高考试卷分类(直线和圆的方程部分)
2022年高考分类题库考点36 圆的方程、直线与圆、圆与圆的位置关系
圆 C:(x+3)2+(y+2)2=1,圆心 C(-3,-2),半径 r=1,
依题意圆心到直线
l
的距离
d=|-3(
(
-3)-4-2 -3)2+22
|≤1,即(5-5a)2≤(a-3)2+22,解得1≤a≤3,即
32
a∈
1 3
,
3 2
.
答案:
1 3
,
3 2
4.(2022·全国甲卷文科)设点 M 在直线 2x+y-1=0 上,点(3,0)和(0,1)均在☉M 上,则☉M 的方程
考点 36 圆的方程、直线与圆、圆与圆的位置关系
1.(2022·北京高考·T3)若直线 2x+y-1=0 是圆(x-a)2+y2=1 的一条对称轴,则 a=
()
A.1
B.-1
C.1
D.-1
2
2
【命题意图】考查直线与圆的位置关系,基础题.
【解析】选 A.因为直线是圆的对称轴,所以直线过圆心.又因为圆心坐标为(a,0),所以由 2a+0-1=0,解
得 a=12.
2.(2022·新高考Ⅰ卷·T14)写出与圆 x2+y2=1 和(x-3)2+(y-4)2=16 都相切的一条直线的方程
.
【命题意图】本题考查圆的切线方程的求法,考查圆与圆位置关系的应用,考查运算求解能力.
【解析】圆 x2+y2=1 的圆心为 O(0,0),半径为 1,圆(x-3)2+(y-4)2=16 的圆心 O1 为(3,4),半径为 4,
若过(0,0),(-1,1),(4,0),
=0
=0
则 16 + 4 + = 0 ,解得 =− 4,
(完整版)全国高考数学直线与圆的方程试题汇编
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
考点19 直线和圆的方程(核心考点讲与练新高考专用)(解析版)
所以 ,则 ,
因为 ,
所以 ,
即 ,
所以 ,
则 ,
所以 , ,
所以 .
故选:C.
二、多选题
6.(2022·湖南衡阳·二模)圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知 、 分别是双曲线 的左、右焦点,点 为 在第一象限上的点,点 在 延长线上,点 的坐标为 ,且 为 的平分线,则下列正确的是()
方法位置
关系
几何法
代数法
相交
d<r
Δ>0
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:
位置关系
相离
外切
相交
内切
内含
几何特征
d>R+r
d=R+r
R-r<
d<R+r
d=R-r
d<R-r
代数特征
无实数解
一组实数解
两组实数解
(2)当两圆相交时求其公共弦所在直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.
6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.
A. B. C. D.
【答案】C
高三数学一轮复习高考总复习测评卷 直线和圆的方程 章末质量检测 文 试题
·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。
2008年高考(直线和圆的方程)(圆锥曲线方程)试题集
2008年高考数学第七章(直线和圆的方程)第八章(圆锥曲线方程)试题集锦2008年普通高等学校招生全国统一考试文科数学(必修+选修I) 3.原点到直线052=-+y x 的距离为 A.1 B.3 C. 2 D.56.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值A.-2B. -4C. -6D. -87设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=aA. 1B.21 C. -21 D.-115.已知F 是抛物线C:x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则ABF ∆的面积等于22. (本大题满分12分)设椭圆中心在坐标原点,)1,0(),0,2(B A 是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点 Ⅰ若DF 6ED =,求k 的值Ⅱ求四边形AEBF 面积的最大值。
2008年普通高等学校招生全国统一考试理科数学(全国Ⅱ) (5)同文科第6题 (9)设1>a ,则双曲线1)1(2222=++a yax 的离心率e 的取值范围是A .)2,2( B. )5,2( C. )5,2( D. )5,2((11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为A .3 B. 2 C. 31- D. 21-(14)设曲线axey =在点(0,1)处的切线与直线012=++y x 垂直,则a= .(15)已知F 为抛物线C :x y 42=的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设FB FA >.则FA 与FB 的比值等于 .(21) 同文科第22题2008年普通高等学校招生全国统一考试文科数学(必修1+选修Ⅰ) (4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30° (B)45° (C)60° (D)12°(10)若直线by a x +=1与图122=+y x 有公共点,则(A)122≤+b a(B) 122≥+b a (C)11122≤+ba(D)11122≥+ba(13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .(14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 (15)在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .(22)(本小题满分12分) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ) 7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-10.若直线1x y a b+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥13.同文科第13题14.同文科第14题15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 21.同文科第22题2008年普通高等学校招生全国统一考试(四川)数 学(文史类) 6、同理科第4题 11、已知双曲线22:1916x y C-=的左右焦点分别为F 1、F 2 ,P 为C 的右支上一点,且||||212P F F F =,则△PF 1F 2 的面积等于(C ) (A )24 (B )36 (C )48 (D )96 14、同理科第14题 22.(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别是F 1和F 2 ,离心率e=,点F 2到右准线l的距离为(Ⅰ)求a b 、的值;(Ⅱ)设M 、N 是右准线l 上两动点,满足0.12F M F M ∙=证明:当.M N 取最小值时,02122F F F M F N ++=. 解:(1)因为c e a=,F 2到l 的距离2ad c c=-,所以由题设得22c a a c c⎧=⎪⎪⎨⎪-=⎪⎩解得,2.c a ==由2222,b a c b =-==得(Ⅱ)由c =,a =2得12(0),0).F F l的方程为x =.故可设12),).M y N y 由120F M F M ∙=知12)0,y y -=得y 1y 2=-6,所以y 1y 2≠0,216y y =-,12112166||||||||||M N y y y y y y =-=+=+≥当且仅当1y =y 2=-y 1,所以,212212(0)))F F F M F N y y ++=-++=(0,y 1+y 2)2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷. 一、选择题:(5'1260'⨯=)4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113yx =-+C .33y x =-D .113yx =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK =,则AFK ∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)A x y ,由A K =,即2222(2)2[(2)]x y x y++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFKA S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值(1,1)到直线60x y -+=的距离d =21.(本小题满分12分)设椭圆22221x y ab+= (0)a b >>的左、右焦点分别为1F 、2F ,离心率2e =,右准线为l ,M 、N 是l 上的两个动点,120F M F N =.(Ⅰ)若12||||F M F N ==a 、b 的值;(Ⅱ)证明:当||M N取最小值时,12F M F N + 与12F F 共线.解析: (Ⅰ)由已知, 1(,0)F c -,2(,0)F c .由2e =2212ca=,∴222a c =. 又222a b c =+,∴22b c =,222a b =. ∴l :2222ac x c cc===,1(2,)M c y ,2(2,)N c y .延长2N F 交1M F 于P ,记右准线l 交x 轴于Q . ∵120F M F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt M Q F ∆≌2Rt F Q N ∆ ∴13QN F Q c ==,2QM F Q c==即1y c =,23y c =.∵12F M F N ==∴22920c c +=,22=,22b =,24a =. ∴2a =,b =(Ⅰ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<.又12F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c--=,整理得:4292094000c c -+=, 22(2)(9200)0c c --=.解得22c =. 但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0F M F N c y c y ⋅=⋅=, ∴21230y y c =-<.22221212122121212222412M Ny y y y y y y y y y y y c=-=+-≥--=-= .当且仅当12y y =-=或21y y =-=时,取等号.此时MN取最小值.此时1212(3,)(,)(4,0)2F M F N c c c F F +=+==. ∴12F M F N + 与12F F共线.(Ⅱ)另解:∵120F M F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c=-.设1M F ,2N F 的斜率分别为k ,1k-.由1()32y k x c y kc x c=+⎧⇒=⎨=⎩,由21()2y x c c y k kx c ⎧=--⎪⇒=-⎨⎪=⎩1213M N y y c k k=-=⋅+≥ .当且仅当13kk=即213k =,3k=±即当M N最小时,3k=此时1212(3,3)(,(3,)(,)(4,0)2c F M F N c kc c kc c c F F +=+-=+== ∴12F MF N+与12F F共线.点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类) (3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 (A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1(8)若双曲线2221613xy p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为(A)2 (B)3 (C)4(15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0 的对称点都在圆C 上,则a = .(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如题(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:2.PM PN -=(Ⅰ)求点P 的轨迹方程;(Ⅱ)设d 为点P 到直线l : 12x =的距离,若22PM PN=,求PMd的值. 解:(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线. 因此半焦距c =2,实半轴a =1,从而虚半轴b所以双曲线的方程为x2-23y=1.(II)解法一:由(I )由双曲线的定义,点P 的轨迹是以M 、N 为焦点,实轴长2a=2的双曲线.因此半焦距e=2,实半轴a=1,从而虚半轴R 所以双曲线的方程为x 2-23y=1.(II)解法二:由(I )及答(21)图,易知|PN|≥1,因|PM|=2|PN|2, ① 知|PM|>|PN|,故P 为双曲线右支上的点,所以|PM|=|PN|+2. ②将②代入①,得2||PN|2-|PN|-2=0,解得44舍去,所以|PN|=14+.因为双曲线的离心率e=c a=2,直线l:x =12是双曲线的右准线,故||P N d=e=2,所以d=12|PN |,因此 2||2||4||4||1||||PM PM PN PN dPN PN ====+(II)解法三:设P (x,y ),因|PN |≥1知|PM |=2|PN |2≥2|PN|>|PN |,故P 在双曲线右支上,所以x ≥1. 由双曲线方程有y 2=3x 2-3. 因此||PN ===从而由|PM |=2|PN |得2x+1=2(4x 2-4x +1),即8x 2-10x+1=0.所以x 8(舍去x 8有4d=x-12=18+.故||14P M d=-=+2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) (3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交(C)外切 (D)内切(8)已知双曲线22221x y ab-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为 (A )22x a-224ya=1 (B)222215x yaa -=(C)222214x yb b -= (D)222215xyb b-= (15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos P M P N M P N-=,求点P 的坐标.解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b ==所以椭圆的方程为221.95xy+=(Ⅱ)由2,1cos P M P N M P N=- 得cos 2.PM PN M PN PM PN =- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN中,4,M N =由余弦定理有2222cos .M NPMPNPM PN M PN =+- ②将①代入②,得 22242(2).PMPNPM PN =+--故点P 在以M 、N 为焦点,实轴长为2213xy -=上.由(Ⅰ)知,点P 的坐标又满足22195xy+=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得22x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为22222222-、-、(-或(-.2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)2.设变量x y ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数5z x y =+的最大值为( )A .2B .3C .4D .57.设椭圆22221(00)x y m n mn+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216xy+= B .2211612xy+= C .2214864xy+= D .2216448xy+=15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 22.(本小题满分14分)同理科第21题2008年普通高等学校招生全国统一考试(天津卷)数学(理工农医类) (2)同文科第2题 (5)设椭圆()1112222>=-+m m ym x上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21 (D)772(13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 . (21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,,一条渐近线的方程是20y -=.(Ⅰ)求双曲线C 的方程; (Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段M N的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.