时间继电器控制三相异步电动机延时正反转
任务三 三相异步电动机正反转循环运行的PLC控制
(二)设备与器材
表1-22 设备与器材
序号
名称
符号
型号规格
数量 备注
1
常用电工工具
十字起、一字起、尖嘴钳、剥线钳 等
1
2
计算机(安装GX Works3编程 软件)
3
三菱FX5U可编程控制器
PLC
FX5U-32MR/ES
4
三相异步电动机正反转循环运 行控制面板
5
三相异步电动机
6
以太网通信电缆
M
WDJ26,PN=40W,UN=380V, IN=0.2A,nN=1430r/min,f=50Hz
2)学会用三菱FX5U PLC的顺控程序指令编辑三相异步电动机正反转循 环运行控制的程序。
3)会绘制三相异步电动机正反转循环运行控制的I/O接线图。 4)掌握FX5U PLC I/O接线方法。 5)熟练掌握使用三菱GX Works3编程软件编辑梯形图程序,并写入 PLC进行调试运行。
11
项目一 任务三 三相异步电动机正反转运行运行的PLC控制
MPS
栈存储器的第一层, 之前存储的数据依次
下移一层
读取堆栈第一层的 MRD 数据且保存,堆栈内
的数据不移动
读取堆栈存储器第
MPP
一层的数据,同时该 数据消失,栈内的数
据依次上移一层
梯形图表示
FBD/LD表示
ST表示
目标元件
ENO:=MPS(EN);
ENO:=MRD(EN);
无
ENO:=MPP(EN);
对于FX5U PLC默认情况下,16位计数器的个数为256个,对应编号为C0 ~C255;32位超长计数器个数为64个,对应编号为LC0~LC63。
电动机正反转,限时自动往返(时间继电器)控制电路接线图
电动机正反转,限时自动往返(时间继电器)控制电路接线图
如下图所示是一种由一台电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。
图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。
合上电源开关Q 和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。
接触器KM1得电并吸合,电动机作正向限时运转。
待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。
电动机正反转,限时自动往返(时间继电器)控制电路接线图
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。
待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。
由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中
间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。
这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。
若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。
本电路适用于在规定时间内作连续可逆运转的生产机械。
三相异步电动机正反转控制原理
三相异步电动机正反转控制原理
三相异步电动机的正反转控制原理是通过改变电动机的相序来实现正反转。
具体原理如下:
1. 正转控制:当电动机需要正转时,需要将三相电源的相序按照正确的顺序给到电动机的三相绕组上。
通常情况下,三相电源的相序是ABC,其中A相为正相序,B相和C相为逆相序。
因此,正转控制可以通过将电动机的A相接到电源的A相,
B相接到电源的B相,C相接到电源的C相来实现。
2. 反转控制:当电动机需要反转时,需要将电动机的相序按照逆序给到电动机的三相绕组上。
即将电动机的A相接到电源
的C相,B相接到电源的B相,C相接到电源的A相。
需要注意的是,正反转控制的实现通常是通过接触器或电子开关等控制元件来实现的。
通过控制这些元件的通断状态,可以改变电动机的相序,从而实现正反转控制。
三相异步电动机正反转控制电路
单击此处输入你的正文,文字是您思想的提炼,为了最终演示发布的 良好效果,请尽量言简意赅的阐述观点
演讲人
目录
01. 三相异步电动机正反转控制电路原理 02. 三相异步电动机正反转控制电路设计 03. 三相异步电动机正反转控制电路应用
三相异步电动机正 反转控制电路原理
正反转控制原理
02
控制电路:包括 按钮、接触器、 继电器、指示灯
等
03
保护电路:包括 熔断器、热继电 器、过流保护器
等
04
控制方式:包括 手动控制、自动 控制、远程控制
等
控制信号分析
控制信号来源:启动按钮、停 止按钮、方向按钮等
控制信号类型:开关量信号、 模拟量信号等
控制信号处理:通过PLC、继 电器等设备进行信号处理
控制信号输出:控制电动机的 正转、反转、停止等操作
三相异步电动机正 反转控制电路设计
设计原则
1
安全性:保证电路安全可靠, 防止触电、短路等事故发生
2
实用性:满足实际需求,实 现正反转控制功能
3
经济性:在满足功能需求的 前提下,尽量降低成本
4
可维护性:电路设计应便于 维护和维修,提高工作效率
设计步骤
01
正转控制:通过改变三相电、继电器等电气元件进行 控制
02
反转控制:通过改变三相电 源的相序,使电动机反转
04
保护措施:设置过载、短路、 缺相等保护装置,确保电动 机安全运行
控制电路组成
01
主电路:包括三 相异步电动机、 断路器、接触器、
热继电器等
STEP3
STEP4
设计思路:采 用双刀双掷开 关实现正反转 控制
三相异步电动机正反转延时
定时器
一、定时器
