质:不等式两边乘以同一个正数,不等号的方向不变可知,由a >b 得到an 2>bn 2的条件是n 2>0,由此得出n 的取值范围.【详解】解:∵由a >b 可得到an 2>bn 2, ∵n 2>0, 又∵n 2≥0, ∵n ≠0 故选:C .【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 9.B【详解】∵关于x 的一元二次方程(m ﹣2)2x 2+(2m+1)x+1=0有两个不相等的实数根, ∵∵=b 2﹣4ac >0,即(2m+1)2﹣4×(m ﹣2)2×1>0, 解这个不等式得,m >34, 又∵二次项系数是(m ﹣2)2, ∵m≠2,故M 得取值范围是m >34且m≠2. 故选B . 10.D【分析】正数即“>0”可得答案.【详解】解:“a 是正数”用不等式表示为a >0, 故选:D .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 11.D【分析】由去分母的运算法则进行化简,即可得到答案. 【详解】解:∵2152236x x -+-=, 去分母化简,得:425212x x ---=; 故选:D .【点睛】本题考查了解一元一次方程的方法,解题的关键是掌握解一元一次方程的方法.12.B【详解】试题分析:由∵得:x >﹣3, 由∵得:x≥3,∵不等式组的解集是x≥3. 故选B .考点:解一元一次不等式组. 13.B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案.【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式∵得:53x -解不等式∵得:x <5, ∵不等式组的解集为553x -< ∵不等式组的非负整数解为0,1,2,3,4,共5个, 故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 14.B【详解】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).根据一元一次方程的定义可得,只有选项B 符合要求,故选B. 15.B【分析】设这张长方形纸板的长为5x 厘米,宽为2x 厘米,根据包装盒的容积为3200cm ,得5(510)(210)200x x --=,解方程即可.【详解】设这张长方形纸板的长为5x 厘米,宽为2x 厘米, 根据题意,得5(510)(210)200x x --=, 解方程,得11x =(不合题意,舍去),26x =, ∵这张长方形纸板的长为30厘米. 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意正确表示出长方体的底面积是解题的关键. 16.D【分析】用直接开平方法求解.然后估计方程根的取值范围.【详解】解:移项得x 2=92,开方得x 1x 2根的取值范围进行判断:∵9<10, 故选D .【点睛】本题不仅考查了一元二次方程的解法,还考查了对无理数的估算能力,对同学们有较高要求. 17.C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题. 【详解】∵2553x x +->-, ∵20x <; ∵32x t x +->, ∵32x t >-;∵不等式组的解集是:2032t x <<-. ∵不等式组恰有5个整数解,∵这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可. 18.B【详解】由题意可得, 200(1+x)+200(1+x) ²=2500, 故选B. 19.A【分析】已知x=1是一元二次方程的一个实数根,可将其代入该方程中,即可求出a+b 的值.【详解】∵一元二次方程为ax 2+bx+5=0(a≠0)的解是x=1,∵a+b+5=0,即a+b=-5,∵2014-a-b=2014-(a+b )=2014-(-5)=2019,故选A .【点睛】此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.20.D【分析】根据等式的性质解答判断即可.【详解】解:A.若a =b ,两边同时减3,得a −3=b −3,故不正确,此选项不合题意;B.由22 a b =,得a b =或a b =-,故不正确,此选项不合题意;C.若b d a c=,则bc =ad ,故不正确,此选项不合题意; D.若a =b ,则ac =bc ,故正确,此选项符合题意;故选:D .【点睛】此题考查的是等式的性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.21.3【分析】本题可以将抽象的图形用未知数x 与y 来表示,那么问题就转化成求两个二元一次方程的解集.【详解】设□为x ,△为y则□+□+△=2x+y=14,□+□+△+△+△=2x+3y =30即2142330x y x y +=⎧⎨+=⎩①② 用∵-∵得:216y =,8y =把8y =代入∵得:2814x +=,3x =,即□=3故答案为3【点睛】本题解题关键,把题干的两个图形看成两个未知数,用所学的二元一次方程组的求解方式求解.22.122y x =- 【分析】先移项,再把y 的系数化为1即可.【详解】解:移项得,24y x ,将y 的系数化为1得,122y x =-. 故答案为 122y x =-. 【点睛】本题主要考查二元一次方程的变形,熟知等式的基本性质是解答此题的关键. 23.5【分析】把23x y =⎧⎨=⎩代入1ax by -=中得出231a b -=,将231a b -=代入得出46a b -的值求解即可.【详解】解:将23x y =⎧⎨=⎩代入1ax by -=得:231a b -=, ∵()462232a b a b -=-=,故4635a b -+=.故答案为:5.【点睛】本题考查解二元一次方程组的解,掌握把方程组的解代入二元一次方程是解题关键.24.23000(1)3630x +=【分析】设平均每月增长率为x ,则二月份生产玩具的数量为3000(1+x )个,三月份生产玩具的数量为3000(1+x )2个,根据题意找出等量关系:三月份生产玩具的数量是3630个,据此等量关系列出方程即可.【详解】设平均每月增长率为x ,依题意得:该方程为:3000(1+x ) 2 =3630.故答案为:23000(1)x + =3630.【点睛】本题主要考查了由实际问题抽象出一元二次方程,读懂题意,找出合适的等量关系列出方程是解题关键.25.3【分析】先将分式方程转化为整式方程,根据分式方程无解,可得3x =,进而求得k 的值. 【详解】解:233x k x x=---, 2(3)x x k =-+,26x x k =-+,6x k =-,方程无解,3x ∴=,63k ∴-=,3k ∴=,故答案为:3.【点睛】本题考查了解分式方程,掌握分式方程的计算是解题的关键.26.x 2+x-2=0【分析】对方程进行去括号、移项、合并同类项,将方程化为20ax bx c ++=的形式即可.【详解】解:(1)2(1)x x x -=-2220x x x --+=220x x +-=故答案为220x x +-=【点睛】本题考查一元二次方程的一般形式,难度较低,熟练掌握去括号、移项、合并同类项以及一元二次方程的一般形式20ax bx c ++=是解题关键.27.3【分析】利用两个方程相加求解即可.【详解】解:4311237a b a b +=⎧⎨+=⎩①②, ∵+∵,得6a +6b =18,∵6(a +b )=18,a +b =3,故答案为:3.【点睛】本题主要考查了解二元一次方程组,解二元一次方程组的基本解法有加减消元法和代入消元法.28.20%【分析】利用降低后的开支=原开支×(1-降低率)2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:依题意得:25(1-x )2=16,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.29.9【分析】设有x 个黑球,根据概率=符合条件的情况数目与全部情况的总数之比列出方程求解即可.【详解】解:设有x 个黑球,由题意,得6265x =+ 解得x =9,经检验,x =9是原方程的解.故答案为9.【点睛】本题考查了概率的求法及分式方程的应用.如果一个事件有n 种情况,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 30.16【分析】分为两种情况:∵腰长为4,∵底边为4,分别求出即可.【详解】解:分为两种情况:情况一:当腰为4时,则另一腰4是方程212=0x x k -+的一个解,代入4到方程中,求得=32k ,此时方程的两个解为4和8,对应的三边长为4、4、8,不能构成三角形,故舍去;情况二:当底边为4时,此时方程212=0x x k -+有两个相等的实数根,∵∵=12²-4k =0,解得k =36,此时方程的两个解为6和6,对应的三边长为6、6、4,能构成三角形,此时三角形周长为16,故答案为:16.【点睛】本题考查了一元二次方程的解及解法,等腰三角形的性质等知识点,注意要分类讨论,不要漏解.31.12-【分析】根据2|8|()0x y x y +++-=可得x 与y 的值,然后计算2x y +即可解答.【详解】解:∵2|8|()0x y x y +++-=,∵800x y x y ++=⎧⎨-=⎩, 解得:44x y =-⎧⎨=-⎩, ∵()242412x y +=-+⨯-=-;故答案为:12-.【点睛】本题考查了非负数的性质,熟练掌握是解题的关键.32.500【详解】设商品的标价为x 元,则0.8x=320(1+25%),解得:x=500.故答案:500.33.25%【详解】试题分析:设每年的增长率是X ,则有()()22225516012501164x x ⎛⎫+=⇒+== ⎪⎝⎭ 1 1.25x +=,25%x =考点:二次函数的综合题点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键.34.64【详解】∵x 2+y 2+10=2x +6y ,∵x 2+y 2+10-2x -6y =0,∵(x -1)2+(y -3)2=0,∵(x -1)2≥0,(y -3)2≥0,∵x -1=0,y -3=0,解得:x =1,y =3;∵x 21+21y =121+21×3=63+1=64,故答案为:64.35.﹣1≤x <3【详解】试题分析:分别解不等式,找出解集的公共部分即可. 试题解析:5323142x x x ①②+≥⎧⎪⎨-<⎪⎩, 由∵解得1x ≥-;由∵解得3x ;< 所以,原不等式组的解集为1 3.x把不等式组的解集在数轴上表示为:.36.()21090151800x x +-≥【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:根据题意列不等式为:()21090151800x x +-≥故答案为:()21090151800x x +-≥.【点睛】本题考查的知识点是一元一次不等式的实际应用,找出题目中的等量关系是解此题的关键.37.13【详解】分析:根据题意设有x 天早晨下雨,这一段时间有y 天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,∵总天数-早晨下雨=早晨晴天;∵总天数-晚上下雨=晚上晴天;列方程组解出即可.详解:设有x 天早晨下雨,这一段时间有y 天,根据题意得:7(10)9y x y x -=⎧⎨--=⎩①②, ∵+∵得:2y =26,y =13.所以一共有13天;故答案为13.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系列出方程组. 38.6【分析】依据二元一次方程的定义可得到a+6≠0,|a|-5=1,从而可确定出a 的值.【详解】解:∵(a+6)x+y |a|﹣5=1是关于x 、y 的二元一次方程,∵a+6≠0,|a|-5=1.解得:a=6.故答案为6.【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.39.20【分析】关键描述语为:“顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等”;本题的等量关系为:逆水航行46千米用的时间+顺水航行34千米所用的时间=静水航行时80千米所用的时间.【详解】设船在静水中的速度是x 千米/时. 则:3446x 3x 3+-+ =80x . 解得:x=20.经检验,x=20是原方程的解.【点睛】本题考查的是分式方程的应用,正确列出方程是解题的关键.40.(1)510x y =⎧⎨=-⎩;(2)20x -<<. 【分析】(1)利用加减消元法解方程组;(2)先分别解两个不等式,然后根据大于小的小于大的取中间确定不等式组的解集.【详解】(1)解:∵2⨯得:8220x y +=∵,∵+∵得: 1155x =,解得:x=5,把x=5代入∵得:y=-10 ,所以,方程组的解为:510x y =⎧⎨=-⎩ ; (2) 解:由∵得: 2x >-,由∵得: 0x <,所以,不等式组的解为:20x -<<.故答案为(1)5{10x y ==- ;(2)20x -<< .【点睛】本题考查解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.同时考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.41.3x =-【分析】先移项,再合并同类项,最后把系数化为“1”,即可得到答案.【详解】解:5278x x +=+,移项得:5782x x -=-,整理得:26x -=,解得:3x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤与方法”是解本题的关键.42.原方程无解【详解】试题分析:先去分母,变为整式方程,解后进行检验即可试题解析:去分母:2(3x-1)+3x=1x=检验:当x=时,9x-3=0所以:x=是原方程的增根,原方程无解考点:解分式方程43.(1)3x <(2)23x -≤<,见解析【分析】(1)去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)解:去括号得:5x -5<4+2x ,移项、合并得:3x <9,系数化为1得:x <3;(2)解:解∵得:x <3,解∵得:x ≥-2,则不等式组的解集为-2≤x <3,将不等式组的解集表示在数轴上如下:.【点睛】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.44.这种商品每件采购价是50元.【分析】根据“利润=(售价-进价)×销售量”,将打折前、打折后两种情况的盈利相加等于总盈利,列方程求解即可.【详解】解:设此商品单价是x 元,则有:()()8.8130%700130%3001266010x x x x ⎡⎤⎡⎤+-⨯++-⨯=⎣⎦⎢⎥⎣⎦化简,整理后得:2100.14430012660x x +⨯=解得:50x =答:这种商品每件采购价是50元.【点睛】本题考查了一元一次方程解决实际问题,解题关键是根据题意找到等量关系,并正确列出方程.45.(1)4;(2)1222x x ==【分析】(1)按照乘方运算,绝对值,负整数指数幂,立方根分别计算即可; (2)用配方法解一元二次方程即可.(1)202211(1)|4|()2--+-+ 1423=++-4=;(2)2420x x --=,2446x x ∴-+=,2(2)6x ∴-=,2x ∴-=,∴1222x x ==【点睛】本题考查了实数的运算及一元二次方程的解法,解决本题的关键是熟练掌握用配方法解一元二次方程.46.(1)21x y =⎧⎨=-⎩;(2)7<-x 【分析】(1)根据代入消元法解二元一次方程组即可;(2)先分别解每一个不等式,再求出公共部分即可.