[本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.](Ⅰ)解:设双曲线C 的方程为22221x y ab-=(0,0a b >>).由题设得2292a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145xkx m +-=,整理得222(54)84200k x km x m ----=.此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0k m k m ∆=-+-+>.整理得22540m k+->. ③ 由根与系数的关系可知线段M N 的中点坐标00(,)x y 满足12024254x x km x k+==-,002554m y kx m k=+=-.从而线段M N 的垂直平分线方程为22514()5454mkm y x kkk-=----. 此直线与x 轴,y 轴的交点坐标分别为29(,0)54kmk-,29(0,54mk-.由题设可得2219981||||254542kmmk k ⋅=--.整理得222(54)||k m k -=,0k ≠.将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠.解得0||2k <<或5||4k >.所以k的取值范围是55,)(0)(0,(,)4224(∞-+--∞ . 2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)(11)若A 为不等式组 002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x+y =a 扫过A 中的那部分区域的面积为 (A )34(B)1 (C)74(D)2(14)已知双曲线2212xyn n--=1n =(22)(本小题满分14分)已知椭圆2222:1(0)xyC a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.求证:22cos AB =-θ;(Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-(15).同文科第11题,理科中为填空题 (22).(本小题满分13分)设椭圆2222:1(0)xyC a b a b+=>>过点M ,且焦点为1(0)F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段A B 上取点Q ,满足AP Q B AQ PB =,证明:点Q 总在某定直线上2008年普通高等学校招生全国统一考试数学(文史类)(北京卷) (3)“双曲线的方程为116922=-yx”是“双曲线的准线方程为x =59±”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )即不充分也不必要条件x -y +1≥0,(6)若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是x ≤0, (A)0 (B) 21(C) 1 (D)2(19)(本小题共14分)已知△ABC 的顶点A ,B 在椭圆2234x y +=上,C 在直线l :y =x +2上,且AB ∥l . (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及△ABC 的面积;(Ⅱ)当∠ABC =90°,且斜边AC 的长最大时,求AB 所在直线的方程. 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以1 2.2A B C h S A B h ===(Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-=因为A ,B 在椭圆上,所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以122AB x =-=又因为BC 的长等于点(0,m )到直线l 的距离,即BC =所以22222210(1)11.ACABBCm m m =+=--+=-++所以当m =-1时,AC 边最长.(这时12640=-+ >) 此时AB 所在直线的方程为y =x -1.2008年普通高等学校校招生全国统一考试数学(理工农医类)(北京卷) (4)若点P 到直线x =-1的距离比它到点(2,0)的大1,则点P 的轨迹为 (A )圆 (B )椭圆 (C )双曲线 (D )抛物线x -y +1≥0,(5)若实数x ,y 满足 x +y ≥0, 则z =3x +y的最小值是x ≤0,(A)0 (B)1 (C)3 (D)9(7)过直线y =x 上的一点作圆(x -5)2=2的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,综们之间的夹角为 (A )30° (B )45° (C)60° (D)90° (19)(本小题共14分)已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为l. (Ⅰ)当直线BD 过点(0,1)时,求直线AC 的方程; (Ⅱ)当∠ABC =60°,求菱形ABCD 面积的最大值. 解: (Ⅰ)由题意得直线BD 的方程为y =x +1. 因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =-x +n .由2234,x y y x n⎧+=⎨=-+⎩得2246340.x nx n -+-= 因为A ,C 在椭圆上,所以△=-12n 2+64>0,解得33n -<设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2), 则212121122334,,,.24n n x x x x y x n y x n -+===-+=-+所以12.2n y y +=所以AC 的中点坐标为3.44n n⎛⎫⎪⎝⎭由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭在直线y =x +1上, 所以3144n n =+,解得n =-2.所以直线AC 的方程为2y x =--,即x +y +2=0.(Ⅱ)因为四边形ABCD 为菱形,且60A B C ∠=︒,所以.AB BC CA ==所以菱形ABCD的面积2.S =由(Ⅰ)可得22221212316()().2n AC x x y y -+=-+-=所以2316)(433S n n =-+-<所以当n =0时,菱形ABCD的面积取得最大值2008年普通高等学校招生全国统一考试数学卷(福建)数 学(文史类) (10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是(D )A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)(12)双曲线22221xya b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为(B )A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞] (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .(22)(本小题满分14分) 如图,椭圆2222:1xyC a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.(本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分) 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+yx.(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422nm+=1. ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上. (ⅱ)设AM 的方程为x =xy +1,代入3422yx+=1得(3t 2+4)y 2+6ty -9=0.1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m mm m nm m nm m m nm m y x 由于设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x|y 1-y 2|=.4333·344)(2221221++=-+t t y y y y令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,==所以当04411,41≤1=t λλλ|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=-解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0). 设A (m ,n ),则B (m ,-n )(n ≠0),.13422=+nm……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④由④代入①,得3422yx+=1(y ≠0).当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43xxy +=≠即点M 恒在锥圆C 上.(Ⅱ)同解法一.2008年普通高等学校招生全国统一考试数学卷(福建)数 学(理工农医类) (8) .同文科第10题(11) 同文科第12题x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(21)(本小题满分12分) 如图、椭圆22221(0)x y a b ab+= 的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB + ,求a 的取值范围.(本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.) 解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32O F N =,即132, 3.23bb 解得 2214,a b =+=因此,椭圆方程为221.43xy+=(Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.O A O Ba ABa a O A O BAB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my ab=++=代入整理得22222222()20,a b m y b my b a b +++-= 所以222212122222222,b m b a b y y y y a b ma b m-+==++因为恒有222OA OB AB +<,所以∠AOB 恒为钝角.即11221212(,)(,)0OA OB x yx y x x y y ==+<恒成立.2121212121212(1)(1)(1)()1x x y y m y m y y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b ma b ma b mm a b b a b aa b m+-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0,解得a2或a2(舍去),即a2,综合(i )(ii),a的取值范围为(12+,+∞).解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时, x =1代入22222221(1)1,A y b a y aba-+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2, y A 2>1,即21aa->1,解得a2或a2(舍去),即a2.(ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2). 设直线AB 的方程为y =k (x -1)代入22221,xy ab+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,故x 1+x 2=222222222222222,.a ka k a bx x b a k b a k-=++因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a ba ka ab b k a bk k b a k b a kb a k--+--+=+++.由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立. ①当a 2- a 2 b 2+b 2>0时,不合题意;②当a 2- a 2 b 2+b 2=0时,a2;③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0,解得a 2>32+或a 2>32-(舍去),a>12+,因此a≥12+.综合(i )(ii ),a的取值范围为(12+,+∞).2008年普通高等学校统一考试(广东卷)数学(文科) 6、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A. x + y + 1 = 0B. x + y - 1 = 0C. x - y + 1 = 0D. x - y - 1 = 0 12、若变量x 、y 满足24025000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则32z x y =+的最大值是____70___14、(坐标系与参数方程)已知曲线C 1、C 2的极坐标方程分别为cos 3ρθ=,4cos ρθ=(0ρ≥,02πθ≤<),则曲线C 1与C 2交点的极坐标为6π⎛⎫⎪⎝⎭,6π⎛⎫- ⎪⎝⎭20、(本小题满分14分)设b >0,椭圆方程为222212xy bb+=,抛物线方程为28()x y b =-。
人教版高中数学选修一第二单元《直线和圆的方程》测试卷(答案解析)
一、选择题1.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=2.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b +的最小值为( ) A .72B .4C .1D .53.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D5.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)6.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[-D .22⎡-⎢⎣⎦7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.直线y =x +b 与曲线x =b 的取值范围是( )A .||b =B .-1<b ≤1或b =C .-1≤b <1D .非以上答案9.过点(1,2)的直线被圆229x y +=所截弦长最短时的直线方程是( ) A .250x y +-= B .20x y -= C .230x y -+=D .20x y +=10.若直线y x b =+与曲线3y =2个公共点,则b 的取值范围是( )A.[1-+ B.(11]-- C.[3,1+D .[1,3]-11.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( ) ABCD12.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-二、填空题13.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.光线沿直线30x y -+=入射到直线220x y -+= 后反射,则反射光线所在直线的方程为___________________.16.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.17.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为_____________.18.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.19.若直线y x b =+与曲线y =b 的范围______________.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 过点(2,1)M ,且分别与x 轴正半轴、y 轴正半轴交于点A 、B ,(O 为坐标原点)(1)当ABO 的面积为4时,求直线l 的一般式方程; (2)当MA MB ⋅取最小时,求直线l 的一般式方程.23.已知ABC 的顶点(5,1)A ,直线BC 的方程为6590x y AB --=,边上的中线CM 所在直线方程为250x y --=. (1)求顶点C 的坐标;(2)求AC 边上的高所在直线方程.24.已知圆1C 过点(0,6)A ,且与圆222:10100C x y x y +++=相切于原点,直线:(21)(1)740l m x m y m +++--=.(1)求圆1C 的方程;(2)求直线l 被圆1C 截得的弦长最小值.25.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 26.圆心在直线:10l x y ++=上的经过点(1,2),(1,0)A B -; (1)求圆C 的方程(2)若过点(0,3)D 的直线1l 被圆C 截得的弦长为31l 的方程;【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.2.