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由∵得:25y x =-∵将∵代入∵得:()34252x x +-=,解得:2x =将2x =代入∵得:1y =-∵21x y =⎧⎨=-⎩(2)()32421152x x x x ⎧--≥⎪⎨-+>⎪⎩①② 由∵得:1x ≤由∵得:()()22151x x ->+,解得:7<-x∵不等式组的解集为:7<-x【点睛】本题考查解二元一次方程组以及解一元一次不等式组,掌握代入消元法解二元一次方程组以及不等式组的求解方法是解题关键.47.(1)7;(2)12x y =⎧⎨=⎩. 【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可. (2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1(03223⎛⎫--+ ⎪⎝⎭(81=-+81=+7=-.(2)32(21)712143222x y y x x -+=-⎧⎪⎨+++=⎪⎩()() 解:由(1),得345x y -=-(3)由(2),得1x y -+=(4)343+⨯()(),得2y =(5),把(5)代人(4),得1x =∵方程组的解为12x y =⎧⎨=⎩. 【点睛】此题主要考查了实数的运算,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.48.(1)x >-1,数轴见解析;(2)x>3,数轴见解析【分析】(1)先去括号,再移项、合并得到7x≥-7,然后把x 的系数化为1即可; (2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)去括号得5x+10>1-2x+2,移项得5x+2x >1+2-10,合并得7x >-7,系数化为1得x >-1;用数轴表示为:;(2)去分母,得:2x>6-(x-3),去括号,得:2x>6-x+3,移项,得:2x+x>6+3,合并同类项,得:3x>9,系数化为1,得:x>3.【点睛】此题考查解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.49.(1),不等式组的解集是﹣1<x≤1,数轴表示见解析;(2)x=﹣1.【详解】试题分析:(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:(1)()32421132x x x x ⎧--≥⎪⎨-->⎪⎩①②, 解不等式∵ ,得x≤1,解不等式∵,得x >﹣1,则不等式组的解集是﹣1<x≤1;(2)方程两边同乘x ﹣3得:3x=(x ﹣3)+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,所以x=﹣1是原方程的解.。
中考数学总复习《方程不等式》练习题及答案
中考数学总复习《方程不等式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.实数x ,y 满足方程组{2x +y =7x +2y =8,则x +y 的值为( )A .3B .-5C .5D .-32.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有30名工人,每人每天可以生产900个口罩面或1200个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( ) A .2×1200(30﹣x )=900x B .1200(15﹣x )=900x C .1200(30﹣x )=900xD .1200(30﹣x )=2×900x3.小明和小亮各收集了一些废电池.如果小明 ,他的废电池个数就和小亮一样多.设小亮收集了 x 个废电池,则两人一共收集了 (2x −6) 个.要将题目补充完整,横线上可填( ) A .少收集3个B .少收集6个C .多收集3个D .多收集6个4.一元二次方程 x 2+x −6=0 的根的情况是( )A .有两个相等的实根B .没有实数根C .有两个不相等的实根D .无法确定5.我校九年级某班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1275张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x (x ﹣1)=1275 B .x (x+1)=1275 C .2x (x+1)=1275D .x(x−1)2=12756.已知关于 x 的方程 x 2+2x −k −2=0 没有实数解,则函数 y =kx的图象大致是图中的( )A .B .C .D .7.不等式组{4(x −1)>3x −22x+13≥x −1的整数解是一个一元二次方程的两根,则该方程为( )A .x 2+3x +4=0B .x 2+7x +12=0C .x 2−3x +4=0D .x 2−7x +12=08.已知一元二次方程 x 2−8x +12=0 的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为( ) A .2B .6C .8D .2或69.不等式组 {x +2>03x −6≤0 的解集在数轴上表示正确的是( )A .B .C .D .10.对于两个不相等的有理数a ,b ,我们规定符号max{a ,b}表示a ,b 两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x ,-x}=3x-2的解为( ) A .12B .1C .1或 12D .12 或 5611.一元二次方程2x 2-3x +1=0根的情况是( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根12.下列解方程的步骤中正确的是( )A .由 x −5=7 ,可得 x =7−5B .由 8−2(3x +1)=x ,可得 8−6x −2=xC .由 16x =−1 ,可得 x =−16D .由 x−12=x 4−3 ,可得 2(x −1)=x −3二、填空题13.在虚线上填写一个二元一次方程,使所成方程组 {5x −2y =1____的解是 {x =1y =2 .14.疫情期间,某快递公司推出无接触配送服务,第一周的订单数是5万件,第三周的订单数比第一周增加2.8万件,如果设平均每周订单数的增长率为x,那么正确的方程是.15.若关于x的分式方程x−mx−1﹣3x=1无解,则m的值为.16.如图,一块长12m,宽8m的长方形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为60m2,则道路的宽应为m.17.方程(x+3)⋅√x−2=0的解是.18.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等,则这种服装每件的标价是元.三、综合题19.为弘扬爱国主义精神,某校组织七年级学生以班级为单位观看电影《长津湖》,票价为每张40元,701班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两个优惠方案可选择,方案一:全体人员打8折;方案二:5人免票,其他人员打9折.”(1)702班有41名学生,选择哪个方案更优惠?(2)701班班长思考了一会儿说:“我们班无论选择哪种方案,要付的钱是一样多的.”请问701班有多少名学生?20.已知关于x的一元二次方程x2−6x+k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2为该方程的两个实数根且满足求k的值21.如图,在△ABC中,△B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经过几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,经过几秒后,PQ的长度等于2√10cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.22.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍.(1)设:长方体的高为xcm,则其宽为cm.(2)求长方体的体积.23.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B 表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等. 24.已知关于的一元二次方程x 2 +2x+2k-4=0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求方程的根.参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】B12.【答案】B13.【答案】x+y=314.【答案】5(1+x)2=5+2.815.【答案】﹣2或116.【答案】217.【答案】x=218.【答案】7519.【答案】(1)解:由题意可得方案一的花费为:41×40×0.8=1312(元)方案二的花费为:(41-5)×0.9×40=1296(元)∵1312>1296∴702班该选择方案二更优惠;(2)解:设701班有x名学生,根据题意得x×40×0.8=(x-5)×0.9×40解得x=45.答:701班有45名学生.20.【答案】(1)解:由题意可得△=36-4k>0所以k<9;(2)解:由x1+x2=6,x1x2=k得(x1·x2)2−(x1+x2)=115k2−6=115 k2=121k=±11∵k<9所以k=-11.21.【答案】(1)解:设经过x秒以后△PBQ面积为4cm2,根据题意得12(5−x)×2x=4整理得:x2-5x+4=0解得:x=1或x=4(舍去);或12(5−x)×7=4解得:x= 27 7答:1秒或277秒后△PBQ的面积等于4cm2(2)解:PQ= 2√10,则PQ2=BP2+BQ2,即40=(5-t)2+(2t)2解得:t=-1(舍去)或3.则3秒后,PQ的长度为2√10cm(3)解:令S△PQB=7,即BP× BQ2=7,(5-t)×2t2=7整理得:t2-5t+7=0由于b2-4ac=25-28=-7<0则原方程没有实数根;或Q到C了,P还在运动,(5-t)×7÷2=7解得t=3(舍去).所以在(1)中,△PQB的面积不能等于7cm222.【答案】(1)30−2x2(2)解:根据题意得:30−2x2=2x解得:x=5故长方体的宽为10,高为5,长为30﹣5×2=20则长方体的体积为5×10×20=1000cm3.答:长方体的体积为1000cm3.23.【答案】(1)解:点P运动至点C时,所需时间t=11÷2+10÷1+8÷2=19.5(秒)答:动点P从点A运动至C点需要19.5时间;(2)解:由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则11÷2+x÷1=8÷1+(10﹣x)÷2x=5答:M所对应的数为5.(3)解:P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上则:8﹣t=11﹣2t,解得:t=3.②动点Q在CB上,动点P在OB上则:8﹣t=(t﹣5.5)×1,解得:t=6.75.③动点Q在BO上,动点P在OB上则:2(t﹣8)=(t﹣5.5)×1,解得:t=10.5.④动点Q在OA上,动点P在BC上则:10+2(t﹣15.5)=t﹣13+10,解得:t=18综上所述:t的值为3、6.75、10.5或18.24.【答案】(1)因为x2+2x+2k -4 = 0有两个不相等的实数根所以Δ=b2−4ac>0,即22−4×1×(2k−4)>0所以8k<20,解得:k<5 2(2)因为k<52且k为正整数,所以k=1或2当k=1时,方程化为x2+2x−2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0解得x1=0,x2=2所以k=2,方程的有整数根为x1=0,x2=2.。
一元二次函数、方程和不等式综合训练(含答案)
第二章一元二次函数、方程和不等式综合训练(含答案)一、单空题(本大题共24小题,共120.0分)1.若,,则的取值范围为.2.设,,则M与N的大小关系为:M N3.比较大小:用“”或“”符号填空.4.若,则的最小值是.5.十字相乘法分解因式:.6.设一元二次方程的两个实根为、,则.7.已知正实数a,b满足,则的最小值为.8.若a,b为正数,且,则用符号、、、填空.9.已知正数x、y满足,则x.y的最大值为.10.若对一切恒成立为常数,则k的取值范围是.11.一元二次不等式的解集为或,则一元一次不等式的解集为.12.已知正数a,b满足,则的最小值等于.13.不等式的解集不是空集,则实数a的取值范围是.14.若正数a,b满足,则的最小值为.15.不等式的解集是.16.已知命题“,”是假命题,则实数m的取值范围是.17.若正实数a,b满足,则的最小值为.18.已知a,b为正实数,且,则ab的最小值为.19.已知,,且,则的最小值等于.20.不等式的解集为.21.已知a,b为正实数,且,则的最小值为.22.不等式的解集为.23.不等式的解为24.若对于,不等式恒成立,则实数x的取值范围是.答案和解析1.【答案】2.【答案】3.【答案】4.【答案】35.【答案】6.【答案】427.【答案】108.【答案】9.【答案】10.【答案】11.【答案】12.【答案】3解:因为正数a,b满足,所以,当且仅当时,等号成立,故的最小值为3.故答案为3.13.【答案】14.【答案】16解:正数a,b满足,,当且仅当,也即当时取“”.故答案为:16.15.【答案】16.【答案】17.【答案】解:因为,当且仅当且,即时取等号,故答案为:.18.【答案】4解:,b为正实数,且,,当且仅当时取等号,解可得,即最小值4.故答案为:419.【答案】11解:已知,,且,则,当且仅当时等号成立,则的最小值等于11.故答案为:11.20.【答案】解:由得:,21.【答案】6解:因为a,b为正实数,且,所以,当且仅当时取等号,整理得,解得或舍,则的最小值为6.故答案为:6.22.【答案】解:由得:,解得,所以不等式的解集为.故答案为.23.【答案】解:由得解得,所以不等式的解为.故答案为.24.【答案】解:由已知变形得对任意恒成立,令是关于m的一次函数,对任意恒成立,则只需即综上,解得:,故x的取值范围是.故答案为.。
中考数学《方程与不等式》专题知识训练50题含参考答案