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.5.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥= 所以实数r的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.6.C解析:C 【分析】在OMN=,从而得到M y =ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,ON=12==整理得M y =由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,My取值最值,所以M y ⎡∈-⎣故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.B解析:B 【分析】作出曲线21x y =-y x b =+,求出直线过半圆直径两端点时的b 值,及直线与半圆相切时的b 值可得结论. 【详解】作出曲线21x y =-,它是单位圆的右半个圆,作出直线y x b =+,如图, 易知(0,1),(1,0)A B -,当直线y x b =+过点A 时,1b =,当直线y x b =+过点B 时,1b =-, 当直线y x b =+与半圆相切时,12b =,2b =±,由图可知2b =-∴b 的取值范围是11b -<≤或2b =-. 故选:B【点睛】本题考查直线与圆的位置关系,解题时要注意曲线是半圆,因此直线过B 点时与半圆有两个交点,直线与半圆相切时,也只有一个公共点,这是易错点.9.A解析:A 【分析】分析可得当弦长最短时,该弦所在直线与过点(1,2)的直径垂直,先求出过点(1,2)的直径的斜率,然后再求出所求直线的斜率,最后由点斜式写出直线的方程即可. 【详解】当弦长最短时,该弦所在直线与过点(1,2)的直径垂直, 圆229x y +=的圆心为(0,0),所以过点(1,2)的直径的斜率为20210-=-, 故所求直线为12-,所求直线方程为12(1)2y x ,即250x y +-=. 故选:A . 【点睛】方法点睛:本题考查直线与圆位置关系的应用,解题关键是明确当弦与圆的直径垂直时,弦长最短,考查逻辑思维能力,属于常考题.10.B解析:B 【分析】将234y x x =--化为22(2)(3)4-+-=x y (3y ≤),作出直线与半圆的图形,利用两个图形有2个公共点,求出切线的斜率,观察图形可得解. 【详解】由234y x x =--得22(2)(3)4-+-=x y (3y ≤),所以直线y x b =+与半圆22(2)(3)4-+-=x y (3y ≤)有2个公共点,作出直线与半圆的图形,如图:当直线经y x b =+过点(4,3)时,341b =-=-, 当直线与圆22(2)(3)4-+-=x y 211=+,解得122b =-或122b =+由图可知,当直线y x b =+与曲线234y x x =-2个公共点时,1221b -<≤-,故选:B 【点睛】关键点点睛:作出直线与半圆的图形,利用切线的斜率表示b 的范围是解题关键.11.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.12.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.二、填空题13.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2 【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.【分析】求得直线与直线的交点的坐标然后求出直线上的点关于直线的对称点的坐标进而可求得直线的方程即为反射光线所在直线的方程【详解】联立解得则直线与直线的交点为设直线上的点关于直线的对称点为线段的中点在 解析:730x y --=【分析】求得直线30x y -+=与直线220x y -+=的交点A 的坐标,然后求出直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点C 的坐标,进而可求得直线AC 的方程,即为反射光线所在直线的方程. 【详解】联立30220x y x y -+=⎧⎨-+=⎩,解得14x y =⎧⎨=⎩,则直线30x y -+=与直线220x y -+=的交点为()1,4A .设直线30x y -+=上的点()3,0B -关于直线220x y -+=的对称点为(),C a b , 线段BC 的中点3(,)22a b M -在直线220xy -+=上,则322022a b-⨯-+=,整理得220a b --=.直线220x y -+=的斜率为2,直线BC 与直线220x y -+=垂直,则213ba ⋅=-+,整理得230ab ++=.所以,220230a b a b --=⎧⎨++=⎩,解得1585a b ⎧=⎪⎪⎨⎪=-⎪⎩,即点1(,55)8C -.所以,反射光线所在直线的斜率为8457115ACk +==-, 因此,反射光线所在直线的方程为()471y x -=-,即730x y --=. 故答案为:730x y --=. 【点睛】运用点关于直线的对称点的坐标的求解是解题关键.16.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:23【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=,进一步求出答案. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离d ==,根据图像的对称性可知2l==所以线段MN 长度的最大值为故答案为: 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.17.或【分析】分类讨论:直线过坐标原点直线不过坐标原点再根据截距的关系求解出直线的方程【详解】当直线过坐标原点时显然直线的斜率存在设代入所以所以所以直线方程为;当直线不过坐标原点时设所以横截距为纵截距为解析:y x =-或11542y x =-+ 【分析】分类讨论:直线过坐标原点、直线不过坐标原点,再根据截距的关系求解出直线的方程. 【详解】当直线过坐标原点时,显然直线的斜率存在,设y kx =,代入()10,10-, 所以1010k -=,所以1k =-,所以直线方程为y x =-; 当直线不过坐标原点时,设()1010y k x -=+,所以横截距为1010k--,纵截距为1010k +,所以()101041010k k --=+,解得14k =-或1k =-(舍),所以直线方程为11542y x =-+,故答案为:y x =-或11542y x =-+. 【点睛】本题考查根据截距关系求解直线方程,难度一般.根据截距的倍数求解直线方程时,要注意直线过坐标原点的情况.18.或【分析】在等腰三角形顶角角平分线上任取一点利用点到两腰所在直线的距离相等可求得顶角角平分线方程再由底边所在直线过点且与顶角角平分线垂直可求得所求直线的方程【详解】在等腰三角形顶角角平分线上任取一点解析:370x y +-=或310x y -+= 【分析】在等腰三角形顶角角平分线上任取一点(),M x y ,利用点M 到两腰所在直线的距离相等可求得顶角角平分线方程,再由底边所在直线过点P 且与顶角角平分线垂直可求得所求直线的方程. 【详解】在等腰三角形顶角角平分线上任取一点(),M x y , 则点M 到直线20x y +-=与740x y -+=的距离相等,=7452x y x y -+=+-.所以,()7452x y x y -+=+-或()7452x y x y -+=-+-,所以,该等腰三角形顶角角平分线所在直线的方程为370x y -+=或6230x y +-=. 由于底边与顶角角平分线垂直.当底边与直线370x y -+=垂直时,且直线370x y -+=的斜率为13, 此时底边所在直线方程为()132y x -=--,即370x y +-=;当底边与直线6230x y +-=垂直时,且直线6230x y +-=的斜率为3-,此时底边所在直线方程为()1123y x -=-,即310x y -+=. 故答案为:370x y +-=或310x y -+=.【点睛】本题考查等腰三角形底边所在直线方程的求解,考查了等腰三角形三线合一的性质以及点到直线距离公式的应用,考查计算能力,属于中等题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或b = 【分析】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<.②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是 解析:53【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离2266521d ==+设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max5||,655OQ ==5 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA ()()2241225-+--=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA=2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.(1)240x y +-=;(2)30x y +-=. 【分析】(1)设直线的截距式方程,结合三角形面积公式即可得解;(2)设直线l 的方程为()12y k x -=-,表示出点A 、B ,进而可得,MA MB ,表示出MA MB ⋅后结合基本不等式即可得解. 【详解】(1)由题意,设直线l 的方程为()1,0,0x ya b a b+=>>, 则142ABO S ab ==△,所以8ab =, 又直线l 过点(2,1)M ,所以211a b +=,所以42a b =⎧⎨=⎩, 所以直线l 的方程为142x y+=即240x y +-=; (2)设直线l 的方程为()12y k x -=-,则12,0A k ⎛⎫-+ ⎪⎝⎭,()0,21B k -+,所以MA =MB ,所以4MA MB ⋅=, 当且仅当21k =时,等号成立,所以当MA MB ⋅取最小时,1k =-(正值舍去), 此时直线方程为12y x -=-+即30x y +-=. 【点睛】关键点点睛:解决本题的关键是设出合理的直线方程,结合两点间距离公式及基本不等式运算即可得解.23.(1)(4,3)C ;(2)250x y --=.【分析】(1)联立直线方程可解得结果;(2)设出()00,B x y ,利用AB 的中点M 在直线CM 上以及点()00,B x y 在直线BC 上,解方程组可得B 的坐标,利用垂直可得斜率,根据点斜式可得所求直线方程. 【详解】 (1)联立6590250x y x y --=⎧⎨--=⎩,解得43x y =⎧⎨=⎩,可得(4,3)C ;(2)设()00,B x y ,则AB 的中点0051,22x y M ++⎛⎫⎪⎝⎭, 则0000659015502x y y x --=⎧⎪⎨++--=⎪⎩,解得(1,3)B --, 又23145AC k -==--,所以AC 边上的高所在直线的斜率12k =,所以AC 边上的高所在直线方程为13(1)2y x +=+,即250x y --=. 【点睛】关键点点睛:求出点B 的坐标是求出AC 边上的高所在直线方程的关键,设()00,B x y ,利用直线BC 的方程和AB 的中点坐标满足CM 的方程可解得点B 的坐标. 24.(1)22(3)(3)18x y -+-=;(2) 【分析】(1)设2221:()()C x a y b r -+-=,根据题意列方程组解得,,a b r 即可得解;(2)求出直线l 所经过的定点(3,1)B ,再根据圆心1C 到直线l 的距离的最大值可求得结果. 【详解】(1)设2221:()()C x a y b r -+-=,圆222:10100C x y x y +++=的圆心2(5,5)C --,半径为则222222()(6)a b r a b r r ⎧-+-=⎪⎪+=⎨=,解得33a b r ⎧=⎪=⎨⎪=⎩, 所以圆1C 的方程为22(3)(3)18x y -+-=.(2)因为:(21)(1)740l m x m y m +++--=,即(27)40x y m x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,所以直线l 过定点(3,1)B , 设圆心1(3,3)C 到直线l 的距离为d,则1||2d C B ≤==,当且仅当1l BC ⊥时,等号成立,所以弦长||AB =≥=.所以直线l 被圆1C 截得的弦长的最小值为. 【点睛】关键点点睛:第二问利用圆心1C 到直线l 的距离的最大值求弦长的最小值是解题关键. 25.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-. 【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.26.(1)22(1)4x y ++=;(2)0x =,或4390x y -+=.【分析】(1)求出线段AB 中垂线方程,由中垂线与直线l 相交求得圆心坐标,再求得半径可得圆标准方程;(2)求得圆心到直线1l 距离为1,检验斜率不存在的直线是否满足题意,在斜率存在时设直线方程为30kx y --=,由圆心到直线的距离可得k ,得直线方程.【详解】(1)由题意得,圆心C 一定在线段AB 的垂直平分线上,0211(1)AB k -==---,线段AB 中点为(0,1), ∴直线AB 的垂直平分线为10x y -+=,∴直线:10l x y ++=与10x y -+=的交点即为圆心C ,坐标为()1,0-.∴圆C 的方程为22(1)4x y ++=,(2)当直线1l 斜率不存在时,方程为0x =,此时圆心到1l 距离为1,截得的弦长为当直线1l 斜率存在时,设为k ,则1:30l kx y --=,圆心(1,0)-到1l距离1d ===∴43k = ∴直线1l 的方程为0x =,或4390x y -+=.【点睛】易错点睛:本题考查求圆的标准方程,考查直线与圆相交弦长问题.已知弦长求直线方程时,须考虑斜率不存在的直线是否满足题意,在斜率存在的情况下,设出直线方程,由圆心到直线的距离列式可得结论.。
2020年新高考(全国卷)数学试卷结构与评析
新高考(全国卷)地区数学试卷结构及题型变化新高考数学考试试卷及试卷结构说明:新高考数学试卷结构:第一大题,单项选择题,共8小题,每小题5分,共40分;第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分.第三大题,填空题,共4小题,每小题5分,共20分。
第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。
单项选择题考点分析:多项选择题考点分析:①新高考全国Ⅰ卷与新高考全国Ⅱ卷相同新高考选择题部分分析:①新高考与之前相比,最大的不同就是增加了多项选择题部分,选择题部分由原来的12道单选题,变成了8道单选题与4道多选题。
这有利于缩小学生选择题部分成绩的差距,过去学生错一道单选题,可能就会丢掉5分,在新高考中,考生部分选对就可以得3分,在一定程度上保证了得分率。
②新高考的单项选择题部分主要考察学生的基础知识和基本运算能力,总体上难度不大,只要认真复习,一般都可以取得一个较好的成绩。
在多项选择题上,前两道较为基础,后两道难度较大,能够突出高考的选拔性功能,总体上来看,学生比以往来讲,更容易取得一个不错的成绩,但对于一些数学基础比较的好的同学来说,这些题比以往应该更有挑战性。
过去,只需要在四个选项中选一个正确答案,现在要在四个选项中,选出多个答案,比以往来说,要想准确的把正确答案全部选出来,确实有一定的难度、③新高考数学试卷的第4题,第6题和第12题都体现了创新性。
第4题,以古代知识为背景,考察同学们的立体几何知识,这体现了数学考试的价值观导向。
弘扬传统文化的同时也鼓励同学们走进传统文化。
近年来,对于这类题目也是屡见不鲜,平时也应该鼓励学生去关注一些古代的数学著作,如《九章算术》,《孙子算经》等等,通过对这些著作的了解,再遇到这类题目时,在一定程度上能够减少恐惧感与焦虑感。
第6题则体现了聚焦民生,关注社会热点。
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。
2010年高考数学试题(大纲课程卷)分类解析(四)——直线和圆的方程、圆锥曲线方程
⑤ 能用解方程组的方法求两条相交直线的交点坐标.
条 平行 直 线 间 的距 离 .
面向量等工具 ,合理 调控综合程度 ,宽角度 、高视点 、多层次 助于高校选拔人才 ,有助于 中学实施素质教育”的原则. 本 年度各地高考数 学大纲卷涉及解 析几何 内容 的试题情 况
理 2 1
椭圆标准方程及其简单 的几何性质 , 抛物线方程 ,两直线垂直 的条件 ,三角形垂心 、重心
收稿 日期 :2 1— 7 3 000— 1
作者简介 :王发成 (9 3 ) 16 一 ,男,河北衡水冀 州人,研 究生学历 ,国家数 学奥林 匹克高级教 练员,河北省劳动模 范、河北省首届 名师,中学特 级教 师。主要从事数 学教育与中学教学研 究.
卷)考 查的特 点与 趋势 ,基本 上继 承和 发扬 了 “ 题型 、 内容 和难度相 对稳 定 ,突 出考 查数 学主 干知 识 。注 重通性 通 法的 同时适度 创新 ”的特 点 ,命题 日趋 成 熟 ,多数 题 目源于教 材 又高 于教 材 ,且 注意知识 的综 合运 用 ,宽 角度 、高视 点 、 多
见下表 .
⑥ 掌握两点间的距 离公 式 、点到直线的距离公式 ,会求两 地考查了解析几何 的基 本思想和学生 的数学素养 ,遵循 了 “ 有
() 2 圆与方程.
① 掌握确定圆的几何要素 ,掌握 圆的标 准方程与一般方程.
② 能根据 给定直线 、圆的方程判断 直线与 圆的位 置关 系 ;
学教 学 实际 ,有针 对性地提 出高考 复 习的几点建议 . 关键词 :命题趋势;试题评析;复习建议
高考直线与圆的方程综合题、典型题
直线与圆的方程综合题、典型题、高考题主讲:曹老师 2012年4月301、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立. 所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2rd >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA == 2)3(92222+--=-=a b CMCB MB,222b a OM += ∴2222)3(9b a a b +=+--②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =u u u r u u u rg,联立方程组,根与系数关系代入得到关于b 的方程比较简单 3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2 = m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m >>即13m 13m >-<或.∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2 = m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围.解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
高考数学专题重组卷第1部分专题15直线与圆的方程 含解析 (2)
专题十五 直线与圆的方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间60分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·广东七校联考)若过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,则实数a 的取值范围是( )A .(-2,1)B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)答案 A解析 解法一:∵过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,∴直线的斜率小于0,即2a -a -13-1+a <0,即a -12+a<0,解得-2<a<1,故选A.解法二:当a =0时,P(1,1),Q(3,0),因为k PQ =0-13-1=-12<0,此时过点P(1,1),Q(3,0)的直线的倾斜角为钝角,排除C,D ;当a =1时,P(0,2),Q(3,2),因为k PQ =0,不符合题意,排除B,故选A.2.(2019·河南天一大联考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5 B .(x +1)2+(y +1)2=5 C .(x -1)2+y 2=5 D .x 2+(y -1)2=5答案 A解析 由题意,得圆心在直线2x -y -1=0上,将点(a,1)代入可得a =1,即圆心为(1,1),半径为r =|2-1+4|5=5,∴圆的标准方程为(x -1)2+(y -1)2=5,故选A. 3.(2019·大庆质检)已知⊙O 1:(x +3)2+y 2=4,⊙O 2:x 2+(y -4)2=r 2(r>0),则“r=3”是“⊙O 1与⊙O 2相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知,⊙O 1的圆心为O 1(-3,0),半径为2,⊙O 2的圆心为O 2(0,4),半径为r.若⊙O 1与⊙O 2相切,则|O 1O 2|=r +2或|O 1O 2|=|r -2|,解得r =3或7,所以“r=3”是“⊙O 1与⊙O 2相切”的充分不必要条件.故选A.4.(2019·景德镇二模)一条光线从点A(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 点A(-2,-3)关于y 轴的对称点为A(2,-3),故可设反射光线所在直线的方程为y +3=k(x -2),即kx -y -2k -3=0.∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得24k 2+50k +24=0,解得k =-43或-34.故选D. 5.(2019·凌源联考)已知直线l :x +y -1=0截圆Ω:x 2+y 2=r 2(r>0)所得的弦长为14,点M,N 在圆Ω上,且直线l′:(1+2m)x +(m -1)y -3m =0过定点P,若PM ⊥PN,则|MN|的取值范围为( )A .[2-2,2+3]B .[2-2,2+2]C .[6-2,6+3]D .[6-2,6+2]答案 D 解析 依题意得2r 2-12=14,解得r =2.因为直线l′:(1+2m)x +(m -1)y -3m =0过定点P,所以P(1,1),设MN 的中点为Q(x,y),则OM 2=OQ 2+MQ 2=OQ 2+PQ 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简可得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32,所以点Q 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆,所以|PQ|的取值范围为⎣⎢⎡⎦⎥⎤6-22,6+22,|MN|的取值范围为[6-2,6+2].故选D.6.(2019·济宁市高三期末)圆C 1:x 2+(y -1)2=1与圆C 2:(x +4)2+(y -1)2=4的公切线的条数为( )A .4B .3C .2D .1 答案 A 解析 ∵|C 1C 2|=0+42+1-12=4,r 1=1,r 2=2,r 1+r 2=1+2=3,∴|C 1C 2|>r 1+r 2,所以圆C 1与圆C 2相离,有4条公切线.故选A.7.(2019·广州市三校联考)已知点P(a,b)(ab≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在直线,直线l 的方程为ax +by =r 2,那么( )A .m ∥l,且l 与圆相交B .m ⊥l,且l 与圆相切C .m ∥l,且l 与圆相离D .m ⊥l,且l 与圆相离 答案 C解析 ∵点P(a,b)(ab≠0)在圆内,∴a 2+b 2<r 2,∵k OP =b a ,直线OP ⊥直线m,∴k m =-ab ,∵直线l 的斜率k l =-ab =k m ,∴m ∥l,∵圆心O 到直线l 的距离d =r2a 2+b 2>r2r =r, ∴l 与圆相离.故选C.8.(2019·惠州市高三第三次调研)已知直线l 过点P(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围为( )A .(-22,22) B.⎝ ⎛⎭⎪⎫-24,24 C .(-2,2) D.⎝ ⎛⎭⎪⎫-18,18 答案 B解析 直线l 为kx -y +2k =0,又直线l 与圆x 2+y 2=2x 有两个交点,故|k +2k|k 2+1<1,得-24<k<24.故选B.9.(2019·宝鸡中学高三一模)平面直角坐标系xOy 中,动点P 到圆(x -2)2+y 2=1上的点的最小距离与其到直线x =-1的距离相等,则P 点的轨迹方程是( )A .y 2=8x B .x 2=8y C .y 2=4x D .x 2=4y 答案 A解析 设动点P(x,y),∵动点P 到直线x =-1的距离等于它到圆:(x -2)2+y 2=1的点的最小距离, ∴|x +1|=x -22+y -02-1,化简得6x -2+2|x +1|=y 2, 当x≥-1时,y 2=8x,当x<-1时,y 2=4x -4<-8,不符合题意. ∴点P 的轨迹方程为y 2=8x.故选A.10.(2019·广州市高三调研)若点P(1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0 答案 D解析 圆方程为(x -3)2+y 2=9,圆心O(3,0), 因为P 为弦MN 的中点,所以OP ⊥MN, 又k OP =1-01-3=-12,所以k MN =2,所以直线MN 的方程为y -1=2(x -1),化简, 得2x -y -1=0.故选D.11.(2019·陕西四校联考)直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定 答案 B解析 将圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,∴圆心坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,半径r =a 2+b 22,∵圆心到直线ax -by =0的距离d =a 2+b22a 2+b 2=a 2+b22=r,∴圆与直线的位置关系是相切.故选B. 12.(2019·黄冈市高三元月调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,则k 的值为( )A .-1B .1C .±1 D.0 答案 A解析 化圆x 2+y 2+2k 2x +2y +4k =0为(x +k 2)2+(y +1)2=k 4-4k +1.则圆心坐标为(-k 2,-1),∵圆x 2+y 2+2k 2x +2y +4k =0关于直线y =x 对称,∴-k 2=-1,得k =±1.当k =1时,k 4-4k +1<0,不符合题意,∴k =-1.故选A.第Ⅱ卷 (非选择题,共40分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·汉中市高三第一次检测)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的最大值是________.答案 43解析 圆C :x 2+y 2-8x +15=0化为标准式为(x -4)2+y 2=1.问题“若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点”可转化为“直线y =kx -2到点(4,0)的距离小于等于2”,则根据点到直线距离公式有d =|4k -2|1+k2≤2,解得0≤k≤43,则k 的最大值为43.14.(2019·安徽淮北、宿迁一模)已知圆O :x 2+y 2=1,定点M(3,0),过点M 的直线l 与圆O 交于P,Q 两点,P,Q 两点均在x 轴的上方,如图,若OP 平分∠MOQ,则直线l 的方程为________.答案 y =-57(x -3) 解析 设∠MOQ =2θ,由S △MOQ =S △POQ +S △POM 得32sin2θ=12sinθ+32sinθ,得cosθ=23,进而得直线的斜率k =-57,故直线方程为y =-57(x -3). 15.(2019·浙江高考)已知圆C 的圆心坐标是(0,m),半径长是r.若直线2x -y +3=0与圆C 相切于点A(-2,-1),则m =________,r =________.答案 -25解析 根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则AB =-2-02+-1-32=25, AC =-2-02+-1-m2=4+m +12,BC =|m -3|.∵直线2x -y +3=0与圆C 相切于点A, ∴∠BAC =90°,∴AB 2+AC 2=BC 2. 即20+4+(m +1)2=(m -3)2, 解得m =-2.因此r =AC =4+-2+12= 5.16.(2019·河北联考)在平面直角坐标系xOy 中,已知A(0,a),B(3,a +4),若圆x 2+y 2=9上有且仅有四个不同的点C,使得△ABC 的面积为5,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-53,53 解析 如图,AB 的斜率k =a +4-a 3-0=43,|AB|=3-02+a +4-a2=32+42=5,设△ABC 的高为h,∵△ABC 的面积为5, ∴S =12|AB|h =12×5h=5,即h =2,直线AB 的方程为y -a =43x,即4x -3y +3a =0.若圆x 2+y 2=9上有且仅有四个不同的点C,则圆心O 到直线4x -3y +3a =0的距离d =|3a|42+-32=|3a|5,则应该满足d <R -h =3-2=1, 即|3a|5<1,得|3a|<5,得-53<a<53. 三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·绵阳二模)已知两圆C 1:x 2+y 2-2x -6y -1=0和C 2:x 2+y 2-10x -12y +45=0.(1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.解 (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11,圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11,∴|r 1-r 2|<d<r 1+r 2,∴圆C 1和圆C 2相交.(2)圆C 1和圆C 2的方程左、右分别相减,得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.18.(本小题满分10分)(2019·湖北稳派教育联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线x -3y +2=0均与圆C 相切.(1)求圆C 的标准方程;(2)设点P(0,1),若直线y =x +m 与圆C 相交于M,N 两点,且∠MPN 为锐角,求实数m 的取值范围.解 (1)设圆C 的标准方程为(x -a)2+(y -b)2=r 2(r>0),由题意,得⎩⎪⎨⎪⎧a >0,b =0,|a|=r ,|a -3b +2|2=r ,解得⎩⎪⎨⎪⎧a =2,b =0,r =2,∴圆C 的标准方程为(x -2)2+y 2=4.(2)由⎩⎪⎨⎪⎧y =x +m ,x -22+y 2=4,消去y 整理,得2x 2+2(m -2)x +m 2=0.∵直线y =x +m 与圆C 相交于M,N 两点, ∴Δ=4(m -2)2-8m 2>0, 解得-2-22<m<-2+22, 设M(x 1,y 1),N(x 2,y 2), 则x 1+x 2=2-m,x 1x 2=m 22.∴PM →=(x 1,y 1-1),PN →=(x 2,y 2-1),依题意,得PM →·PN →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(x 1+m -1)(x 2+m -1)=2x 1x 2+(m -1)(x 1+x 2)+(m -1)2>0,∴m 2+(m -1)(2-m)+(m -1)2>0, 整理,得m 2+m -1>0,解得m<-1-52或m>-1+52.又-2-22<m<-2+22,∴-2-22<m<-1-52或-1+52<m<-2+2 2.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-2-22,-1-52∪⎝ ⎛⎭⎪⎫-1+52,-2+22.。