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列方程中,是二元一次方程的是( ). A .20x y +=B .50xy y -=C .32x y z -=D .10y x+=2.一元二次方程240x -=的解是( ) A .2x = B .2x =-C .12x =,22x =-D .0x =3.不等式321132x x -+<-变形正确的是( ) A .()332211x x -<+- B .()()233211x x -<+-C .()()233216x x -<+-D .3944x x -<-4.一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12x x =5.一个关于x 的不等式组的解集在数轴上如图所示,则这个不等式组的解集是( )A .31x -≤≤B .–31x <<C .31x -≤<D .31-<≤x6.一元二次方程x 2﹣2x+2=0的根的情况为( ) A .有两个等根B .有两个不等根C .只有一个实数根D .没有实数根7.设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如下图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列应为( )A .●、▲、■B .■、▲、●C .▲、■、●D .■、●、▲8.用配方法解方程22830x x --=时,原方程可变形为( )A .()2522x -=-B .()21122x -=C .()227x +=D .()227x -=9.已知x=3是分式方程1kx -=3的解,那么实数k 的值为( ). A .1B .32C .6D .910.若关于x 的一元二次方程260x ax -+=的一个根是2,则a 的值为( ) A .2B .3C .12D .511.某班有x 人,分y 组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人.求全班人数,下列方程组中正确的是( )A .7385x y x y -=⎧⎨-=-⎩B .7385y x y x -=⎧⎨-=-⎩C .7385y x y x -=-⎧⎨-=⎩D .7385x y x y -=-⎧⎨-=⎩12.若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +⋅-的值为( )A .353-B .353C .16-.D .1613.方程组43235x y kx y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( )A .2B .1C .3D .414.若关于x 的分式方程3055x mx x--=--有增根,则m 的值为( ) A .2-B .2C .5D .315.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A .2>0,+30x x -≤⎧⎨⎩B .2>0,+30x x -≥⎧⎨⎩C .2<0,+30x x -≤⎧⎨⎩D .2<0,+30x x -≥⎧⎨⎩16.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=17.若x a+b-7+2y 5a-b-3=0是二元一次方程,那么的a 、b 值分别是( ) A .a=2, b=4;B .a=2, b=6;C .a=3, b=5;D .a=3, b=818.关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围在数轴上可以表示为()A .B .C .D .19.下列方程中,没有实数根的是( ) A .2670x x ++= B .25260x x --= C .22270x x -=D .2220x x -+-=20.当x 取何值时,代数式x 2-6x -3的值最小( ) A .0B .-3C .3D .-9二、填空题21.把方程3x +y –1=0改写成含x 的式子表示y 的形式得_____________. 22.方程3x +y =10的正整数解是______.23.用不等式表示:x 与3的和大于6,则这个不等式是______.24.22100x mx x x m ++=--=与 有且只有一个公共实数根,则m 的值是_______. 25.某地区新能源汽车保有量2020年底达到30万辆,2022年底达到41万辆.设该地区这两年新能源汽车保有量的年平均增长率为x ,根据题意可列方程为___________.26.在一本书上写着方程组21x py x y +=⎧⎨+=⎩的解是0.5x y =-⎧⎨=⎩■,其中,y 的值被墨渍盖住了,不过可以解得p =________.27.若关于x 的一元二次方程x 2﹣ax +2=0有两个相等的实数根,则a 的值为_________.28.关于x 的两个方程315x +=-与223x a+=的解相同,则a 的值为______.29.不等式组13{?230x x -+≥<的解集是 .30.已知方程组212x y x y +=⎧⎨-=⎩,则x +2y =_____.31.已知2210x x --=,则43232022x x x x ---+=________.32.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b =_____.33.a 是有理数,b 是____时,方程2x 2+(a +1)x-(3a 2-4a +b )=0的根也是有理数.34.已知m 是不等式组23108m m m -<-⎧⎨<⎩的正整数解,则分式方程221mx x =-+有整数解的概率为___________.35.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设秋千的绳索长为x 尺,根据题意可列方程为____________.36.已知:(x+y-4)2+|x-y-2|=0,则xy =_______.37.若x =﹣1是关于x 的一元二次方程ax 2+bx ﹣2=0(a≠0)的一个根,则代数式2015﹣2a+2b 的值为_____.38.某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为________.39.若关于x 的方程(a+1)x 2+(2a ﹣3)x+a ﹣2=0有两个不相等的实根,且关于x 的方程3111ax x x -=++的解为整数,则满足条件的所有整数a 的和是_____. 40.若不等式组3x x a ≥-⎧⎨<⎩的解集中的整数和为-5,则整数a 的值为___________.三、解答题41.计算:(1)(2)+(2; 用指定方法解下列一元二次方程: (3)x 2﹣36=0(直接开平方法); (4)x 2﹣4x=2(配方法); (5)2x 2﹣5x+1=0(公式法);(6)(x+1)2+8(x+1)+16=0(因式分解法) 42.解方程:8317214x -=-. 43.解下列方程: (1)21104x -=.(2)2420x x --=.44.解下列不等组并把解集表示在数轴上.(1)235321x x -<⎧⎨+≥-⎩;(2)()3241213x x x x ⎧--≤⎪⎨+>-⎪⎩.45.已知22005()x y +与22006x y --的值互为相反数,求:(1)x 、y 的值; (2)20052006xy +的值.46.(1)解方程组:2353212x y x y -=-⎧⎨+=⎩①② (2)解不等式组()121532122x x x ⎧--≤⎪⎨-<+⎪⎩①②,并把解集在数轴上表示出来.47.对于任意实数a 、b 、c 、d ,我们规定 |a c |b d =ad ﹣bc ,若﹣8<1|x x - 15|x x ++ 4,求整数x 的值. 48.解方程组:(1)251 x yx y+=⎧⎨-=⎩(2)4(2)153123x y y x+=-⎧⎪+⎨=-⎪⎩49.已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某市实验中学计划将100500元钱全部用于从该电脑公司购进电脑共36台(1)若全部购进的是两种不同型号的电脑,请你设计出几种不同的购买方案方案供该校选择,并说出理由;(2)能否同时购进三种型号的电脑,若能,请设计出购买方案;若不能,请说明理由.50.1.“最是一年春好处,绝胜烟柳满皇都”,重庆市璧山区的桑葚(俗称桑泡儿)已进入采摘期.云雾山上的某采摘基地开展自助采摘活动.该园区种植了普通桑葚和长果桑葚两个品种,其中长果桑葚水分充沛,个头饱满,售价每千克30元,普通桑葚每千克20元.今年4月30日,普通桑葚销量为400千克,长果桑葚销量为300千克.(1)为降低雨水与降温天气带来的经济损失,果园负责人决定在五月一日当天推出优惠政策以减少库存,经过调查发现,普通桑葚每降价1元,销量将增加25千克.若普通桑葚进行降价售卖,长果桑葚售价和销量与4月30日相同,若五月一日当天销售额为17000元,求普通桑葚每千克降价多少元?(2)由于桑葚深受消费者喜爱,一水果商贩以长果桑葚每千克30元,普通桑葚每千克20元的价格购进这两种桑葚共600千克,其中普通桑葚的数量不超过长果桑葚数量的2倍,且购进总价不超过16000元.商贩将两种桑葚进行售卖,长果桑葚每千克卖40元,普通桑葚利润率为40%,若购进的这些桑葚全部售出,则普通桑葚购进多少千克时该商贩的利润最大,并求出最大利润.参考答案:1.A【分析】根据二元一次方程的定义即可求出答案.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程. 【详解】解:A .该方程是二元一次方程,故符合题意; B .该方程是二元二次方程,故不符合题意;C .该方程含有三个未知数,不是二元一次方程,故不符合题意;D .该方程不是整式方程,故不符合题意. 故选:A .【点睛】本题考查二元一次方程的定义,解题的关键是正确理解二元一次方程的定义,本题属于基础题型. 2.C【分析】根据开平方法,可得方程的解. 【详解】解:240x -=, 移项,得:24x =,开方,得:12x =,22x =-. 故选:C .【点睛】本题考查了解一元二次方程—直接开平方,关键是掌握直接开平方的方法. 3.C【分析】根据不等式的基本性质进行计算即可. 【详解】解:321132x x -+<-, 不等式两边同乘以6得:()()233216x x -+-<,故C 正确. 故选:C .【点睛】本题主要考查了不等式的基本性质,不等式两边同乘一个相同的正数,不等号方向不变. 4.C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 5.C【分析】根据数轴上表示的解集,找出公共部分确定出不等式组的解集即可. 【详解】解:根据数轴可得:这个不等式组的解集为:31x -≤<, 故选:C .【点睛】此题考查了解一元一次不等式组的解集,熟练掌握不等式组的解法及在数轴上表示是解本题的关键. 6.D【详解】∵在方程x 2﹣2x +2=0中,∵=(﹣2)2﹣4×1×2=﹣4<0, ∵该方程没有实数根. 故选D .点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根的判别式△=b 2﹣4ac :当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根. 7.B【分析】本题可先将天平两边相同的物体去掉,比较剩余的数的大小,可知■>▲,2个●=一个▲,即▲>●,由此可得出答案.【详解】解:由图可知1个■的质量大于1个▲的质量,1个▲的质量等于2个●的质量,因此1个▲质量大于1个●的质量, ∵■>▲>● 故选B .【点睛】本题主要考查了不等式的基本性质.掌握不等式两边减去同一个数(或式子),不等号的方向不变是解题的关键. 8.B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】22830x x --=228=3x x ∴-234=2x x ∴-234+4=+42x x ∴-211(2)=2x ∴- 故选:B .【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键. 9.C【详解】根据分式方程的根为x=3,可直接代入原方程1kx -=3得,解这个方程可得k=6. 故选C. 10.D【分析】由题意将2x =代入原方程求解即可.【详解】关于x 的一元二次方程260x ax -+=的一个根是222260a ∴-+=解得5a = 故选:D .【点睛】本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,熟练掌握知识点是解题的关键. 11.C【分析】若每组7人,分为y 组,共有7y 人,还余下3人,则共有7y +3人,可得7y +3=x ; 若每组8人,分为y 组,共有8y 人,最后一组只有3人,说明少了5人,可得8y -5=x .【详解】若每组7人,分为y 组,共有7y 人,还余下3人, 则共有7y +3人,可得7y +3=x ,即7y -x =-3; 若每组8人,分为y 组,共有8y 人, 最后一组只有3人,说明少了5人, 可得8y -5=x ,即8y -x =5;所以可得方程组73 85y xy x-=-⎧⎨-=⎩.故选C.【点睛】考核知识点:二元一次方程组的运用.分析数量关系,列出方程组是关键.12.C【分析】把21xy=-⎧⎨=⎩代入原方程组17ax bybx ay+=⎧⎨+=⎩得21?27a bb a-+=⎧⎨-+=⎩,解出a、b,代入(a+b)(a-b)即可求出答案.【详解】把21xy=-⎧⎨=⎩代入原方程组17ax bybx ay+=⎧⎨+=⎩得21?27a bb a-+=⎧⎨-+=⎩,解得a=-3,b=-5,则(a+b)(a-b)=a2-b2=(-3)2-(-5)2=-16,故答案选C.【点睛】本题考查了二元一次方程和平方差公式,学生们熟练掌握二元一次方程的计算和平方差公式的计算即可.13.B【分析】根据x与y的值代入,把y=x代入方程组求出k的值即可.【详解】解:根据题意得:y=x,代入方程组得:43235x x kx x-=⎧⎨+=⎩,解得:11xk=⎧⎨=⎩,故选B.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值.14.B【分析】先去分母,化成整式方程,根据分式方程355x mx x--=--有增根可得x=5,代入整数方程,求出m的值即可.【详解】355x mx x--=--,方程两边同时乘以x-5得3-x+m=0,∵分式方程3055x m x x--=--有增根, ∵x-5=0,即x=5,当x=5时,3-5+m=0,解得:m=2.故选:B .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值. 15.D【分析】根据数轴可得不等式组解集,分别解各选项中的不等式组即可得答案.【详解】∵∵这个不等式组的解集为:32x ≤<﹣,A 、解不等式组得:无解,故本选项不符合题意,B 、解不等式组得:2x >,故本选项不符合题意,C 、解不等式组得:3x ≤-,故本选项不符合题意,D 、解不等式组得:32x ≤<﹣,故本选项符合题意.故选:D .【点睛】本题考查解一元一次不等式组及在数轴上表示不等式组的解集,根据数轴得出不等式组的解集,正确得出各选项中的不等式组的解集是解题关键.16.A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∵x 2+6x=1,∵x 2+6x+9=10,∵(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键. 17.B【分析】根据二元一次方程的定义可得71531a b a b +-=⎧⎨--=⎩,解二元一次方程组即可.【详解】解:根据题意可得71531a b a b +-=⎧⎨--=⎩, 解得26a b =⎧⎨=⎩, 故选:B .【点睛】本题考查二元一次方程的定义、解二元一次方程组,根据题意列出方程组是解题的关键.18.B【分析】根据已知得出22-4×1×k >0,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【详解】∵关于x 的方程x 2-2x+k=0有两个不相等的实数根,∵22-4×1×k >0,解得:k <1,在数轴上表示为:, 故选B .【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意. 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.20.C【详解】x 2-6x -3= x 2-6x +32-32-3=(x -3)2-12,当x =3时,此时(x -3)2-12最小为-12.故选C.点睛:掌握配方法的应用以及偶次方的非负性.21.y =-3x +1【分析】把x 看做已知数,根据解方程一般步骤,可得答案.【详解】解:3x +y –1=0移项得:31y x =-+故答案为31y x =-+【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .22.17x y =⎧⎨=⎩;24x y =⎧⎨=⎩;31x y =⎧⎨=⎩. 【分析】结合已知条件和所求的问题可知, 解答本题应先将方程化为用x 表示y 的情况, 然后根据解是正整数, 首先确定x 的值, 再进一步求得y 的对应值.【详解】原方程可化为y=10-3x,根据题意,得,当x=1时,y=10-3⨯1=7,当x=2时,y=10-3⨯2=4,当x=3时,y=10-3⨯3=1,当x=4时,y=10-3⨯4=-2(不合题意,舍去),所以, 方程的正整数解是17x y =⎧⎨=⎩;24x y =⎧⎨=⎩;31x y =⎧⎨=⎩, 故答案为:1 7x y =⎧⎨=⎩;24x y =⎧⎨=⎩;31x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程的解, 给出一个未知数的值求出另一个未知数的值即可, 本题先给出x 的值比先给出y 的值简单.