九种直线和圆的方程的解题方法高考数学一轮复习(新高考专用原卷版)
九种直线和圆的方程的解题方法题型一:直接法求直线方程 一、单选题 1.(2022·全国·高三专题练习)直线l 经过两条直线10x y -+=和2320x y ++=的交点,且平行于直线240x y -+=,则直线l 的方程为( ) A .210x y --= B .210x y -+= C .220x y -+=D .220x y +-=2.(2022·全国·高三专题练习(文))若经过点(1,2)P --的直线与圆225x y +=相切,则该直线在y 轴上的截距为( ) A .52B .5C .52-D .5-3.(2022·浙江·高三专题练习)如图,圆1C 、2C 在第一象限,且与x 轴,直线:l y =均相切,则圆心1C 、2C 所在直线的方程为( )A .y =B .y x =C .y =D .y x =4.(2022·重庆·高三开学考试)若直线l 交圆22:420C x y x y +-+=于A 、B 两点,且弦AB 的中点为()1,0M ,则l 方程为( ) A .10x y --= B .10x y -+=C .10x y +-=D .10x y ++=二、多选题5.(2022·全国·高三专题练习)过点()2,3A 且在两坐标轴上截距相等的直线方程为( ) A .320x y -=B .230x y -=C .5x y +=D .1x y -=-6.(2022·全国·高三专题练习)已知(1,2)A ,(3,4)B -,(2,0)C -,则( ) A .直线0x y -=与线段AB 有公共点 B .直线AB 的倾斜角大于135︒C .ABC 的边BC 上的中线所在直线的方程为2y =D .ABC 的边BC 上的高所在直线的方程为470x y -+=7.(2022·全国·高三专题练习)已知直线l 过点P (-1,1),且与直线1:230l x y -+=以及x 轴围成一个底边在x 轴上的等腰三角形,则下列结论正确的是( ) A .直线l 与直线l 1的斜率互为相反数B .所围成的等腰三角形面积为1C .直线l 关于原点的对称直线方程为210x y +-=D .原点到直线l 8.(2021·全国·模拟预测)已知平面上的线段l 及点P ,任取l 上一点Q ,称线段PQ 长度的最小值为点P 到线段l 的距离,记作(,)d P l .已知线段1:(122)l x y =--≤≤,21:()20l x y =-≤≤,点P 为平面上一点,且满足12(,)(,)d P l d P l =,若点P 的轨迹为曲线C ,A ,B 是第一象限内曲线C 上两点,点(10)F ,且54AF =,BF = ) A .曲线C 关于x 轴对称 B .点A 的坐标为1,14⎛⎫ ⎪⎝⎭C .点B 的坐标为35,22⎛⎫⎪⎝⎭D .FAB 的面积为1916题型二:待定系数法求直线方程一、单选题 1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知抛物线C :22y px =的焦点F 的坐标为()20,,准线与x 轴交于点A ,点M 在第一象限且在抛物线C 上,则当MAMF取得最大值时,直线M A 的方程为( ) A .24y x =+ B .24y x =-- C .y =x +2D .2y x =--2.(2022·全国·高三专题练习)若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为( ) A .3270x y +-= B .3240x y -+= C .2330x y -+=D .2310x y --=3.(2022·全国·高三专题练习)已知直线:20l ax y a +-+=在x 轴与y 轴上的截距相等,则实数a 的值是( ) A .1B .﹣1C .﹣2或1D .2或14.(2022·全国·高三专题练习)过点()1,2作直线l ,满足在两坐标轴上截距的绝对值相等的直线l 有( )条. A .1 B .2C .3D .4二、多选题5.(2021·重庆梁平·高三阶段练习)已知直线l 10y -+=,则下列结论正确的是( )A .直线l 的倾斜角是3πB .若直线m :10x +=,则l m ⊥ C.点到直线l 的距离是2D .过2)与直线l 40y --= 6.(2022·全国·高三专题练习)下列命题正确的是( )A .已知点3(2,)A -,(3,2)B --,若直线(1)1y k x =-+与线段AB 有交点,则34k ≥或4k ≤-B .1m =是直线1l :10mx y +-=与直线2l :()220m x my -+-=垂直的充分不必要条件C .经过点()1,1且在x 轴和y 轴上的截距都相等的直线的方程为20x y +-=D .已知直线1l :10ax y -+=,2l :10x ay ++=,R a ∈,和两点(0,1)A ,(1,0)B -,如果1l 与2l 交于点M ,则MA MB ⋅的最大值是1.7.(2022·全国·高三专题练习)下列说法错误..的是( ) A .若直线210a x y -+=与直线20x ay --=互相垂直,则1a =- B .直线sin 20x y α++=的倾斜角的取值范围是30,,)44[πππ⎡⎤⋃⎢⎥⎣⎦C .()()()()0,1,2,1,3,4,1,2A B CD -四点不在同一个圆上D .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=8.(2021·全国·高三专题练习)直线l 与圆22(2)2x y -+=相切,且l 在x 轴、y 轴上的截距相等,则直线l 的方程可能是A .0x y +=B .20x y +-=C .0x y -=D .40x y +-=三、填空题9.(2022·全国·高三专题练习(理))已知抛物线2:4C y x =的焦点为F ,过焦点F 的直线C 交于11(,)A x y ,22(,)B x y 两点,若21154x x -=,则直线AB 的方程为______. 10.(2020·黑龙江·哈师大附中高三期末(理))若过点()1,1A 的直线l 将圆()()22:324C x y -+-=的周长分为2:1两部分,则直线l 的斜率为___________.四、解答题11.(2022·全国·高三专题练习)已知圆C :()()22214x y -+-=,直线l :()()423360m x m y m ----=.(1)过点()4,2P -,作圆C 的切线1l ,求切线1l 的方程;(2)判断直线l 与圆C 是否相交,若相交,求出直线l 被圆截得的弦长最短时m 的值及最短弦长;若不相交,请说明理由.12.(2022·全国·高三专题练习)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且12||2F F ,点3(1,)2在椭圆C 上.(1)求椭圆C 的方程;(2)过1F 的直线l 与椭圆C 相交于,A B 两点,且2AF B ∆,求以2F 为圆心且与直线l 相切的圆的方程.题型三:已知两直线位置关系求参数值或范围一、单选题 1.(2022·四川凉山·三模(理))已知直线1:210l x y -+=,2:10l x ay +-=,且12l l ⊥,点()1,2P 到直线2l 的距离d =( )A BC D 2.(2022·辽宁·二模)己知直线:0l ax y a ++=,直线:0m x ay a ++=,则l m ∥的充要条件是( ) A .1a =- B .1a = C .1a =± D .0a =二、多选题3.(2021·重庆一中高三阶段练习)下列说法正确的有( )A .若m ∈R ,则“1m =”是“1l :330x my m -+=与2l :()20m x y m +--=平行”的充要条件B .当圆222110x y x +--=截直线l :()1y kx k =+∈R 所得的弦长最短时,1k =-C .若圆1C :222x y t +=+与圆2C :()()22349x y -++=有且仅有两条公切线,则()2,6t ∈D .直线l :tan 412022y x =-︒⋅+的倾斜角为139°4.(2021·广东·高三阶段练习)已知直线l 过点()1,2M 且与圆C :()2225x y -+=相切,直线l 与x 轴交于点N ,点P 是圆C 上的动点,则下列结论中正确的有( ) A .点N 的坐标为()3,0- B .MNP △面积的最大值为10C .当直线l 与直线10ax y -+=垂直时,2a =D .tan MNP ∠的最大值为43三、填空题5.(2022·陕西·安康市高新中学三模(理))若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线l 与直线:20g ax by a ++=平行,则直线l ,g 间的距离为______. 6.(2022·天津·二模)在平面直角坐标系xOy 中,已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,2)-,若对任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为___________.四、解答题7.(2022·全国·高三专题练习)已知曲线32y x x =+-在点0P 处的切线1l 平行于直线410x y --=,且点0P 在第三象限.(1)求0P 的坐标;(2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.8.(2020·江苏·南京师大附中模拟预测)如图,在平面直角坐标系xOy 中,已知圆221:(4)1C x y ++=,圆222:(4)4C x y -+=,A 是第一象限内的一点,其坐标为(,)t t .(1)若1212AC AC →→⋅=-,求t 的值; (2)过A 点作斜率为k 的直线l ,①若直线l 和圆1C ,圆2C 均相切,求k 的值;①若直线l 和圆2C ,圆2C 分别相交于,A B 和,C D ,且AB CD =,求t 的最小值.题型四:求解直线的定点 一、单选题1.(2022·山东滨州·二模)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是( )A .相离B .相切C .相交D .不确定2.(2022·陕西·榆林市教育科学研究所模拟预测(理))在平面直角坐标系xOy 中,已知圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4i P i =,过动点Pi 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的取值范围为( ) A .4,3∞⎛⎫-- ⎪⎝⎭B .4,03⎛⎫- ⎪⎝⎭C .(,7)(4,13)--∞--D .4(7,)1)30(,---二、多选题3.(2022·湖南·长沙市明德中学二模)已知O 为坐标原点,点()P a b ,在直线()40l kx y k --=∈R :上,PA PB ,是圆222x y +=的两条切线,A B ,为切点,则( ) A .直线l 恒过定点()04,B .当PAB △为正三角形时,OP =C .当PA PB ⊥时,k 的取值范围为()7⎡-∞+∞⎣,,D.当14PO PA ⋅=时,a b +的最大值为4.(2022·江苏盐城·三模)设直线l :()220mx y m m R --+=∈,交圆C :()()22349x y -+-=于A ,B 两点,则下列说法正确的有( )A .直线l 恒过定点()1,2B .弦AB 长的最小值为4C .当1m =时,圆C 关于直线l 对称的圆的方程为:()()22439x y -+-=D .过坐标原点O 作直线l 的垂线,垂足为点M ,则线段MC 5.(2022·重庆·高三阶段练习)在平面直角坐标系xOy 中,圆22:1O x y +=,若曲线12y k x =-+上存在四个点()1,2,3,4=i P i ,过动点i P 作圆O 的两条切线,A ,B 为切点,满足32i iP A PB ⋅=,则k 的值可能为( ) A .-7 B .-5 C .-2 D .–1三、双空题6.(2022·北京房山·二模)已知圆()()22:121C x y -+-=和直线():1l y k x =+,则圆心坐标为___________;若点P 在圆C 上运动,P 到直线l 的距离记为()d k ,则()d k 的最大值为___________. 四、填空题7.(2022·河南焦作·三模(文))已知()f x 是定义在R 上的奇函数,其图象关于点(2,0)对称,当[0,2]x ∈时,()f x =()(2)0f x k x --=的所有根的和为6,则实数k 的取值范围是______. 五、解答题8.(2022·全国·高三专题练习)O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,直线l 过点P 且垂直于OQ ,求证:直线过定点.9.