本题是一道基础题,要求我们熟练掌握.23.x 36+>【分析】x 与3的和表示为x 3+,大于6即“6>”,据此可得.【详解】解:根据题意知这个不等式为x 36+>,故答案为x 36+>.【点睛】此题主要考查了列一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 24.2【分析】因为有且只有一个公共实数根,将两式相减得出x 的值即为公共实数根,再将结果代入其中一个方程式即可求出m 值.【详解】两式相减,()()2211110x mx x x m mx x m x m m ++-++=+++=+++=得出x=-1,将x=-1代入210x mx ++=,则m=2.故答案为2【点睛】本题考察了知道公共根再代入方程求系数,两个方程式有公共根即说明当他们都等于零时,两个方程式相减有解.25.()230141x +=【分析】可先表示出2021年的产能,那么2021年的产能×(1+增长率)=41,把相应数值代入即可求解.【详解】解:设该地区这两年新能源汽车保有量的年平均增长率为x ,则2021年的产能为()301x +,2022年的产能在2021年产能的基础上增加x ,为()()3011x x ++,则列出的方程是()230141x +=.故答案为:()230141x +=.【点睛】本题考查由实际问题抽象出一元二次方程,此题主要考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.找准等量关系,正确列出一元二次方程是解题的关键.26.53##213 【分析】根据0.5x =-,代入1x y +=中,解得 1.5y =;把0.5x =-, 1.5y =代入2x py +=中,即可求出p 的值.【详解】∵方程组21x py x y +=⎧⎨+=⎩的解是0.5x y =-⎧⎨=⎩■∵0.5x =-代入1x y +=中,解得 1.5y =把0.5x =-, 1.5y =代入2x py += 得30.522p -+= 解得53p =. 故答案为:53. 【点睛】本题考查二元一次方程组的知识,解题的关键是把方程组的解代入方程中求值.27.±【分析】根据方程的系数结合根的判别式Δ=b 2﹣4ac =0,即可得出关于a 的一元二次方程,解之即可得出a 的值.【详解】解:∵关于x 的一元二次方程x 2﹣ax +2=0有两个相等的实数根,∵Δ=(﹣a )2﹣4×1×2=0,解得:a =±故答案为:±【点睛】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.28.9【分析】先求出第一个方程的解,把求出的2x =-代入第二个方程得出123a -+=,再求出a 即可. 【详解】解:解方程315x +=-得2x =-, 即方程223x a +=的解也是2x =-, 代入得:2223a -+=, 解得:9a =,故答案为:9.【点睛】本题考查了同解方程和解一元一次方程,能得出关于a 的方程是解此题的关键.29.-32≤x <4.【详解】试题分析:13{230x x <①②-⋯+≥⋯ 解∵得:x <4,解∵得:x≥-32. 则不等式组的解集是:-32≤x <4. 考点:解一元一次不等式组30.-1【分析】直接用21x y +=与2x y -=作差即可求出答案.【详解】根据方程组:212x y x y +=⎧⎨-=⎩①②, 用∵-∵得:(2)()12x y x y +--=-,化简得:21x y +=-,故填:1-.【点睛】本题考查二元一次方程组的解,解题关键是利用整体思想求解,不需要解方程组.31.2022【分析】把已知等式进行变形,整体代入求值即可.【详解】解:∵2210x x --=,∵221x x =+,∵322x x x =+,43222222(2)52x x x x x x x x =+=++=+,代入43232022x x x x ---+得,222252*********x x x x x x ---++-=故答案为:2022.【点睛】本题考查了代数式求值,解题关键是把已知等式恰当变形,整体代入求值. 32.9【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑,求得a 、b 的值,代入(a +b )b 中即可求出.【详解】解:∵3x 2a +b ﹣3﹣5y 3a ﹣2b +2=﹣1是关于x 、y 的二元一次方程,则2313221a b a b +-=⎧⎨-+=⎩, 解得:a =1,b =2.把a =1,b =2代入,得(a +b )b =9.故答案为:9.【点睛】本题考查了二元一次方程的定义,解题的关键是熟练掌握定义,正确的进行解题.33.1【分析】利用一元二次方程的判别式得出a ,b 的关系,根据已知分析得出b 的值.【详解】解:由求根公式可知当一元二次方程根为有理根时判别式的算术平方根比为有理数.∵=(a+1)2+4×2×(3a 2-4a+b )=25a 2-30a+1+8b要使对任意有理数a ,∵均为有理数,∵必须是a 的完全平方式.∵=302-4×25×(1+8b )=0,解得b=1.故填:1.【点睛】此题主要考查了一元二次方程根的判别式,难度不大,题目比较典型.34.13【分析】先解不等式组求出解集,确定正整数m 的值,再解分式方程,得到方程有整数解时m 的值,然后利用概率公式求解即可.【详解】解:解不等式2310m m -<-,得4m >,所以不等式组23108m m m -<-⎧⎨<⎩的解集为48m <<, ∵正整数5m =,6,7.分式方程去分母得:()()212x m x +=-,整理,得()222m x m -=+,当20m -≠即2m ≠时,222m x m +=-,即622x m =+-, ∵分式方程有整数解,且21x x ≠≠-,,∵只有5m =满足要求,∵分式方程221m x x =-+有整数解的概率为:13. 故答案为:13. 【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.也考查了一元一次不等式组的整数解以及解分式方程.35.(x -4)2+102=x 2【分析】设秋千的绳索长为x 尺,根据题意可得AB =(x -4)尺,利用勾股定理可得x 2=102+(x -4)2.【详解】设秋千的绳索长为x 尺,根据题意可列方程为x 2=102+(x -4)2,故答案为x 2=102+(x -4)2.【点睛】本题考查勾股定理的应用.36.3【详解】试题分析:因为(x +y -4)2+|x -y -2|=0,所以4020x y x y +-=⎧⎨--=⎩, 解得31x y =⎧⎨=⎩, 所以xy =3.故答案为3.分析:本题考查了非负数的性质和二元一次方程组的解法,熟知两个非负数的和为零,则这两个数都为零是解决此题的关键.平方的非负性与绝对值的非负性可以与多个知识点结合进行考查,所以要牢牢掌握.37.2011【分析】把x 1=-代入方程即可求得a b -的值,然后将其整体代入所求的代数式并求值即可.【详解】解:x 1=-是关于x 的一元二次方程()2ax bx 20a 0+-=≠的一个根,a b 20∴--=,a b 2∴-=,()20152a 2b 20152a b 2014222011∴-+=--=-⨯=.故答案为2011.【点睛】本题考查了一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.38.36369201.5x x+-=. 【分析】根据种植亩数=总产量÷平均亩产量,结合改良后的种植面积比原计划少20亩,即可列出关于x 的方程.【详解】解:设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5x 万千克, 依题意,得:36369201.5x x +-=. 故答案为36369201.5x x+-=. 【点睛】本题考查了由实际问题列出分式方程,找准等量关系,正确列出分式方程是解题的关键.39.2【分析】关于一元二次方程(a+1)x 2+(2a-3)x+a-2=0利用一元二次方程的定义和判别式的意义得到a <178 且a≠-1,再解分式方程得到4(3)1x a a =≠--,接着利用分式方程的解为整数得到a=0,2,-1,3,5,-3,然后确定满足条件的a 的值,从而得到满足条件的所有整数a 的和.【详解】∵关于x 的方程(a+1)x 2+(2a ﹣3)x+a ﹣2=0有两个不相等的实根,∵a+1≠0且△=(2a ﹣3)2﹣4(a+1)×(a ﹣2)>0,解得a <178且a≠﹣1. 把关于x 的方程3111ax x x -=++去分母得ax ﹣1﹣x =3,解得4x (a 3)a-1=≠- ∵x≠﹣1, ∵411a ≠--,解得a≠﹣3, ∵41x a =- (a≠﹣3)为整数, ∵a ﹣1=±1,±2,±4,∵a =0,2,﹣1,3,5,﹣3,而a <178且a≠﹣1且a≠﹣3, ∵a 的值为0,2,∵满足条件的所有整数a 的和是2.故答案是:2.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.40.1-或2##2或-1【分析】由不等式组3x x a ≥-⎧⎨<⎩的解集中的整数和为-5,可确定整数解为:3,2x =--或3,2,1,0,1x =---,即可得出整数a 的值.【详解】解:∵3x x a ≥-⎧⎨<⎩, ∵3x a -≤<,∵不等式组3x x a ≥-⎧⎨<⎩的解集中的整数和为-5, ∵3,2x =--或3,2,1,0,1x =---,∵10a -≤<或23a ≤<,则整数a 的值为:1-或2,故答案为:1-或2.【点睛】本题考查了一元一次不等式组的整数解,解决本题的关键是求不等式组的整数解,再确定参数a 的范围.41.(1)(2)31﹣;(3)x1=﹣6,x2=6;(4)x1=2x2;(5)x1x2;(6)x1=x2=﹣5.【分析】(1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;(2)利用平方差公式和完全平方公式计算;(3)直接开平方法求解;(4)配方法求解可得;(5)公式法求解即可;(6)因式分解法解之可得.【详解】解:(1)+(2(2)=6﹣5+12+18﹣=31﹣.(3)x2=36,∵x=±6,即x1=﹣6,x2=6;(4)x2﹣4x+4=2+4,即(x﹣2)2=6,∵x﹣2= ,∵x1=2,x2=2+ ;(5)∵a=2,b=﹣5,c=1,∵b2﹣4ac=25﹣8=17>0,,即x 1= x 2 ; (6)(x+1)2+8(x+1)+16=0(x+1+4)2=0,即(x+5)2=0,∵x+5=0,即x 1=x 2=﹣5.故答案为(1)(2)31﹣;(3)x 1=﹣6,x 2=6;(4)x 1=2x 2;(5)x 1x 2;(6)x 1=x 2=﹣5. 【点睛】本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.42.427x = 【详解】8317214x -=-, 去分母,得1416211x -=-, 移项,得1421116x =-+,合并同类项,得1436x =,系数化为1,得427x =. 【点睛】本题考查了一元一次方程的解法,正确掌握解一元一次方程的方法是解题的关键.解一元一次方程的基本步骤为:∵去分母;∵去括号;∵移项;∵合并同类项;∵未知数的系数化为1.43.(1)12x =,22x =-;(2)12x =22x =【分析】(1)直接用开平方法求解即可;(2)利用配方法求解即可.【详解】解:(1)24x =,12x ∴=,22x =-(2)2420x x --=,2446x x -+=,2(26)x -=,12x ∴=22x =.【点睛】本题考查解一元二次方程.熟练掌握一元二次方程的几种解法并能灵活运用是解题关键.44.(1)14x -<,数轴见解析(2)14x <,数轴见解析【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.(1)解:235321x x -<⎧⎨+≥-⎩①②, 解不等式∵得:4x <,解不等式∵得:1x -,则不等式组的解集为14x -<,将不等式组的解集表示在数轴上如下:(2)()3241213x x x x ⎧--⎪⎨+>-⎪⎩①②, 解不等式∵得:1x ,解不等式∵得:4x <,则不等式组的解集为14x <,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.45.(1) 11x y =⎧⎨=-⎩(2)2. 【分析】(1)根据两个非负数的和为0,那么这两个非负数都为0,可得方程组,即可求得x ,y 的值;(2)将(1)中x 、y 的值代入计算即可得.【详解】(1)由题意()22005x y ++x y 22006--=0,∵020x y x y +=⎧⎨--=⎩, 解得:11x y =⎧⎨=-⎩; (2)当x=1,y=-1时,x 2005+y 2006=12005+(-1)2006=2.【点睛】本题考查了非负数的性质、解二元一次方程组,熟知互为相反数的两个数的和为0;两个非负数的和为0,那么这两个非负数都为0是解题的关键.46.(1)23x y =⎧⎨=⎩;(2)−1≤x <3,在数轴上表示解集见解析. 【分析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,再根据在数轴上表示解集的方法把解集表示出来即可.【详解】解:(1)∵×2+∵×3,得:13x =26,解得x =2,将x =2代入∵,得:6+2y =12,解得y =3,∵方程组的解为23x y =⎧⎨=⎩; (2)解不等式∵,得:x ≥−1,解不等式∵,得:x <3,则不等式组的解集为−1≤x <3,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.47.不等式组的解集是﹣1<x <3, 整数解是0,1,2【分析】首先化简1|x x - 15|x x ++,转化为不等式组,然后解不等式组求得x 的范围,然后确定整数解即可.【详解】解: 1|x x - 15|x x ++()()()15135,x x x x x =-+-+=-根据题意得: 358354,x x ->-⎧⎨-<⎩解∵得x >﹣1,解∵得x <3.则不等式组的解集是﹣1<x <3.则整数解是0,1,2【点睛】考查一元一次不等式组的整数解,读懂题目中定义的运算,列出不等式组是解题的关键.48.(1)21x y =⎧⎨=⎩;(2)31x y =-⎧⎨=⎩ 【分析】(1)∵+∵消去y ,求出x 的值,再把x 的值代入∵,求出y 的值即可;(2)先将原方程组整理为457233x y x y +=-⎧⎨+=-⎩①②,再运用加减消元法求解即可.【详解】(1)251x y x y +=⎧⎨-=⎩①②∵+∵,得36x =,解得2x =.将2x =代入∵,得21y -=,解得1y =.所以方程组的解是21x y =⎧⎨=⎩(2)化简方程组,得457233x y x y +=-⎧⎨+=-⎩①②. 2⨯②,得466x y +=-,∵∵-∵,得1y =,把1y =代入∵,得3x =-,所以方程组的解是31x y =-⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法..49.(1)有两种方案供该校选择,第一种方案是购进A 型电脑3台和C 型电脑33台;第二种方案是购进B 型电脑7台和C 型电脑29台.(2)不能同时购进三种不同品牌的电脑.【分析】(1)分三种情况:一是购买A+B=36,A 的单价×数量+B 的单价×数量=100500;二是购买A+C=36,A 的单价×数量+C 的单价×数量=100500;三是购买B+C=36,B 的单价×数量+C 的单价×数量=100500;(2)先假设能同时购进三种型号的电脑,列出方程组求解即可.【详解】(1)设从该电脑公司购进A 型电脑x 台,购进B 型电脑y 台,购进C 型电脑z 台,则可分以下三种情况考虑:(1)只购进A 型电脑和B 型电脑,依题意可列方程组6000400010050036x y x y +⎩+⎧⎨== 解得21.7557.75x y ⎩-⎧⎨==.不合题意,应该舍去.。
中考数学《方程与不等式》专题知识训练50题含答案
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列方程中,不是一元二次方程的是 ( )A .x 2-4=0B .x 2++4=0C .x 2+2x+1=0D .3x 2+2x+1=0 2.若a b <,则下列不等式正确的是( )A .0a b -<B .55a b -<-C .88a b +<-D .44a b > 3.下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x+2y >0D .x <2x+1 4.文具店促销,将状元牌钢笔连续降价两次,售价由每支10元调至7元.若设平均每次降低的百分率为x .根据题意,可得方程( )A .10(1﹣x )2=7B .10(1﹣x 2)=7C .10(1﹣2x )=7D .10(1+x )2=75.以下关于一元二次方程20(0)ax bx c a ++=≠的根的说法中,正确..的是( ) A .若0a b c ++=,则方程20ax bx c ++=必有一根为-1B .若0a b c -+=,则方程20ax bx c ++=必有一根为1C .若0ac <,则方程20ax bx c ++=必有两个不相等的实数根D .若0b =,则方程20ax bx c ++=一定有两实数根,并且这两根互为相反数 6.明代《算法统宗》有一首饮酒数学诗:“醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生,试问高明能算士,几多醇酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮19瓶酒.试问:其中好酒、薄酒分别是多少瓶?”设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为( )A .1913333x y x y +=⎧⎪⎨+=⎪⎩B .19333x y x y +=⎧⎨+=⎩C .1913333x y x y +=⎧⎪⎨+=⎪⎩D .19333x y x y +=⎧⎨+=⎩7.已知等式a b =,c 为任意有理数,则下列等式中,不一定成立的是( )A .22a c b c +=+B .0ac bc -=C .22a c b c -=-D .a b c c= 8.下列变形正确的是( )A .由ax bx =,则a b =B .由23-x 得32x =-C .由x y =得55x y -=+D .若x y a a=,则x y = 9.下列方程中,是一元一次方程的是( )A .x 2﹣2x =4B .2x ﹣1=3xC .x+y =1D .xy ﹣1=3 10.已知a b <,下列式子不一定成立的是( )A .na nb <B .22a b ->-C .11+<+a bD .11a b -<- 11.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需315元;若购甲4件,乙10件,丙1件,共需420元.现在购买甲、乙、丙各1件,共需( ) A .105元 B .210元 C .170元 D .不能确定12.若二元一次方程组22x y k k x y +=⎧⎪⎨-=⎪⎩的解也是二元一次方程3x ﹣4y=6的解,则k 的值为( )A .4B .8C .6D .﹣613.若关于x 的分式方程52ax x +-=32x -﹣2的解是正整数,且一次函数y =(a ﹣1)x +(a +10)的图象不经过第三象限,则满足条件的所有整数a 的和是( )A .﹣3B .﹣13C .﹣16D .﹣1714.对于三个数a ,b ,c ,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如: 12331243{}3M +=-+-=,,,1}3{12min -=,,,如果}321,13725{{}M x x min x x +--+=+,,,,那么x 的值为( )A .2B .3-或0C .2或4-D .2或315.一元二次方程(1)(3)25x x x +-=-根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于316.贝贝解二元一次方程组2,1,x py x y +=⎧⎨+=⎩得到的解是12x y ⎧=⎪⎨⎪=∆⎩,其中y 的值被墨水盖住了,不过她通过验算求出了y 的值,进而解得p 的值为 ( )A .12 B .1 C .2 D .317.已知某个二元一次方程的一个解是1,2x y =⎧⎨=⎩,则这个方程可能是( ) A .25x y += B .20x y -= C .20x y -= D .2x y = 18.已知a ,b 为实数,且2a ﹣b =4,a ≥﹣2b ,小明和小红分别得出自己的结论,小明:点(a ,b )必在第二象限;小红:a b-有最大值为2;则对于他们的说法你的判断是( )A .小明说的不对,小红说的对B .小明说的对,小红说的不对C .两人说的都对D .两个说的都不对19.将4个数a ,b ,c ,d 排成2行,2列,两边各加一条竖线,记成 a bc d ,并规定 a b ad bc c d =-,例如2 4234121 3=⨯-⨯=,则 33 1x x x =--的根的情况为( ) A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根20.若关于x 的方程12+=+ax x a 无解,则a 的值是(( )A .1B .1-C .2D .2-二、填空题21.()()2211x x x x +=+-不是一元二次方程.( )22.若(m -2)x |m |-1+5y =1是二元一次方程,则m =________.23.不等式213x +>的解集是_________.24.不等式4x >10-x 的解集为__________.25.把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a mb nc a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______.27.若关于x 的方程4x m +=的解为正数,则m 的取值范围是____________. 28.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______. 29.已知|x ﹣y+3|0,则x •y 的值为___.30.已知(a +2b ﹣3)2+|2a +3b ﹣2|=0,则(a +b )2021=___.31.已知点(2,)P m m -关于原点对称的点在第三象限,则m 的取值范围是_______.32.已知关于x 的一元二次方程()2130x k x k ++--=(1)求证:该方程一定有两个不相等的实数根(2)若方程的一个根为4,求另一个根的值33.若关于x ,y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组111122223232a x b y a c a x b y a c +=+⎧⎨+=+⎩的解为______.34.若关于x 的方程(m -3)xm ²-7-x +3=0是一元二次方程,则m 的值是________. 35.若关于x 的一元二次方程x2+2x ﹣m=0有两个相等的实数根,则m 的值为______.36.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5400元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数多100盒,且每盒花的进价比第一批的进价少3元.设第一批盒装花的进价是x 元,则根据题意可列方程为________.37.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则可估计鱼塘中约有鱼________条.38.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是x m y n =⎧⎨=⎩,则关于x ,y 的方程组111122223232a x b y a c a x b y a c -=+⎧⎨-=+⎩的解是 ___.(用含m ,n 的代数式表示).三、解答题39.(1(2)解不等式组 ()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩,并把不等式组的解集在数轴上表示出来.40.计算、解方程(1)计算2(-(2) 解分式方程:2216124x x x --=+- 41.下面是小颖同学解一元一次不等式212236x x ++-<的解答过程,请认真阅读并完成相应任务. 解:去分母,得2(21)(2)12x x +-+<, 第一步去括号,得42212x x +-+<, 第二步移项、合并同类项,得38x <, 第三步两边都除以3,得83x <. 第四步 (1)任务一:填空:①以上运算步骤中,去分母的依据是________________________;①第______步开始出现错误,这一步错误的原因是____________________;(2)任务二:请直接写出正确的计算结果;(3)任务三:除纠正上述错误外,请你根据平时的学习经验,解一元一次不等式时,还需要注意的事项给其他同学提一条建议.42.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?43.计算或解二元一次方程组:(1)(4x 3)①(2x 2y )÷(4x 4);(2)22432x y x y +=⎧⎨+=⎩. 44.解不等式:1﹣12x ->0. 45.解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组2238323x y z x y z x y z ++=⎧⎪+-=⎨⎪-+=⎩,①,②,③小曹同学的部分解答过程如下:解:______+______,得3x +4y =10,①______+______,得5x +y =11,①______与______联立,得方程组3?4? 105?11x y x y +=⎧⎨+=⎩ (1)请你在方框中补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组()()42316326m n p q m n p q m n p q ⎧+++=⎪++-=⎨⎪+-+=⎩,则m +n -2p +q =______.46.如图1,一辆吊车工作时的吊臂AB 最长为20米,吊臂与水平线的夹角①ABC 最大为70°,旋转中心点B 离地面的距离BD 为2米.(1)如图2,求这辆吊车工作时点A 离地面的最大距离AH (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.47.根据下列问题,设出未知数x ,列出关于x 的方程,并将其化为一元二次方程的一般形式.(1)有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数大20,求这个三位数;(2)如果一个直角三角形的两条直角边长之和为14cm ,面积为224cm ,求它的两条直角边的长.48.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2000元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外永久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求大号垃圾桶的单价.参考答案:1.B【详解】试题分析:B 不是整式方程,正确;A 、C 、D 均为整式方程,且满足一元二次方程的定义,故错误;故选B考点:一元二次方程的定义2.A【分析】利用不等式的性质对各选项进行判断.【详解】解:A 、由a <b ,得a -b <0,原变形正确,故此选项符合题意;B 、由a <b ,得-5a >-5b ,原变形错误,故此选项不符合题意;C 、不妨设a =1,b =2,则a +8>b -8,原变形不一定成立,故此选项不符合题意;D 、由a <b ,得44a b ,原变形错误,故此选项不符合题意; 故选A .【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.3.D【分析】根据一元一次不等式定义进行分析即可.【详解】解:A 、1x 是分式,因此1x >3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x+2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x+1是一元一次不等式,故此选项符合题意;故选:D .【点睛】此题主要考查一元一次不等式的识别,解题的关键是熟知其定义.4.A【分析】本题可先列出第一次降价后售价的代数式,再根据第一次的售价列出第二次降价的售价的代数式,然后令它等于7即可列出方程.【详解】解:第一次降价后的售价为10(1﹣x ),则第二次降价后的售价为10(1﹣x )(1﹣x )=10(1﹣x )2=7,①10(1﹣x )2=7.故选:A .【点睛】本题考查了一元二次方程的应用,解题的关键是掌握题意,正确的列出方程. 5.C【分析】根据判断上述方程的根的情况,将1x =±代入方程求出即可,再利用根的判别式2=4∆-b ac 确定系数的符号即可.【详解】解:A.将=1x - 代入方程得:0a b c -+=,故此选项错误;B. 将1x = 代入方程得:0a b c ++=,故此选项错误;C.∵0ac <,∴2=4∆-b ac >0,∴方程20ax bx c ++=必有两个不相等的实数根,故此选项正确;D. ∵0b =,∴2=4∆-b ac =4ac -若a 、c 同号,则∆<0,此方程无实数根,故此选项错误.故选:C .【点睛】此题主要考查了一元二次方程根的情况与判别式的关系:利用2=4∆-b ac >0⇔方程有两个不相等的实数根,以及根的性质是解决问题的关键.6.A【分析】根据题意,列方程求解即可.【详解】解:设有好酒x 瓶,薄酒y 瓶,根据“总共饮19瓶酒”可得:19x y +=根据“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了”,可得:13333x y += 综上:1913333x y x y +=⎧⎪⎨+=⎪⎩, 故选:A【点睛】此题考查了列二元一次方程组,解题的关键是理解题意,正确列出二元一次方程组.7.D【分析】根据等式的基本性质可判断选项是否正确.【详解】解:A 、等式两边同时平方,然后都加c ,即可得到22a c b c +=+,故A 成立; B 、等式两边同时乘以c ,再移项,即可得到0ac bc -=,故B 成立;C 、等式两边同时平方,然后乘以c -,即可得到22a c b c -=-,故C 成立;D 、等式两边都除以c 时,应加条件c≠0,等式不一定成立,故D 不成立;故选:D .【点睛】主要考查了等式的基本性质.解题的关键是掌握等式的基本性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式. 8.D【分析】根据等式的性质逐项判断即得答案.【详解】解:A 、由ax bx =,则当0x ≠时得a b =,故本选项变形错误,不符合题意;B 、由23-x 不能得出32x =-,故本选项变形错误,不符合题意; C 、由x y =得55x y -=-,故本选项变形错误,不符合题意;D 、若x y a a=,则x y =,故本选项变形正确,符合题意; 故选:D .【点睛】本题考查了等式的性质,属于基础题目,熟练掌握等式的基本性质是正确判断的关键.9.B【分析】直接利用一元一次方程的定义分别判断得出答案.【详解】解:A 、x 2﹣2x =4,含未知数项的最高次数是2次,不是一元一次方程,不合题意;B 、2x ﹣1=3x ,是一元一次方程,符合题意; C 、x+y =1,含有2个未知数,不是一元一次方程,不合题意;D 、xy ﹣1=3,含未知数项的最高次数是2次,不是一元一次方程,不合题意; 故选:B .