(2022·全国·高三专题练习)在平面直角坐标系xoy 中,如图,已知椭圆22195x y +=的左、右顶点为A 、B ,右焦点为F ,设过点(,)T t m 的直线TA 、TB 与此椭圆分别交于点1(M x ,1)y 、2(N x ,2)y ,其中0m >,10y >,20y <(1)设动点P 满足()()13PF PB PF PB +-=,求点P 的轨迹方程;(2)设12x =,213x =,求点T 的坐标;(3)若点T 在点P 的轨迹上运动,问直线MN 是否经过x 轴上的一定点,若是,求出定点的坐标;若不是,说明理由.题型五:直线相关的对称问题一、单选题 1.(2022·全国·高三专题练习(理))集合M 在平面直角坐标系中表示线段的长度之和记为M .若集合(){}22,925A x y xy =≤+≤,(){},B x y y x m ==+,(){},2C x y y kx k ==+-则下列说法中不正确的有( )A .若AB ⋂≠∅,则实数m 的取值范围为{m m -≤ B .存在k ∈R ,使A C ⋂≠∅C .无论k 取何值,都有A C ⋂≠∅D .A C 的最大值为42.(2022·全国·高三专题练习)已知平面向量12312312,,,1,,60e e e e e e e e ︒====.若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++++,则向量1e 与3e 夹角的最大值的余弦值为( )A .B .C .D .二、多选题3.(2022·全国·模拟预测)已知直线:50l x y -+=,过直线上任意一点M 作圆()22:34C x y -+=的两条切线,切点分别为A ,B ,则有( )A .四边形MACB 面积的最小值为B .AMB ∠最大度数为60°C .直线AB 过定点15,22⎛⎫ ⎪⎝⎭D .AB 4.(2022·福建三明·模拟预测)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为B .若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-三、填空题5.(2022·全国·模拟预测)已知平面内点,05n n A ⎛⎫- ⎪⎝⎭,,05n n B ⎛⎫⎪⎝⎭()*n ∈N ,点n C 满足n n n n A C B C ⊥.设n C 到直线()3410x y n n +++=的距离的最大值为n a ,若数列1n a ⎧⎫⎨⎬⎩⎭的前n项和n S m <恒成立,则实数m 能取的最小值是______.6.(2022·天津·南开中学模拟预测)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.7.(2022·广东佛山·模拟预测)已知点1,0A ,()3,0B ,若2PA PB ⋅=,则点P 到直线l :340x y -+=的距离的最小值为____________.四、解答题8.(2022·安徽·蚌埠二中模拟预测(理))在直角坐标系xOy 中,曲线C 的参数方程为22224x t ty t ⎧=-⎨=+⎩(t 为参数). (1)求C 与坐标轴交点的直角坐标;(2)以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 与坐标轴的交点是否共圆,若共圆,求出该圆的极坐标方程;若不共圆,请说明理由.9.(2022·安徽·寿县第一中学高三阶段练习(理))已知直线:sin cos 0l x y a θθ++=,圆()()221:324C x y a +--=,圆2222:340C x y a a +-+=(1)若4θ=,求直线l 的倾斜角;(2)设直线l 截两圆的弦长分别为12,d d ,当23πθ=时,求12d d ⋅的最大值并求此时a 的值.10.(2022·江西南昌·一模(理))已知面积为ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点.(1)求p 的值;(2)求PMN 的外接圆的方程.题型六:几何法求圆的方程一、多选题 1.(2022·广东·模拟预测)三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆O '的圆心在OAB 的欧拉线l 上,O 为坐标原点,点()4,1B 与点()1,4A 在圆O '上,且满足O A O B '⊥',则下列说法正确的是( )A .圆O '的方程为224430x y x y +--+=B .l 的方程为0x y -=C .圆O '上的点到l 的最大距离为3D .若点(),x y 在圆O '上,则x y -的取值范围是⎡-⎣二、填空题2.(2022·河北·模拟预测)圆心为(1,2)C -,且截直线350x y ++=所得弦长为方程为___________.3.(2022·河南·高三阶段练习(文))已知㮋圆1C :()2221024x y b b+=<<的离心率为12,1F 和2F 是1C 的左右焦点,M 是1C 上的动点,点N 在线段1F M 的延长线上,2MN MF =,线段2F N 的中点为P ,则1F P 的最大值为______.4.(2022·天津·高三专题练习)已知圆C 过点(0,1)(2,1)P Q 、两点,且圆心C 在x 轴上,经过点(1,0)M -且倾斜角为钝角的直线l 交圆C 于A ,B 两点,若0CA CB ⋅=(C 为圆心),则该直线l 的斜率为________.5.(2022·全国·高三专题练习)已知圆C :(x -2)2+y 2=2,直线l :y =k (x +2)与x 轴交于点A ,过l 上一点P 作圆C 的切线,切点为T ,若|P A ||PT |,则实数k 的取值范围是______________. 三、解答题6.(2022·内蒙古呼和浩特·二模(理))拋物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :2x =交C 于P ,Q 两点,且OP OQ ⊥.已知点M 的坐标为()4,0,M 与直线l 相切.(1)求抛物线C 和M 的标准方程;(2)已知点()8,4N ,点1A ,2A 是C 上的两个点,且直线1NA ,2NA 均与M 相切.判断直线12A A 与M 的位置关系,并说明理由.7.(2022·江苏·南京市第五高级中学一模)已知O 为坐标原点,抛物线E :22x py =(p >0),过点C (0,2)作直线l 交抛物线E 于点A 、B (其中点A 在第一象限),4OA OB ⋅=-且AC CB λ=(λ>0). (1)求抛物线E 的方程;(2)当λ=2时,过点A 、B 的圆与抛物线E 在点A 处有共同的切线,求该圆的方程8.(2022·全国·高三专题练习)已知平面直角坐标系上一动点(),P x y 到点()2,0A -的距离是点P 到点()10B ,的距离的2倍. (1)求点P 的轨迹方程:(2)若点P 与点Q 关于点()1,4-对称,求P 、Q 两点间距离的最大值;(3)若过点A 的直线l 与点P 的轨迹C 相交于E 、F 两点,()2,0M ,则是否存在直线l ,使BFM S △取得最大值,若存在,求出此时的方程,若不存在,请说明理由.题型七:待定系数法求圆的方程一、单选题 1.(2016·天津市红桥区教师发展中心高三学业考试)已知圆M 的半径为1,若此圆同时与 x轴和直线y = 相切,则圆M 的标准方程可能是( )A .22((1)1x y +-=B .22(1)(1x y -+-=C .22(1)(1x y -+=D .22((1)1x y ++=二、填空题2.(2022·四川眉山·三模(文))已知函数()()()2112819f x x x x =+--.过点()() 1,1A f --作曲线()y f x =两条切线,两切线与曲线()y f x =另外的公共点分别为B 、C ,则ABC 外接圆的方程为___________.3.(2022·安徽·高三阶段练习(文))已知抛物线2:8C x y =,过点(2,2)N -作抛物线C 的两条切线NA ,NB ,切点分别为点A ,B ,以AB 为直径的圆交x 轴于P ,Q 两点,则PQ =_______.4.(2022·天津·高三专题练习)已知抛物线C :24y x =的焦点为F ,抛物线C 上一点A 位于第一象限,且满足3AF =,则以点A 为圆心,AF 为半径的圆的方程为______. 三、解答题5.(2022·全国·高三专题练习)已知圆C 经过点A (0,2),B (2,0),圆C 的圆心在圆x 2+y 2=2的内部,且直线3x +4y +5=0被圆C 所截得的弦长为点P 为圆C 上异于A ,B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)若直线y =x +1与圆C 交于A 1,A 2两点,求12BA BA →→; (3)求证:|AN |·|BM |为定值.6.(2021·江西·高三阶段练习(理))已知圆C 过点(2,1)-,(6,3),(2,3)-. (1)求C 的标准方程;(2)若点(,)P x y 在C 上运动,求34x y -的取值范围.7.(2021·全国·模拟预测)已知点()1,1P 在抛物线C :()220y px p =>上,过点P 作圆E :()()22220y x r r +=->的两条切线,切点为A ,B ,延长PA ,PB 交抛物线于C ,D .(1)当直线AB 抛物线焦点时,求抛物线C 的方程与圆E 的方程; (2)证明:对于任意()0,1r ∈,直线CD 恒过定点.8.(2019·云南·二模(理))已知O 是坐标原点,抛物线C :2x y =的焦点为F ,过F 且斜率为1的直线l 交抛物线C 于A 、B 两点,Q 为抛物线C 的准线上一点,且2AQB π∠=.(1)求Q 点的坐标;(2)设与直线l 垂直的直线与抛物线C 交于M 、N 两点,过点M 、N 分别作抛物线C 的切线1l 、2l ,设直线1l 与2l 交于点P ,若OP OQ ⊥,求MON ∆外接圆的标准方程.题型八:几何法求弦长 一、单选题1.(2022·全国·模拟预测)已知直线 l 过点(A ,则直线 l 被圆O :2212x y +=截得的弦长的最小值为( )A .3B .6C .D .2.(2022·全国·模拟预测)过点()2,2A ,作倾斜角为π3的直线l ,则直线l 被圆22:16O x y +=- )A .1B .2C .3D .6-二、多选题3.(2022·广东·模拟预测)已知圆221:(1)1C x y ++=和圆222:(4)4C x y -+=,过圆2C 上任意一点P 作圆1C 的两条切线,设两切点分别为,A B ,则( )A .线段ABB .线段ABC .当直线AP 与圆2C 相切时,原点O 到直线AP 的距离为65D .当直线AP 平分圆2C 的周长时,原点O 到直线AP 的距离为45三、填空题4.(2022·河北唐山·三模)直线:0+-=l x m 与圆22:480+--=C x y x 交于A 、B 两点,且6⋅=-CA CB ,则实数m =_______. 四、解答题5.(2022·全国·高三专题练习)已知点()()1,0M m m ->,不垂直于x 轴的直线l 与椭圆22:143x y C +=相交于()11,A x y ,()22,B x y 两点.(1)若M 为线段AB 的中点,证明:212112y y x x ->-; (2)设C 的左焦点为F ,若M 在①AFB 的角平分线所在直线上,且l 被圆224x y +=截得的弦长为l 的方程.6.(2021·湖北·武汉市第六中学高三阶段练习)已知圆O :x 2+y 2=2,过点A (1,1)的直线交圆O,且与x 轴的交点为双曲线E :2222x y a b-=1的右焦点F (c ,0)(c >2),双曲线E 的离心率为32.(1)求双曲线E 的方程; (2)若直线y =kx +m (k <0,k ≠m >0)交y 轴于点P ,交x 轴于点Q ,交双曲线右支于点M ,N 两点,当满足关系111||||||PM PN PQ +=时,求实数m 的值.7.(2022·全国·高三专题练习)已知椭圆()2222:10x y E a b a b+=>>0y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN 面积的最大值,并求出此时直线l 的方程.题型九:利用点到直线的距离解决圆上点与直线上点的距离问题一、单选题 1.(2022·江苏扬州·模拟预测)已知直线():130l a x y -+-=,圆22:(1)5C x y -+=.则“32a =”是“l 与C 相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2022·重庆南开中学模拟预测)已知圆2220x y x a +-+=上仅存在一个点到直线30x +=的距离为1,则实数a 的值为( )A .-2B .C .-1D .03.(2022·全国·高三专题练习(文))圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为( )A 1B .2C .2D .04.(2022·安徽·寿县第一中学高三阶段练习(理))过直线34110x y -+=上一动点P 作圆22:2210C x y x y +--+=的两条切线,切点分别为,A B ,则四边形PACB 的面积的最小值为( )AB C .3D二、多选题5.(2022·湖南·长郡中学高三阶段练习)已知点P 在圆22:4O x y +=上,点()3,0A ,()0,4B ,则( )A .点P 到直线AB 的距离最大值为225B .满足AP BP ⊥的点P 有2个C .过点B 作圆O 的两切线,切点分别为M 、N ,则直线MN 的方程为1y =D .2PA PB +的最小值是6.(2022·重庆·二模)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( )A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上 三、填空题7.(2022·四川省泸县第二中学模拟预测(理))过直线0x y m --=上动点P 作圆2:(2)(3)1M x y -+-=的一条切线,切点为A ,若使得1PA =的点P 有两个,则实数m 的取值范围为___________.8.(2022·贵州遵义·三模(理))圆22:2O x y +=上点P 到直线3410:x y l +=距离的最小值为__________. 四、解答题9.(2022·广东茂名·模拟预测)已知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点. (1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切.。
2020年高考“直线和圆的方程”专题命题分析
高中数学解析几何中直线和圆的方程的主要内容包括直线方程、圆的方程、直线与圆的位置关系、圆与圆的位置关系等内容.直线和圆的方程是解析几何初步的主要内容,也是学生学习圆锥曲线的基础,同时又与平面几何、平面向量和三角函数等都有着内在联系.该部分内容的学习是学生运用平面直角坐标系将思维认识从一维到二维逐渐丰富的重要过程,同时也是将函数与方程两者融会贯通的过程.一、考点分析2020年高考数学试卷中直线和圆方程的试题注重考查主干知识,突出对学生能力和素养的考查,体现重思维、重应用、重创新的指导思想,除全国新高考试卷的题型有变化外,其他试卷题型基本稳定.直线和圆的方程的相关试题主要考查了圆的方程、直线与圆的位置关系判定、圆的切线方程、点到直线的距离、轨迹问题、利用圆求最值等内容.在考查中坚持基础与能力并重,保持几何与代数交会,突出运用坐标法研究图形几何性质的解析几何本色.基础题考查目标明确,立足于直线与圆的方程及其几何性质,考查解析几何的基本思想和方法;创新题立意新颖,聚焦轨迹问题、定值问题和最值问题等的动态变化研究.2020年高考数学试卷共13份,直线和圆的方程内容的考查情况如下表所示.卷别全国Ⅰ卷全国Ⅱ卷全国Ⅲ卷全国新高考Ⅰ卷全国新高考Ⅱ卷北京卷天津卷浙江卷上海卷江苏卷科别理文理文理文——————————————题型及题号分布选择题11,填空题15,解答题20选择题6,填空题15,解答题21选择题5,选择题8,解答题19选择题8,选择题9,解答题19选择题5,选择题10,解答题20选择题7,选择题8,解答题21填空题13,填空题15,解答题22填空题13,填空题15,解答题21选择题5,填空题12,解答题20选择题7,填空题12,解答题18填空题15,解答题21选择题10,解答题20填空题14,解答题18分值22222222222222222425212020统计表明,2020年直线和圆的方程的考查特点主要体现在以下四个方面.1.布局合理,分值稳定据统计,2020年高考数学试卷除选考内容外,所有试卷在考查直线和圆的方程这部分内容上分值大致相当,除浙江卷、上海卷、江苏卷外其余试卷均为两2020年高考“直线和圆的方程”专题命题分析收稿日期:2020-08-04作者简介:刘莉(1964—),女,副教授,主要从事高中数学课程、教学、评价研究.刘摘要:针对2020年高考数学试卷中直线和圆的方程相关试题,从考查内容、试题难度和思想方法等方面,总体概括考查特点.研究表明,2020年高考对直线和圆的方程的考查体现了解析几何数与形的基本关系,并在解决问题的方法使用上体现了数形结合思想的力量,利用一题多解,多层次、多角度考查了学生的必备知识、关键能力和核心素养.鉴于此,2021年高考要回归教材、突出思想、重视交会、提升素养.关键词:2020年高考;直线和圆;命题分析道选择题或填空题和一道解答题,且考点全面,重点突出,更侧重于对数学抽象、逻辑推理、数学运算等数学核心素养的考查.例如,全国新高考Ⅰ卷第15题,先考查学生对平面图形的读图、识图能力,即直观想象素养;然后考查逻辑推理素养;最后的计算过程考查数学运算素养.2.重视能力,简洁清晰2020年高考数学试题中解析几何部分语言表述简洁清晰,有些题目还辅助图形加以说明,让学生能够将更多的时间和精力投入到数学思考之中.这部分内容的考查突出了代数与几何、方程与函数的转化与化归思想,重点考查了学生的推理论证、运算求解等能力.3.总体难度稳定,突出通性、通法2020年高考数学各试卷对直线和圆的方程部分的考查总体难度不大,考查内容比较稳定,具有考查全面,梯度清晰,降低运算,突出基础知识、基本思想和关键能力等特点.例如,全国Ⅱ卷理科卷的解析几何解答题,位置提到了第19题,明显降低了难度;全国Ⅰ卷和全国Ⅲ卷的解析几何解答题也是常规题型,注重通性、通法,运算量不大,充分体现了在立足于课程标准的基础上,突出重点知识、重要能力,注重对数学思想方法和关键能力进行考查.4.文、理科趋同,逐渐过渡综观2020年高考数学试卷中的直线和圆的方程试题,不难发现,在难度和分值的设置上,对应的文、理科试题都基本相同,即使有些试题不同,背景及考查的知识点也是同根同源,为新一轮高考不分文、理科的改革打下了良好的基础.二、命题思路分析对2020年高考数学的13份试卷中的直线和圆的方程的试题进行分类整理后,不难发现这部分试题紧扣知识点,没有难题、偏题,降低了运算难度,延续了“立足基础,重视思想,坚持创新”的命题思想.试题最大的亮点是既侧重对学生知识技能掌握情况的考查,更关注数学学科核心素养的形成与发展.1.突出主干,考查必备基础直线和圆是解析几何中最简单、最直观的研究对象之一,是学生初步尝试和体验解析几何思想与方法的最佳载体.直线与圆的方程是高中数学知识的重要组成部分,也是高考数学的考点之一,该部分知识相对简单,但应用较为广泛,对今后解决其他几何问题起着重要的作用.综观2020年高考数学试题,发现其特点是重视对本专题必备基础知识的考查,难度稳定,题目常规,突出基础性.例1(全国Ⅰ卷·理11)已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点,过点P作⊙M的切线PA,PB,切点为A,B,当||PM·||AB最小时,直线AB的方程为().(A)2x-y-1=0(B)2x+y-1=0(C)2x-y+1=0(D)2x+y+1=0【评析】该题考查学生比较熟悉的圆上动点到定直线的最短距离问题,设计巧妙,在问题的处理过程中需要用到转化与化归思想,既考查直线与圆的位置关系,也考查两圆的公共弦所在直线的方程.学生在解决问题的过程中,既可以利用平面几何知识将||PM·||AB转化成关于||PM的函数,进而利用函数的性质求出最小值,也可以利用四边形的对角线相互垂直,以四边形的面积为桥梁,得出面积取最小值时的点P位置,最后由两圆的公共弦所在直线的方程得到结论.充分体现了以能力立意的命题思想.例2(全国Ⅰ卷·文6)已知圆x2+y2-6x=0,过点()1,2的直线被该圆所截得的弦的长度的最小值为().(A)1(B)2(C)3(D)4【评析】该题涉及最短弦长的问题,考查了直线恒过定点及圆弦长的最值等问题.需要学生根据直线恒过定点选择过这点和圆心垂直的弦,这样就可以求出答案.需要注意的是,在解决直线和圆的问题时,要充分利用数形结合思想.当然,该题也可以用函数思想直接求解,直接利用点到直线的距离公式,求出弦长,这样就将问题转化为函数最值问题,充分体现了试题设置的多元性和开放性.2.侧重转化与化归,突出能力立意数学学科的考试按照“考查基础知识的同时,注重考查能力”的原则,确定将知识、能力和素质融为一体,全面检测学生的数学素养.本专题对学生能力的考查重点是抽象概括能力、推理论证能力、运算求解能力、文字语言与符号语言及图形语言的相互转化能力,要求学生能够灵活应用.例3(北京卷·5)已知半径为1的圆经过点()3,4,则其圆心到原点的距离的最小值为().(A)4(B)5(C)6(D)7【评析】该题表面看起来平淡无奇,实则蕴含着命题者的巧妙设计,解决该题需要学生具备数形结合思想、代数与方程思想、转化与化归思想.学生可以直接在坐标系中作出图形,通过直观感受得出答案;也可以设出圆心,建立圆的方程,再利用方程的几何意义,确定圆上的点到定点距离的最小值,这样问题就迎刃而解了.该题能有效考查学生是否能够灵活使用数形结合思想、代数法和几何法来解决问题.例4(浙江卷·15)已知直线y=kx+b()k>0与圆x2+y2=1和圆()x-42+y2=1均相切,则k的值为,b的值为.【评析】该题考查直线与圆的位置关系.在解题时,学生首先想到的是利用圆的半径和圆心到直线的距离作为突破口,这样就需要通过求解二元二次方程组来求解直线的斜率和截距,进而求得直线方程.另外,由题目可知两圆半径相等,可以借助几何直观发现直线与x轴的交点,再利用点到直线的距离等于半径即可求解.同时,直线的斜率也可以通过构建直角三角形来求解.该题可以从多个角度,利用多种方法求解,体现了命题者的人文关怀.3.聚焦核心素养,注重理性思维例5(全国Ⅲ卷·理20)已知椭圆C:x 225+y2 m2=1()0<m<5的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且||BP=||BQ,BP⊥BQ,求△APQ的面积.【评析】该题考查直线和圆锥曲线的综合运用,解决第(2)小题,学生可以尝试作辅助线,然后从几何图形本身出发,利用三角形全等,求出点P和点Q的坐标,有效地考查了学生的平面几何功底.题目的设置也体现了平面解析几何中代数与几何的化归思想.该题还可以从代数角度出发来解决,因为已知||BP=||BQ,这就可以联想到圆,先运用三角函数和参数法,设出点Q的坐标,同理得出点P的坐标,再利用点P在椭圆上,求出点P的坐标.该题在命制时充分考虑到学生在数学关键能力上的个体差异,通过不同方法的选择和解题时间的长短来区分学生能力的差异,充分体现了让不同学生在数学上得到不同发展的教育目标.例6(江苏卷·14)在平面直角坐标系xOy中,已知Pèöø÷0,A,B是圆C:x2+æèöøy-122=36上的两个动点,满足PA=PB,则△PAB面积的最大值是.【评析】该题在2020年高考数学试题中可谓亮点突出,既体现了处理问题的不同思维模式,也体现了不同学生的认知差异,让所有学生都能从自身思维的最近发展区出发来作答.第一种思路,将面积表示成关于点到线距离的函数,再借助均值不等式或函数性质来求解,这种做法运算比较简单;第二种思路,由于对称性,将面积表示成关于角的函数,再利用导数求解最值;第三种思路,根据已知可以求出直线的斜率,设出直线方程,求出弦长及点到直线的距离,这样就构建了关于截距的函数,最后仍然要利用导数得出函数的增、减区间,进而求出函数的最值.4.坚持能力立意,突出选拔功能2020年高考直线和圆的方程内容从试题的立意、情境、设问三方面入手,确定能力考查目标,选择适宜的考查内容,设计恰当的设问方式,着重考查学生的运算求解能力、推理论证能力、阅读理解能力,以及应用意识和创新意识,以研究型、探究型、开放型、情境型问题形式呈现.例7(北京卷·20)已知椭圆C:x2a2+y2b2=1过点A()-2,-1,且a=2b.(1)求椭圆C的方程;(2)过点B()-4,0的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q.求||PB||BQ的值.【评析】该题考点涵盖直线方程、直线与直线的位置关系、直线与椭圆的位置关系,综合性很强,设计上充分考虑了各个层次的学生.第(1)小题是大部分学生都会解决的问题;第(2)小题是定值性问题,着重考查学生的运算求解能力及转化与化归思想,学生不难表示出两段线段的长度,但如果按题意直接处理,化简过程会很困难,因此应当先用特殊情况发现两点的纵坐标互为相反数,再利用解析思想,问题就迎刃而解了.该题具有较强的区分度,体现了高考对学生创新意识的考查,要求学生不仅能理解概念与定义,掌握定理与公式,更重要的是能够应用这些知识解决有一定深度和广度的问题.三、复习建议1.回归教材,夯实基础对基础知识的考查是高考的主体和核心,从历年的高考试题来看,高考试题源于教材而高于教材,如北京卷第5题、全国Ⅲ卷文科第8题等都是对教材上的习题稍作变形得到的,是比较常见的直线和圆的方程问题,考查了解析几何中非常基础且核心的动点的距离问题.但是从答题情况来看,学生对教材上的基础知识掌握不牢,不能灵活运用.因此,在日常教与学的过程中,师生一定要回归教材,重视对基础知识形成和发展过程的学习,重视对数学概念的理解、数学公式的变形及使用、数学定理与法则的推导,要善于挖掘教材例题和习题的价值.例如,点到直线的距离概念、直线与圆的位置关系判定、圆与圆的位置关系的推导过程等,高考中常考的最值问题等都源于这些知识的形成过程,复习时应该侧重思维,抓住其代数和几何的双重结构特点,优化解题方法.2.构建知识网络,完善认知结构在高三数学复习中,寻求知识网络的交会点,加大知识整合力度是提高复习效率的重要方法,也与高考试题的设计思路相吻合.历年高考对直线和圆的考查通常是围绕圆锥曲线来设计试题,因此在复习过程中,要以解析几何思想为主线,构建知识网络结构,进行专题突破,提高学生的解题能力.3.重视数学理解,提高运算技能解析几何题目总体来说运算量较大,对学生的运算素养要求较高.对学生而言,题目解法容易理解,但运算却不是很容易.因此,在直线和圆的方程的复习中也要把提高学生的运算求解能力作为主要的教学目标.事实上,运算是一种重要的数学素养,培养学生数学运算素养不能仅靠技能训练,不能脱离对数学概念、定理、法则的理解,以及对公式的灵活运用等,必须将数学理解和技能训练有机结合,通过解题来完成.如果教学中仅以运算和训练来代替数学理解,容易给学生造成记题型、套公式的错误认知.在解析几何复习阶段可以适当加强“一题多解”和“多题一解”训练,提升学生思维的灵活性,拓宽解题思路,促进学生对解析几何本质的理解,提高运算技能.4.落实教育本源,提升核心素养发展和落实学生的核心素养,提升学生的数学综合能力是当前教育改革的重要价值追求,也力求通过高考进行考查.高考对学生逻辑推理能力的考查,经常与数学运算进行结合,通过具体的运算推导或证明问题的结论,以及在运算中较多地糅合逻辑推理的成分,边推理边计算.也就是说学生解决问题的过程是综合运用各种素养的过程.因此,高考复习中要注重建立核心素养的整体意识,务必重视培养学生的数学学科核心素养.这就要求教师要引导学生理解数学概念,掌握数学的本质,不要就题论题,要关注高考试题与教材中例、习题的联系,并且要对高考试题进行适度引申和变式练习,关注数学思维方法的训练,使学生形成分析问题、解决问题的能力.另外,在复习中教师要创设有利于发展学生数学学科核心素养的教学情境,突出问题导向、突出内容主线、把握内容结构,让学生能够将生活实践和其他学科知识与数学问题结合在一起,在多种知识间建立联系,解决问题.四、模拟题欣赏1.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M 在直线mx+ny=2上,则m2+n2的最小值为().