【点睛】本题考查了一元一次方程的识别,判断一个方程是否是一元一次方程,看它是否具备以下三个条件:①只含有一个未知数,①未知数的最高次数是1,①未知数不能在分母里,这三个条件缺一不可.10.A【分析】根据不等式的三个基本性质判断即可.【详解】A 、当n >0时,则有na <nb ;n <0时,则有na >nb ;当n =0时,则na =nb ,故错误;B 、由a <b ,-2<0,则根据不等式的第三个性质知,在a <b 的两边分别乘-2,不等号的方向改变,结论正确;C 、根据不等式的第一个性质知,在a <b 的两边分别加上1,不等号的方向不变,故结论正确;D 、根据不等式的第一个性质知,在a <b 的两边分别减1,不等号的方向不变,故结论正确.故选:A .【点睛】本题考查了不等式的三个基本性质,熟练掌握这三个基本性质是解答本题的基础和关键.11.A【分析】等量关系为:甲3件的总价+乙7件的总价+丙1件的总价=315,4件的总价+乙10件的总价+丙1件的总价=420,把相关数值代入,都整理为等式左边为x +y +z 的等式,设法消去等号右边含未知数的项,可得甲、乙、丙各1件共需的费用.【详解】解:设购买甲、乙、丙各1件分别需要x ,y ,z 元,则依题意37315410420x y z x y z ++=⎧⎨++=⎩, 由①×3﹣①×2得,x +y +z =105,即现在购买甲、乙、丙各1件,共需105元.故选:A .【点睛】本题考查了三元一次方程组的应用;根据总价得到2个等量关系是解决本题的关键;难点是把2个等式整理为只含(x +y +z )的等式.12.B【分析】理解清楚题意,运用三元一次方程组的知识,先用含k 的代数式表示x ,y ,即解关于x ,y 的方程组,再代入3x-4y=6中可得解出k 的数值.【详解】已知22x y k k x y +⎧⎪⎨-⎪⎩=①=②, ①+①得2x=52k , ①x=54k , 代入①得y=2k-54k , ①y=34k . 将x=54k ,y=34k ,代入3x-4y=6, 得3×54k-4×34k=6, 解得k=8.故选B .【点睛】本题的实质是解三元一次方程组,用加减法或代入法来解答.13.B【分析】根据关于x 的分式方程的解是正整数,一次函数图像不经过第三象限可以求得满足条件的a 的值,进而求得所有整数a 的和.【详解】解:53222ax x x +=---, ① 122x a =-, ①关于x 的分式方程53222ax x x +=---的解是正整数, ①122x a=-是正整数且不等于2, ①21,2,3,4,12a -=①1,0,1,2,10a =---①一次函数y =(a ﹣1)x +(a +10)的图象不经过第三象限,①10100a a -<⎧⎨+≥⎩, 解得﹣10≤a <1,①0,1,2,10a =---①满足条件的所有整数a 的和是:()()()0121013+-+-+-=-,故选:B .【点睛】本题考查一次函数的性质,分式方程的解,解答本题关键在于明确题意,求出a 的值,利用一次函数性质和分式方程的知识解答.14.C【分析】依据定义分别求出{3,21,1}M x x +-和min{3,7,25}x x -++,再分三种情况讨论,即可得到x 的值. 【详解】解:3211{3,21,1}13x x M x x x +++-+-==+ 当min{3,7,25}3x x -++=时,73253x x -+≥⎧⎨+≥⎩,解得14x -≤≤, ①{3,21,1}min{3,7,25}M x x x x +-=-++①13x +=,解得2x =,符合条件;当min{3,7,25}7x x x -++=-+时,37257x x x ≥-+⎧⎨+≥-+⎩,解得4x ≥, ①{3,21,1}min{3,7,25}M x x x x +-=-++①17x x +=-+,解得3x =,不符合条件;当min{3,7,25}25x x x -++=+时,325725x x x ≥+⎧⎨-+≥+⎩,解得1x ≤-, ①{3,21,1}min{3,7,25}M x x x x +-=-++①125x x +=+,解得4x =-,符合条件;综上所述:2x =或4x =-故选C .【点睛】本题考查了一元一次方程的应用、解一元一次不等式组.解题的关键是弄清新定义运算规则,并分情况讨论,需要考虑每种情况下x 的取值范围.15.D【详解】分析:直接整理原方程,进而解方程得出x 的值.详解:(x +1)(x ﹣3)=2x ﹣5整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x +2=0,(x ﹣2)2=2,解得:x 13,x 2=23.故选D .点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.16.D 【分析】把12x =代入1x y +=求出y 的值,再把x 、y 的值代入2x py += 即可求出p 的值; 【详解】解:①二元一次方程组2,1,x py x y +=⎧⎨+=⎩得到的解是12x y ⎧=⎪⎨⎪=∆⎩, ①把12x = 代入1x y += 得到12y = 把x 、y 的值代入2x py +=得到:11222p += 解得:3p =故选:D【点睛】本题主要考查了二元一次方程组的解,解决本题的关键是熟记二元一次方程组的解的定义.17.B【分析】把x=1、y=2分别代入所给选项进行判断即可.【详解】解:A 、当x=1,y=2时,2x+y=2+2=4≠5,故1,2x y =⎧⎨=⎩不是方程2x+y=5的解; B 、当x=1,y=2时,2x-y=2-2=0,故1,2x y =⎧⎨=⎩是方程2x-y=0的解; C 、当x=1,y=2时,x-2y=1-4=-3≠5,故1,2x y =⎧⎨=⎩不是方程x-2y=0的解; D 、当x=1,y=2时,x=1≠2y ,故1,2x y =⎧⎨=⎩不是方程x=2y 的解. 故选B .【点睛】本题考查方程解的定义,掌握方程的解使方程的左右两边相等是解题的关键. 18.D【分析】先由条件求得a 和b 的取值范围,然后判断小明和小红的说法.【详解】解:①2a −b =4,a ①−2b ,①2a =4+b ①−4b ,a ①−2(2a −4),解得:45b ≥-,85a , ①点(a ,b )在第四象限或在第一象限或x 轴的正半轴上,小明说的不对;当4<05b -≤时, 由a ①−2b ,得2a b ≤-,故2a b -≥, 此时a b-有最小值2; 当>0b 时,由a ①−2b ,得2a b ≥-,故2a b-≤, 此时a b-有最大值2; 故小红说的也不对,故选:D .【点睛】本题考查了一元一次不等式的解法,不等式的性质,解题的关键是利用消元法得到关于a 或b 的不等式,求得a 和b 的取值范围.19.C【分析】据题意,可以将方程33 1x x x =--转化为一元二次方程,然后根据Δ的值,即可判断根的情况. 【详解】解:①方程33 1x x x =--, ①x 2﹣4x =﹣3,①x 2﹣4x +3=0,①Δ=(﹣4)2﹣4×3×1=4>0, ①方程 33 1x x x =--两个不相等的实数根,故选:C .【点睛】本题考查根的判别式,解答本题的关键是明确题意,会用根的判别式判断根的情况.20.C【分析】根据一元一次方程的解法即可得.【详解】12+=+ax x a ,21ax x a -=-,()21-=-a x a ,要使关于x 的方程()21-=-a x a 无解,则20a -=,解得2a =,故选:C .【点睛】本题考查了解一元一次方程,掌握理解方程无解是解题关键.21.√【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件,再将()()2211x x x x +=+-变形得到2221x x x +=-,即210x -=,结合一元二次方程的一般形式即可解答.【详解】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0.而将()()2211x x x x +=+-变形得到2221x x x +=-,即210x -=,则可得()()2211x x x x +=+-不符合一元二次方程的一般形式,故答案为√.故答案为√.【点睛】本题考查一元二次方程的一般形式,解题的关键是掌握一元二次方程的一般形式.22.-2【分析】从二元一次方程满足的条件:含有2个未知数和最高次项的次数是1这两个方面进行求解即可.【详解】解:①(m ﹣2)x |m |﹣1+5y =1是二元一次方程,①m ﹣2≠0且|m |﹣1=1,解得m =﹣2,故答案为:﹣2.【点睛】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.23.x >1.【详解】移项得,2x >3﹣1,合并同类项得,2x >2,把x 的系数化为1得,x >1.故答案为x >1.24.x >2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:4x +x >10,合并同类项,得:5x >10,系数化为1,得:x >2,故答案为:x >2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.82x y =⎧⎨=⎩【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:①关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ①方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.26.1,14. 【分析】根据配方法解方程的一般步骤进行计算即可.【详解】24830x x ++=,22x x ++34=0,22x x +=-34, 221x x ++=-34+1, 21x +()=14, ①h=1,k=14. 故答案为1,14. 【点睛】本题考查了解一元二次方程+配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.27.4m >【分析】先解一元一次方程,根据题意列出不等式,解不等式即可求解.【详解】解:4x m +=,解得4x m =-,①关于x 的方程4x m +=的解为正数,①40m ->,解得4m >.故答案为:4m >.【点睛】本题考查了解一元一次方程,解一元一次不等式,根据题意列出一元一次不等式是解题的关键.28. 盈利 8%【分析】设成本为a 元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.【详解】解:设成本为a 元,根据题意可得:(1+20%)a•90%-a=0.08a ,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.【点睛】本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.【分析】根据非负性即可得到二次一次方程组,即可求解.【详解】根据题意得:3020x y x y -+=⎧⎨+=⎩, 方程可整理得:320x y x y -=-⎧⎨+=⎩①②, ①+①得:3x =﹣3,解得:x =﹣1,把x =﹣1代入①得:﹣1﹣y =﹣3,解得:y =2,原方程组的解为:12x y =-⎧⎨=⎩, x •y =(﹣1)×2=﹣2,故答案为:﹣2.【点睛】本题考查了解二元一次方程组,非负数的性质:绝对值,非负数的性质:算术平方根,正确掌握绝对值,算术平方根的定义和加减消元法解二元一次方程组是解题的关键.30.-1【分析】首先根据非负数的性质得出方程组,解方程组得到a 、b 的值代入即可.【详解】解:由非负数的性质可得:2302320a b a b +-=⎧⎨+-=⎩, 解得:a =-5,b =4.①(a +b )2021=(-5+4)2021=-1.故答案为:-1.【点睛】此题主要考查了非负数的性质,解二元一次方程组,正确得出a ,b 的值是解题关31.m>2【分析】根据关于原点对称的点的性质可得点P 在第一象限,进而得出不等式组,再解不等式组即可.【详解】解:①点P (m −2,m )关于原点对称的点在第三象限,①点P (m −2,m )在第一象限,①200m m ->⎧⎨>⎩, 解得:m >2,故答案为:m >2.【点睛】此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.32.(1)见详解;(2)另一个根为43【分析】(1)根据一元二次方程根的判别式可直接进行求证;(2)把方程的一个根为4代入方程求出k 的值,然后再进行求解即可.【详解】(1)证明:①关于x 的一元二次方程()2130x k x k ++--=,①()()()222144334b k k c k a ∆=+--==--++,①()230k +≥,①()23440k ∆=++≥>,①该方程一定有两个不相等的实数根(2)解:把方程的一个根为4代入方程得: ()164130k k ++--=,解得:173k =-, ①方程为2148033x x -+=, 解得:1224,3x x ==, ①另一个根为43. 【点睛】本题主要考查一元二次方程的解法及根的判别式,熟练掌握一元二次方程的解法及根的判别式是解题的关键.33.23x y =⎧⎨=⎩ 【分析】将56x y =⎧⎨=⎩代入111222a x b c c a x b y c +=⎧⎨+=⎩得到5(a 1+a 2)+6(b 1+b 2)=c 1+c 2,再将所求方程组两式相加得到3(a 1+a 2)x+2(b 1+b 2)y=c 1+c 2+a 1+a 2,结合两式即可求解.【详解】解:由已知可得,1112225656a b c a b c +=⎧⎨+=⎩①②, ①+①,得5(a 1+a 2)+6(b 1+b 2)=c 1+c 2,111122223232a x b y a c a x b y a c +=+⎧⎨+=+⎩③④, ①+①,得3(a 1+a 2)x+2(b 1+b 2)y=c 1+c 2+a 1+a 2,①3(a 1+a 2)x+2(b 1+b 2)y=6(a 1+a 2)+6(b 1+b 2),①x=2,y=3,故答案为23x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解;掌握二元一次方程与方程组的解的关系,利用恒等式成立的条件求解方程组的解是解题的关键.34.-3【分析】根据一元二次方程的定义可知,二次项系数为2,则可以得到m 2−7=2;再根据一元二次方程中二次项系数不等于零,即可确定m 的值.【详解】解:①该方程为一元二次方程,①m 2−7=2,解得m =±3;当m =3时,m -3=0,则方程的二次项系数是0,不符合题意;①m =-3,故答案为:-3.【点睛】本题考查了一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),解题的关键是特别要注意a ≠0的条件,这是在做题过程中容易忽视的知识点. 35.-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知①=0,求出m 的取值即可.【详解】解:由已知得①=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与①=b 2-4ac 有如下关系:①当①>0时,方程有两个不相等的两个实数根;①当①=0时,方程有两个相等的两个实数根;①当①<0时,方程无实数根.36.54003000100x 3x=+- 【分析】设第一批盒装花的进价是x 元/盒,则第一批进的数量是:3000x ,第二批进的数量是:5400x 3-,再根据等量关系:第二批进的数量=第一批进的数量+100可得方程. 【详解】解:设第一批盒装花的进价是x 元/盒,则54003000100x 3x=+-, 故答案是:54003000100x 3x=+-. 【点睛】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.37.1200【详解】设鱼塘中约有x 条鱼,根据题意得:305200x = 解得:1200x =,经检验,x =1200是原方程的根,即鱼塘中大约有1200条鱼.38.132m x n y +⎧⎪⎪⎨⎪-⎪⎩== 【分析】将待求方程组整理为()()()()111222312312a x b y c a x b y c ⎧-+-⎪⎨-+-⎪⎩==,由原方程组的解将31,2x y --看作整体可得关于x 、y 的方程组,解之可得.【详解】解:将方程组111122223232a x b y a c a x b y a c -=+⎧⎨-=+⎩整理,得: ()()()()111222312312a x b y c a x b y c ⎧-+-⎪⎨-+-⎪⎩==, 根据题意,得:31=2x m y n -⎧⎨-=⎩解得:132m x n y +⎧⎪⎪⎨⎪-⎪⎩==, 故答案为:132m x n y +⎧⎪⎪⎨⎪-⎪⎩==. 【点睛】本题主要考查二元一次方程组的解,解题的关键是由原方程组的解将将31,2x y --看作整体可得关于x 、y 的新方程组.39.(1)1115;(2)x≤1,图见解析. 【分析】(1)根据平方根和立方根的运算化简得到25+3+13-3,再进行计算即可得到答案; (2)先分别求解两个不等式,即可得到不等式的解集,再将解集用数轴表示.【详解】解:(1)原式=25+3+13-3 =1115; (2)()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩①②, 解不等式①,得:x≤1,解不等式①,得:x <4,所以不等式组的解集为:x≤1,在数轴上表示解集如图:.【点睛】本题考查数轴表示解集、平方根和立方根、解一元一次不等式组,解题的关键是掌握用数轴表示解集、平方根和立方根的运算、解一元一次不等式组.40.(1)3(2) 无解. 【分析】(1)先化简为最简二次根式的形式,然后合并同类项;(2)先去分母,然后解方程,最后验根.【详解】(1)原式=3(2)去分母得:()()()221622x x x --=+-化简得:4x=-8解得:2x =-检验:当2x =-时,(2)(2)0x x +-=①2x =-是原方程增根①原方程无解【点睛】本题考查化简二次根式和求解分式方程,注意求解分式方程时,最后我们一定要进行验根处理.41.(1)①“不等式的基本性质2;①二;“去括号时,括号前面是“-”号,去掉括号里面各项没有变号”(2)4x <(3)答案不唯一,见解析【分析】(1)①解不等式过程中去分母,利用的是不等式的基本性质,从而可得答案;①检查去括号,从而可得答案;(2)先去分母,再去括号,移项,合并同类项,把未知数的系数化“1”,从而可得答案; (3)从解不等式的每一步进行思考,再提建议即可.(1)解:①“不等式的基本性质2”或者“不等式的两边同时乘以或除以同一个正数,不等号的方向不变”;①二;“去括号时,括号前面是“-”号,去掉括号里面各项没有变号”,故答案是:不等式的基本性质2,二,去括号时,括号前面是“-”号,去掉括号里面各项没有变号;(2)解:去分母,得2(21)(2)12x x +-+<,去括号,得42212x x +--<,移项、合并同类项,得312x <,两边都除以3,得4x <.。
方程与不等式的综合练习题
方程与不等式的综合练习题一、方程求解1. 解方程:2x + 5 = 15 - 3x解析:将方程两边的项进行整理,得到5x = 10,再将方程两边同时除以5,得到x = 2。
解:方程的解为x = 2。
2. 解方程:3(x + 4) = 2(x - 1) + 5解析:将方程两边的项进行整理,展开并合并同类项,得到3x + 12 = 2x + 3 + 5,简化为3x + 12 = 2x + 8。
将方程移项整理,得到3x - 2x = 8 - 12,简化为x = -4。
解:方程的解为x = -4。
二、不等式求解1. 解不等式:2x - 5 > 7解析:将不等式两边的项进行整理,得到2x > 12,再将不等式两边同时除以2,注意这里要注意不等号的变化,得到x > 6。
解:不等式的解为x > 6。
2. 解不等式:3x + 2 ≤ 5x - 3解析:将不等式两边的项进行整理,得到3x - 5x ≤ -3 - 2,简化为-2x ≤ -5。
由于不等式左边有一个负系数,所以在进行乘法运算时需要改变不等号的方向,得到2x ≥ 5。
最后将解反向得到x ≤ 2.5。
解:不等式的解为x ≤ 2.5。
三、方程与不等式综合1. 已知2x + 5 = 7,求不等式3x - 4 ≤ 8的解集。
解析:首先解方程2x + 5 = 7,得到x = 1。
然后将x = 1代入不等式3x - 4 ≤ 8,得到3 - 4 ≤ 8,即-1 ≤ 8。
解:方程的解为x = 1,不等式的解为-1 ≤ 8。
2. 求满足不等式2x - 3 > x + 4的x的解集。
解析:将不等式两边的项进行整理,得到2x - x > 4 + 3,简化为x > 7。
解:不等式的解为x > 7。
综上所述,方程与不等式的求解是数学中的基础知识点,通过对方程和不等式的综合练习,可以加深对其理解并掌握解题的基本方法。
在解题过程中,要注意将方程或不等式变形、整理,合理运用数学性质和运算法则,从而得到正确的解集。
中考数学《方程与不等式》专题训练50题含答案
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。
中考数学总复习《方程不等式》练习题附带答案
中考数学总复习《方程不等式》练习题附带答案一、单选题1.若m使得关于x,y的二元一次方程组{2x+y=3mx−2y=7有解,且使关于x的一元一次不等式组{x−12−2x≤14x+m≤2有且仅有3个整数解,那么所有满足条件的整数m的值之和是()A.−12B.−11C.−10D.−9 2.a与-x2的和的一半是非负数,用不等式表示为()A.12a−x 2<0B.12a−x2≤0C.12(a−x2)>0D.12(a−x2)≥03.我们规定:[m]表示不超过m的最大整数,例如[3.1]=3,[−3.1]=−4则关于x和y的二元一次方程组{[x]+y=3.2x−[y]=[3.2]的解为()A.{x=3y=0.2B.{x=2y=1.2C.{x=3.3y=0.2D.{x=3.4y=0.24.“五一劳动节”期间,某校开展了以“劳动光荣”以主题的教育活动,该校组织全校教师和部分学生去郊区植树,已知老师平均每小时比学生多植5棵,且老师植树60棵所需的时间与学生植树45棵所需的时间相同,老师平均每小时植树()A.10棵B.15棵C.20棵D.25棵5.用配方法解方程3x2-6x-1=0时方程可变形为()A.(3x-1)2=1B.3(x-1)2= 13C.(x-1)2= 43D.(x-3)2= 136.在有理数范围内定义运算“ ☆”:a☆b=a+b−12如:1☆(−3)=1+−3−12=−1.如果2☆x=x☆(−1)成立,则x的值是()A.−1B.5C.0D.2 7.一元二次方程x2−2x+1=0根的情况是()A.只有一个实数根B.有两个相等的实数根C.没有实数根D.有两个不相等的实数根8.已知a<b,则下列不等式成立的是()A.a+4>b+4B.a−b>0C.2a>2b D.−3a>−3b9.两位同学在解关于x、y的方程组{ax+3y=9①3x−by=2②时甲看错①中的a,解得x=2,y=1乙看错②中的b,解得x=3,y=−1那么a和b的正确值应是()A.a=1.5,b=−7B.a=4,b=2C.a=4,b=4D.a=−7,b=1.510.已知{x=2y=−5是关于x、y的二元一次方程3x-ay=7的一个解,则a的值为()A.5B.15C.- 15D.-511.已知关于x的分式方程m+32x−1=1的解为非负数,则m的取值范围是()A.m≥−4B.m≥−4且m≠−3C.m>−4D.m>−4且m≠−3 12.已知a是方程x2﹣2x﹣3=0的一个根,则代数式2a2﹣4a﹣1的值为()A.3B.﹣4C.3或﹣4D.5二、填空题13.已知{x=2y=1是二元一次方程ax+2y=6的一个解,则a=.14.不等式x+5≤9的非负整数解为.15.已知a为方程x2-x-1=0的一个根,则代数式3a2-3a-2的值为16.设x1、x2是方程x2−mx+m−1=0的两个根.若x1+x2=3,则x1x2=.17.如图,用长为40米的铁丝一边靠墙围成两个长方形(靠墙部分不使用铁丝),墙的长度MN=30米,要使靠墙的AC边不小于25米,那么与墙垂直的一边AB的长度范围为.18.远望巍巍塔七层,红光点点倍加增,共灯三百八十一,试问尖头几盏灯?是盏灯.三、综合题19.为防范疫情,某校欲购置规格分别为300mL和500mL的甲、乙两种消毒液若干瓶,已知购买2瓶甲种和1瓶乙种消毒液需要61元,购买3瓶甲种和4瓶乙种消毒液需要154元.(1)求甲、乙两种消毒液的单价;(2)为节约成本,该校购买散装消毒液进行分装,现需将11.2L的消毒液全部装入最大容量分别为300mL和500mL的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20mL,请问如何分能使总损耗最小?求出此时需要的两种空瓶的数量.20.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE取得最大面积时点E的坐标.21.某市正大力发展绿色农产品,有一种有机水果A特别受欢迎,某超市以市场价格10元/千克在该市收购了6000千克A水果,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格每天每千克上涨0.1元;②平均每天有10千克的该水果损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天.(1)若将这批A水果存放x天后一次性出售,则x天后这批水果的销售单价为元;可以出售的完好水果还有千克;(2)将这批A水果存放多少天后一次性出售所得利润为9600元?22.领队小李带驴友团去某景区,一共12人.景区门票成人每张60元,未成年人按成人票价的五折优惠:(1)若小李买门票的费用是600元,则驴友团中有几名成人?有几名未成年人?(2)若小李按团体票方式买票,①规定人数超过10人不足16人时团体票每张门票打六折;②规定人数超过16人及16人以上时团体票每张门票打五折.请问小李采用哪种形式买票更省钱?23.在平面直角坐标系中,已知点A(0,m),点B(n,0),且m,n满足(m−n)2+√n−4=0.(1)求点A,B的坐标;(2)若点E(x,4)为第二象限内一点,且满足S三角形AOE =13S三角形AOB,求点E的坐标;(3)把线段AB向左平移a(a>0)个单位长度得到线段A1B1.①直接写出点B1的坐标:▲ (用含a的式子表示)②若S四边形ABB1A1=3S三角形AOB,求a的值.24.已知关于x的一元二次方程mx2-2x+2-m=0(1)证明:不论m为何值时方程总有实数根;(2)当m为何整数时方程有两个不相等的整数根。
方程不等式综合练习
方 程 不 等 式综合训练(一)一、选择题1.下列各方程中,属于一元一次方程的是( )A.371x y +=B.x =−2C.1651x x +=− D.x x 210−−= 2.如果单项式532351232a b b a n n m −−和()是同类项,则m 、n 的值是( ) A.m n ==175, B.m n =−=175, C.m n ==01, D.m n ==075, 3.若代数式23x −的值比5−x 的值大5,则x 等于( )A.13B.133C.3D.734.把方程()()()x x x −++−=222102化为一元二次方程的一般形式是( )A.54302x x −−=B.x 250−=C.52102x x −+=D.54602x x −+=5.若方程()a x a x −+=232是关于x 的一元二次方程,则a 的取值范围是( ) A.a ≠2 B.a ≥0 C.a ≥0且a ≠2 D.a 为任意实数6.已知2是关于x 的一元二次方程32202x a −=的一个根,则a 的值为( ) A.2 B.52 C.3 D.727.某工厂原计划每天生产a 个零件,现实际每天多生产b 个零件,则生产m 个零件提前的天数为( ) A.m a m b − B.m a m a b −+ C.m a b + D.m a b m a+−二、填空题8.“某数的23与某数的12的差等于9”,设某数为x ,根据题意可列出方程____________. 9.方程x y +=23的解有__________个.10.已知方程32023x m m ++=是关于x 的一元一次方程,则m =____________.11.若关于x 的方程243x a −=和方程1223()x −=有相同的解,则a =____________. 12.关于x 的方程()()()k k x k x k −++−−+=131302,当k ____________时,它是一元二次方程,当k ____________时,它是一元一次方程.13. 甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的____________倍.14.已知甲数、乙数之和为43,甲数的3倍比乙数的4倍大3,若设甲数为x ,乙数为y ,由题意得方程组:_____________________________________.15.某市财政收入连续三年以8%的速度递增,若第一年的财政收入为a 亿元,则第三年的财政收入为_____________________.三、解答题16.解下列方程(1)65331−−=−()()x x(2)2134152x x −−+=(3)251602x −= (4)x 2+(a +b )x +ab =0 (5)436341x y x y +=+=⎧⎨⎩17.已知x x 210−−=,求x x x 3235+−−的值.18.列方程解应用题:(1)某工厂第一车间人数比第二车间人数的45少30人,如果从第二车间调10人到第一车间,那么第一车间的人数就是第二车间人数的34,求原来每个车间的人数.(2)某商场门口沿马路向东是公园,向西是某中学,该校两名学生从商场出来准备去公园,他们商议了两种方案:I.先步行回学校取自行车,然后骑车去公园.II.直接从商场步行去公园已知他们骑车的速度是他们步行速度的4倍,从商场到学校的距离为3千米,若两种方案所用的时间相同,则商场到公园有多远?(3)某工厂二月份生产钢铁500吨,因管理不善,三月份的钢产量减少了10%,从四月份加强了管理,产量逐月上升,五月份的产量达到648吨,则该厂四、五月份的平均增长率为多少?综合训练(二)一、选择题1.根据不等式的性质,下列变形正确的是( )A.由−<a 1得a <−1B.由−>−21a 得a <12C.由−>122a 得a <2D.由−<−231x 得x >232.x 与5的和不大于-1,用不等式表示为( )A.x +≥−51B.x +<−51C.x +≠−51D.x +≤−513.下列不等式组的求解结果正确的是( )A.不等式组x x >−>−⎧⎨⎩12的解集是x >−2B.不等式组x x >−≤⎧⎨⎩11的解集是−<≤11x C.不等式组x x <≥⎧⎨⎩73无解 D.不等式组x x ≤<⎧⎨⎩13的解集是x <3 4.若()a x a +>+11的解集是x <1,则a 必须满足是( )A.a <0B.a >−1C.a <−1D.a ≤15.不等式1732−>x 的正整数解的个数是( )A.2B.3C.4D.5 6.“x 的2倍与3的和是非负数”列成不等式为( )A.230x +≥B.230x +>C.230x +≤D.230x +<7.如图在数轴上表示是哪一个不等式的解集( )A.x ≥−25.B.x ≤−112C.x ≥−1D.x ≥−1128.不等式组x x +<≥−⎧⎨⎩103的解集为( )A.−≤≤−13xB.−<≤−31xC.−<<−31xD.−≤<−31x二、填空题9.不等式−+≥3120x 的解集为____________.10.代数式32m +的值小于-2,m 的取值范围是_______________.11.若a <0,则关于x 的不等式ax b −≤0的解集是__________.12.若a b −>0,则a −3__________b −3.13.如果ax b a b >>>,,00,则x ___________b a . 14.如果x +23的值不是正数,则x ___________. 15.当m _________时,代数式342243m m +−−的值是非负数.三、解答题16.解不等式21413x x −<+,并将解集在数轴上表示出来.17.解不等式组2483224x x x −<+≥+⎧⎨⎩().18.求不等式32107356−−≤−<+x x x 的整数解.19.已知方程组x y x y a +=−=⎧⎨⎩212的解x 、y 都不大于1,求a 的取值范围..20.把若干苹果分给几只猴子,若每只猴分3个,则余8个;若每只猴分5个,则最后一只猴分得的不足5个,共有多少只猴子?多少个苹果?。