(A)15(B)(C)(D)45答案:C.2.如果圆()x-a2+()y-a2=1()a>0上总存在点到原点的距离为3,则实数a的取值范围为().(A)[]2,2(B)[]2,22(C )[]1,2(D )[]1,22答案:B.3.已知p :直线y =kx +2与圆O :x 2+y 2=1有交点;q :A ,B 为△ABC 的内角,若sin 2A =sin 2B ,则三角形为等腰三角形.若p 或q 为真,则实数k 的取值范围是().(A )-1<k <1(B )k ≤-1或k ≥1(C )-2<k <2(D )k ≥1答案:B.4.已知圆C 的标准方程是()x +22+y 2=4,直线l ′:ax +2y +1=0()a ∈R ,若直线l ′被圆C 所截得的弦长为,则直线l ′与直线l :x -y +2=0的位置关系为().(A )平行(B )垂直(C )平行或相交(D )相交答案:C.5.如图1,圆O :x 2+y 2=4,A ()2,0,B ()-2,0,D 为圆O 上任意一点,过点D 作圆O 的切线分别交直线x =2和x =-2于E ,F 两点,连接AF ,BE 交于点G ,若点G 形成的轨迹为曲线C.图1(1)记直线AF ,BE 的斜率分别为k 1,k 2,求k 1k 2的值,并求曲线C 的方程;(2)设直线l :y =x +m ()m ≠0与曲线C 有两个不同的交点P ,Q ,与直线x =2交于点S ,与直线y =-1交于点T ,求△OPQ 的面积与△OST 的面积的比值λ的最大值及取得最大值时m 的值.答案:(1)k 1k 2=-14,x 24+y 2=1()y ≠0;(2)m =-53时,λ取得最大值,最大值为.6.如图2,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 22=1,A ,B 是椭圆上两点,且直线AB 的斜.图2(1)求证:OA 与OB 的斜率之积为定值;(2)设直线AB 交圆O :x 2+y 2=4于C ,D 两点,且||AB||CD =,求△COD 的面积.答案:(1)略;(2)S △COD =2.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]陶兆龙.2019年高考“直线和圆的方程”专题命题分析[J ].中国数学教育(高中版),2019(7/8):120-125.。
直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版
直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.设MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m -≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P作圆224x y+=的两条切线,切点分别为A、B,则直线AB的方程为_______.题型五:圆中最值问题【例1】已知l:4y x=+,分别交x,y轴于A,B两点,P在圆C:224x y+=上运动,则PAB△面积的最大值为()A.8-B.16-C.8+D.16+【答案】C【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离d =O 的半径2r =,()4,0A -,()0,4B ,则AB =PAB △面积的最大值为()1282⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为的交点以及点【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大PM 3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年高考试卷分类解答(直线和圆的方程部分)一、选择题(江西)在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB的面积达最大值时,=θ(D )。
A .6π B .4π C .3π D .2π(北京)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的(C )(A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件(北京)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为(B )(A )π (B )2π (C )4π (D )6π(北京)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为(B ) (A )6π (B )3π (C )2π (D )32π(重庆)圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为(A ) A .5)2(22=+-yxB .5)2(22=-+y xC .5)2()2(22=+++y x D .5)2(22=++y x(湖南)已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x-y 的取值范围是(C )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2](辽宁)若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为(A )A .8或-2B .6或-4C .4或-6D .2或-8(全国I) 设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(D)A )1± (B )21±(C )33±(D )3±(重庆)若y x y x -=+则,422的最大值是 。
22(全国I) 已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k的取值范围是©(A )),(2222- (B )),(22- (C )),(4242-(D )),(8181- (全国I) 在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(B)(A )2 (B )23 (C )223 (D )2二、填空题(福建)非负实数y x ,满足y x y x y x 3,03,02+⎩⎨⎧≤-+≤+则的最大值为 9 。
(全国II )圆心为(1,2)且与直线51270x y --=相切的圆的方程为____________。
22(1)(2)4x y -+-=(湖南)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅ = 。
21-(湖南)设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是 。
0323=--y x(湖南)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅ = 。
21-x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 。
32(山东) 设,x y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的值最大的点(,)x y 是___(2,3)____。
(上海)将参数方程⎩⎨⎧=+=θθsin 2cos 21y x (θ为参数)化为普通方程,所得方程是____(x-1)2+y 2=4。
______。
(上海)若y x ,满足条件⎩⎨⎧≤≤+xy y x 23,则y x z 43+=的最大值是____11______。
(上海)直角坐标平面xoy 中,若定点)2,1(A 与动点),(y x P 满足4=∙OA OP ,则点P 的轨迹方程是 x+2y-4=0_______。
(上海)直线x y 21=关于直线1=x 对称的直线方程是___x+2y-2=0_。
(浙江)设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是(A)121112oyx 121112oyx121112oyx121112oyx(A) (B) (C) (D)(浙江)点(1,-1)到直线10x y -+=的距离是(D)(A) 21 (B)32(C) 22(D)322三、解答题(北京)如图,直线 l 1:y =kx (k >0)与直线l 2:y =-kx 之间的阴影区域(不含边界)记为W ,其左半部分记为W 1,右半部分记为W 2。
(I )分别用不等式组表示W 1和W 2;(II )若区域W 中的动点P (x ,y )到l 1,l 2的距离之积等于d 2,求点P 的轨迹C 的方程;(III )设不过原点O 的直线l 与(II )中的曲线C 相交于M 1,M 2两点,且与l 1,l 2分别交于M 3,M 4两点.求证△OM 1M 2的重心与△OM 3M 4的重心重合。
解:(I )W 1={(x , y )| k x <y <-k x , x <0},W 2={(x , y )| -k x <y <k x , x >0}, (II )直线l 1:k x -y =0,直线l 2:k x +y =0,由题意得 222||||11kx y kx y d k k -+⋅=++, 即22222||1k x y d k -=+, 由P (x , y )∈W ,知k 2x 2-y 2>0, 所以222221k x y d k -=+,即22222(1)0k x y k d --+=,所以动点P 的轨迹C 的方程为22222(1)0k x y k d --+=;(III )当直线l 与x 轴垂直时,可设直线l 的方程为x =a (a ≠0).由于直线l ,曲线C 关于x 轴对称,且l 1与l 2关于x 轴对称,于是M 1M 2,M 3M 4的中点坐标都为(a ,0),所以△OM 1M 2,△OM 3M 4的重心坐标都为(32a ,0),即它们的重心重合,当直线l 1与x 轴不垂直时,设直线l 的方程为y =mx +n (n ≠0).由22222(1)0k x y k d y mx n ⎧--+=⎨=+⎩,得2222222()20k m x m nx n k d d -----=由直线l 与曲线C 有两个不同交点,可知k 2-m 2≠0且△=2222222(2)4()()m n k m n k d d +-⨯++>0 设M 1,M 2的坐标分别为(x 1, y 1),(x 2, y 2), 则12222m n x x k m+=-, 1212()2y y m x x n +=++,设M 3,M 4的坐标分别为(x 3, y 3),(x 4, y 4),由及y kx y kx y mx ny mx n ⎧==-⎧⎨⎨=+=+⎩⎩得34,n nx x k m k m -==-+从而3412222m n x x x x k m+==+-,所以y 3+y 4=m (x 3+x 4)+2n =m (x 1+x 2)+2n =y 1+y 2, 于是△OM 1M 2的重心与△OM 3M 4的重心也重合。
(江苏)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N 分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P的轨迹方程。
解:以1O 2O 的中点O 为原点,1O 2O 所在的直线为x 轴,建立平面直角坐标系,则1O (-2,0),2O (2,0), 由已知PN 2PM =,得222PNPM=。
因为两圆的半径均为1,所以)1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,PO 1O 2oMNyx33)6(22=+-yx (或031222=+-+x y x )。
(辽宁)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?本小题主要考查根据图形建立函数关系、三角函数公式、用反三角函数表示角以及解和 三角函数有关的极值问题等基础知识,考查综合运用三角函数知识的能力. 满分12分.(Ⅰ)解:设S 为十字形的面积,则22x xy S -=).24(cos cos sin 22πθπθθθ<<-=(Ⅱ)解法一:,21)2si n(25212c o s 212s inco s co ssi n 22--=--=-=ϕθθθθθθS其中.552arccos=ϕ 当S ,22,1)2sin(时即πϕθϕθ=-=-最大.所以,当S ,552arccos214时+=πθ最大. S 的最大值为.215-解法二: 因为,cos cos sin 22θθθ-=S 所以θθθθcos sin 2sin 2cos 222+-='S.2sin 2cos 2θθ+=令S ′=0,即,02sin 2cos 2=+θθ 可解得)2arctan(212-+=πθ所以,当)2arctan(212-+=πθ时,S 最大,S 的最大值为.215-(辽宁)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,θyyx x O工序 第一工序第二工序概率A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品. (Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产出的甲、 乙产品为一等品的概率P 甲、P 乙;(Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在(I )的条 件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资,金60 万元.设x 、y 分别表示生产甲、乙产品的数量,在 (II )的条件下,x 、y 为何值时,ηξyE xE z +=最大?最大值是多少?(解答时须给出图示) (本小题主要考查相互独立事件的概率、随机变 量的分布列及期望、线性规划模型的建立与求解 等基础知识,考查通过建立简单的数学模型以解决实际问题的能力。