综合算式专项练习题方程与不等式
综合算式专项练习题方程与不等式综合算式专项练习题:方程与不等式一、方程的综合练习题1. 解方程:2x + 5 = 13解析:首先将方程转化为一元一次方程的形式:2x = 13 - 5,化简得到2x = 8。
然后将方程两边同时除以2,得到x = 4。
所以方程的解为x = 4。
2. 解方程:3(x - 2) + 5 = 14解析:首先使用分配律展开括号,得到3x - 6 + 5 = 14。
然后将方程化简为一元一次方程的形式:3x - 1 = 14。
接下来将方程两边同时加上1,得到3x = 15。
最后将方程两边同时除以3,得到x = 5。
所以方程的解为x = 5。
3. 解方程:4x + 6 - 3x = 7 - 2x解析:首先合并同类项,得到x + 6 = 7 - 2x。
然后将方程两边的x 项移到一边,得到x + 2x = 7 - 6。
化简得到3x = 1。
最后将方程两边同时除以3,得到x = 1/3。
所以方程的解为x = 1/3。
二、不等式的综合练习题1. 解不等式:2x - 5 < 11解析:首先将不等式转化为一元一次不等式的形式:2x < 11 + 5,化简得到2x < 16。
然后将不等式两边同时除以2,注意当除以一个负数时需要改变不等式的方向,所以得到x < 8。
所以不等式的解为x < 8。
2. 解不等式:3x + 4 ≥ 7x - 3解析:首先将不等式化简为一元一次不等式的形式:3x - 7x ≥ -3 - 4。
合并同类项得到-4x ≥ -7。
由于不等式两边同时乘以一个负数时需要改变不等式的方向,所以将不等式两边同时乘以-1得到4x ≤ 7。
最后除以4,得到x ≤ 7/4。
所以不等式的解为x ≤ 7/4。
3. 解不等式:5 - 2x > 3x + 1解析:首先将不等式化简为一元一次不等式的形式:5 - 1 > 3x + 2x。
合并同类项得到4 > 5x。
中考数学专项复习《方程不等式》练习题及答案
中考数学专项复习《方程不等式》练习题及答案一、单选题1.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件,共需64元;若购甲4件、乙10件、丙1件,共需79元;现购甲、乙、丙各一件,共需( )元 A .33B .34C .35D .362.某公司今年1月的营业额为2400万元,按计划第一季度的总营业额要达到9200万元,设该公司2,3两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( ) A .2400(1+x)2=9200 B .2400(1+x%)2=9200C .2400(1+x)+2400(1+x)2=9200D .2400+2400(1+x)+2400(1+x)2=92003.已知x >1,x+a =1,则a 的取值范围是( )A .a <0B .a≤0C .a >0D .a≥04.如图,在数轴上,点、分别表示数a 、b ,且a+b=2.若AB=4,则点表示的数为( )A .-1B .-2C .2D .15.如果关于x 的方程x²-2x-k=0没有实数根,那么k 的最大整数值是( )A .-3B .-2C .-1D .06.不等式组{x +2a >42x −b <5的解集是0<x <2,那么a+b =( )A .﹣2B .﹣1C .1D .27.某学校拟建一间长方形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,建成后的活动室面积为75m2,求长方形活动室的长和宽.若设长方形宽为xm ,根据题意可列方程为( )A .x (27-3x )=75B .x (3x-27)=75C .x (30-3x )=75D .x (3x-30)=758.如图,在数轴上表示的是下列哪个不等式( )A.x>−2B.x<−2C.x≥−2D.x≤−29.关于x的方程mx−1+31−x=1解为正数,则m的范围为()A.m≥2且m≠3B.m>2Bm≠3C.m<2且m≠3D.m>210.三角形两边的长分别是8和6,第三边的长是一元二次方程x2−16x+60=0的一个实数根,则该三角形的面积是()A.8√5B.24C.8√5或24D.4√5或2411.若关于x的不等式组{a−x2≤3x−3(2−x)≥2的解集是x≥2,则a的取值范围是()A.a>﹣4B.a≤﹣4C.a<4D.a≤412.某校在操场东边开发出一块长、宽分别为18m、11m的矩形菜园(如图),作为劳动教育系列课程的实验基地之一.为了便于管理,现要在中间开辟一横两纵三条等宽的小道,剩下的用于种植,且种植面积为96m2.设小道的宽为x m,根据题意可列方程为()A.(18−2x)(11−x)=96B.2x2=96C.(18−x)(11−2x)=96D.(18−2x)(11−2x)=96二、填空题13.若关于x的一元二次方程ax2+6x−4=0的解为x1=1,x2=2,则关于y的一元二次方程a(y+1)2+6(y+1)−4=0的解为.14.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,BD⊥CD,若四边形AECD是菱形,则cosC的值为.15.若x=a是方程x2+2x−2=0的一个根,则1−2a2−4a=.16.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”.其意是:有若干人共同买东西,如果每人出8元,则余3元,如果每人出7元,则少4元,问人数及所买东西的价格各是多少?若设有x人合买,则根据题意列出一元一次方程为.17.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送56张照片,如果全班有x名同学,根据题意,列出方程为.18.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始到完全过桥共用了1min,整列火车完全在桥上的时间共40s,则火车的长度为米.三、综合题19.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?20.列方程(组)及不等式(组)解应用题:水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:4月份居民用水情况统计表(注:污水处理的立方数=实际生活用水的立方数)用水量(立方米)缴纳生活用水费用(元)甲用户827.6乙用户1246.3(2)设这个小区某居民用户5月份用水x立方米,需要缴纳的生活用水水费为y元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?21.某体育用品商店欲购进A,B两种品牌的足球进行销售,若购进A种品牌的足球50个,B种品牌的足球25个,需花费成本4250元;若购进A种品牌的足球15个,B种品牌的足球10个,需花费成本1450元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6、7、8章方程(组)、不等式(组)复习资料七年级一元一次方程专题辅导1一、解一元一次方程,要求灵活运用(1)52221+-=--y y y (2)()()()3222516+=---x x x(3)302.02.01.05.01=--+x x (4) x x 6552131=⎪⎭⎫ ⎝⎛-(5)x x =-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-2321412332 (6)13=-x二、一元一次方程的简单应用举例:1、当2=x 时,代数式2-ax 的值是4,那么,当2-=x 时,则这代数式的值为 。
2、已知关于x 的方程0||62=-+k x 的根是–2,则k 的值3、如果方程3x+4=0与方程3x+4k=8的解相同,则k=_________4、当m=___时,方程01352=--m x 是一元一次方程。
5、如果225b a n +与2835b a n +是同类项,则=n ; 6、若0)42(|2|2=-++y x ,则=x ,=y 。
7、当x 时,代数式31--x x 的值与代数式537+-x 的值相等。
8、已知1=x 是方程x x a 2)(312=--的解,那么关于x 的方程)32(2)5(-=--x a x a 的解是多少?9、当k取何值时,代数式31+k比213+k的值小1?10、当k取何值时,方程2(2x-3)=1-2x和8-k=2(x+1)的解相同?数式的值。
三、应用题1.一种货物,连续两次均以10%的幅度降价后,售价为486元,则降价前的售价为__________元。
2. 某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费。
如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么他这个月共用了_________________________立方米的水。
3. 某项工程,甲单独做要x天完成,甲、乙合做要y天完成,那么乙单独完成这项工作要的天数是_______________。
4. 甲队有32人,乙队有28人,现从乙队抽x人到甲队,使甲队是乙队人数的2倍,依题意,列出的方程是_________________。
5. 一种商品,每件成本a元,将成本增加25%定出价格,后因仓库积压减价,按价格的92%出售,每件还能盈利_____________元。
6. 工人师傅制作了一个容积是843cm,高为6cm的长方体盒子,已知盒子底面的长比宽多5cm,那么盒子底面的宽是__________________cm。
7. 把30克盐倒入100克水中,则盐水浓度为_______________,再加入a克水,则盐水的浓度为_________________。
8. A、B两地相距离a千米,甲每小时走5千米,乙每小时走7千米,两人分别从A、B两地同时出发,相向而行,_________________小时相遇。
9. 三个数的比是5:6:7,它们之和是198,则这三个数分别为__________________10. 一个水池装有甲、乙、丙三个进水管,单开甲管45分钟注满水池,单开乙管60分钟注满水池,单开丙管90分钟可注满水池。
如果三管一齐开_________________________分钟注满水池。
11. 为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。
若某用电户四月份的电费平均每度0.5元,问该用户四月应交电费多少元?12. 甲、乙两队学生绿化校园,如果两队合作,6天可以完成;如果单独工作,乙队比甲队多用5天,两队单独工作各要多少天?13. 李明以两种形式储蓄了500元,一种储蓄的年利率是5%,另一种是4%,一年后共得到利息23元5角,两种储蓄各存了多少钱?14. 从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米速度通过平路,到乙地55分钟。
他回来时以每小时8千米的速度通过平路,而以每小时4千米速度上山,回到甲地用112小时,求甲、乙两地的距离。
15. 为了准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。
(1)直接存一个6年期,年利率是2.88%;(2)先存一个3年期的,3年后将本利和自动转存一个3年期。
3年期的年利率是2.7%。
你认为哪种储蓄方式开始存人的本金比较少?七年级二元一次方程组专题辅导2一、解方程组1、 2、3、1153423{=+=-y x y x4、244236{=+=+n m n m5、⎪⎩⎪⎨⎧-+=-+=--152942)3(5)1(2)2(310x y x y二、填空题1、请写出一组x 、y 的值,使它满足方程62=+y x : 。
2、x 的2倍与y 的31的和是6,可以列出方程 。
3、已知 ⎩⎨⎧-==⎩⎨⎧==3221y x y x 和都满足方程y=kx-b ,则k 、b 的值分别为____________________。
4、已知方程()()17112-=+y x ,写出用y 表示x 的式子得________________。
当2=x 时,=y _______ 。
5、已知,则x 与y 之间的关系式为__________________。
6、方程93=+y x 的正整数解是______________。
7、 若方程组 与方程组 的解相同,则 、 x y x y mx ny mx ny m=__n=___+ = - = ⎧ ⎨ ⎩ + = - = ⎧ ⎨ ⎩ 3 1 8 48、某长方形的周长是44cm ,若宽的3倍比长多6cm ,则该长方形的长和宽各是_____________ y=x-2 2x+y=7 2x-3y=10 -4x+y=-510、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,则船在静水中的速度与水流的速度分别是__________________。
三、应用题1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?2、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?3、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?4、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。
5、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?6、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额×20%)。
7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这如果按每吨付运费30元计算,问:货车应付运费多少元?10、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
熟练工人晓云元月份领工资900多元,她记k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?七年级一元一次不等式(组)专题辅导3一、填空题1、不等式组 x <2 的解集是 x <-4 的解集是 x >-4 x >2-x >3 2-3x ≤8不等式组 的解集是 的解集是x <-2 21x-1<1 2、若a<b ,用“<”或“>”号填空:(1)a+l b+l ; (2)a-5 b-5; (3)-3a -3b ; (4)6-a 6-b .3、写出适合不等式2x+3<9的正整数解_____________________。
1-x ≥04、不等式组 的整数解是 .2x-1>-35、代数式1-k 的值大于-1而又不大于3 ,则k 的取值范围是 。
二、解答题1、解不等式和不等式组,并把解集表示在数轴上:(1) 213-x (x-1)≥1; (2)3y-743y ->25y+1(3) 2x+3>5 (4) 11-2(x-3)≥3(x-1)3x-2≤4 x-2>321x -2、当x 取什么值时,代数式312+x -1的值不小于283-x +2的值?三、应用题1、现有住宿生若干,分住若干间宿舍,若每间住4人,还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,求住宿人数和宿舍间数。
2、某校八年级(1)班计划全班同学分成若干组开展数学探究性活动.如果每个组3人,则还余10人;如果每个组5人,则有一个组的学生数最多只有1人.求该班在数学探究性活动中计划分的组数和该班学生数。