PLC中的定时器(T),相当于继电气控制系统中的时间继电器,其计时设定值由PLC程序赋予。当计时值大于或等于设定 值时,定时器逻辑线圈接通,延时常开触点接通,延时常闭触点断开。
1.定时器的分类
1)通用定时器 (1)100ms通用定时器(T0~T199),共200点,设定值为1~32767,定时范围为0.1~ 3276.7s。 (2)10ms通用定时器(T200~T245),共46点,设定值为1~32767,定时范围为 0.01~327.67s。 2)积算定时器 (1)1ms积算定时器(T246~T249),共4点,这类定时器是对1ms时钟累积计数,设定值为1~32767,定时范围为 0.001~32.767。 (2)100ms积算定时器(T250~T255),共6点,设定值为1~32767,定时范围为0.1~3276.7. 说明:通用定时器和计算定时器的区别在于,通用定时器不具备断电保持功能,如果断定或定时器断开,通用定时器复位;积 算定时器具备断电保持功能,在定时过程中,如果断电或定时器断开,计算定时器将保持当前计数值,通电或定时器线圈接通 后继续累积,即其当前值具有保持功能,只有将积算定时器复位,当前值才变为0。
X000 X002 M0
X000
M0 T0 K20
X002
T0
Y000
M0 2S
Y0
定时器
2.定时器设定值的选取 编程时,在确定计时单位的定时器的计时逻辑线圈在使用输出OUT指令以后,必须设定计时常数。其计时设定值可选择 直接用常数K确定,,单位是ms。 (1)用户对定时器的设定值可在线修改。由于控制需要,需对定时器的设定值进行在线修改,用户通过编程器,可以直接对 定时器的设定值进行在线修改,即PLC仍处于RUN状态下,可对定时器设定值进行修改。 (2)定时器的设定值给出后,给定时器线圈持续供电,当持续通电的时间大于或等于设定值的时间时,定时器的常开、常闭 触点动作,常开触点闭合,常闭触点断开;之后当定时器线圈继续通电则触点继续保持动作状态,直到定时器线圈断电, 触电复位。 3.失电延时问题 三菱FX系列的定时器是通电延时型定时器,如果需要使用断电延时的定时器,如图(2)所示:
三相异步电动机正反转控制
三相异步电动机自动循环控制中文摘要生产机械的电气控制线路都是根据生产工艺过程的控制要求设计的,而生产工艺过程必须伴随着一些物理量的变化,如行程,时间,速度,电流等。
这就需要某些电器能准确的测量和反映这些物理量的变化,并根据这些量的变化对电动机实现自动控制。
电动机控制的一般原则有行程控制原则,时间控制原则,速度控制原则和电流控制原则。
自动过程的进行需要有条件来触发,根据触发条件的不同,自动控制电路常用的有按时间控制和按行程控制两种形式,本实验了解时间控制原则,利用时间继电器来实现电动机的自动循环控制。
简述自动循环电路的设计原理,使用的实验器材以及如何安全规范的操作。
关键词:时间继电器;实验器材;原理设计图;安全操作腹有诗书气自华腹有诗书气自华目录目录 (3)前言 (1)第1章实验目的 (2)1.1 实验目的 (2)第2章实验环境及设备 (2)2.1 实验环境 (2)2.2 实验设备 (2)第3章正反转控制线路的设计 (2)3.1方案选择 (2)3.2 原理讲解 (3)3.2.1 控制电路 (3)3.2.2 主电路 (3)3.2.3线路动作过程 (4)第4章实际操作的特点及注意 (4)4.1 注意事项 (4)4.2 应用场合 (5)第5章实验设计总结 (5)参考文献 (6)腹有诗书气自华前言本实验要求设计一套控制线路,能够实现对三相异步电动机的正反转控制,要求有足够的保护,能够在正反之间直接切换。
根据电动机型号及电气原理图选用电器元件及部分电工器材;按电气原理图装接控制线路,并通电空运转效验成功。
三相异步电动机的正反转启动控制常用于升降控制,进给控制等。
本项目实施需要了解三相异步电动机的控制电路的接触器互锁等常用知识,了解三相电动机正反控制线路的设计方法和实际安装接线方法,从而进一步训练学生对电动机控制电路的安装、接线、与调试等技能。
腹有诗书气自华第1章实验目的1.1 实验目的1. 了解并掌握维修电工课程所学的基础知识。
三相异步电动机正反转控制电路图原理及plc接线与编程
三相异步电动机正反转控制电路图原理及plc接线与编程三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,电机开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。
三相异步电动机正反转控制电路要点
复习相关知识
自锁控制电路原理图
按 动 图 中
按 钮 叙 述 自 锁 控 制 过 程
新 授:
一、倒顺开关正反转控制电路 二、接触器联锁正反转控制电路 三、按钮联锁正反转控制电路 四、双重联锁正反转控制电路
§6-4 三相异步电动机的正反转控制电路
思考:如何改变三相异步电动机的转向?
三相异步电动机的转向取决于通入 定子绕组中三相交流电的相序。
KM2
§6-4 三相异步电动机的正反转控制电路
二、接触器联锁正反转控制电路
L1 L2 L3
×××
Q
操作步骤: ① 合闸。 ② 正转起动。 ③ 正转停止。
④ 反转起动。 ⑤ 反转停止。
KM1
FR
M 3~
KM2
SB3
SB1
KM1
SB2 KM2
KM1 FR
KM2
§6-4 三相异步电动机的正反转控制电路
电动机M起动
KM1联锁触头分断对KM2联连续正转
锁
§6-4 三相异步电动机的正反转控制电路
四.按钮、接触器双重联锁正反转控制电路
工作原理:
(2)反转控制
按下 SB2
SB2常闭触头先分断 KM1线圈失电 电动机
KM1自锁触头分 M K断KMM11主联触锁头触分头断恢复闭失合电
SB2常开触头后闭合
KM2线圈 KM2自锁触头闭合自锁 电动机M起动
§6-4 三相异步电动机的正反转控制电路
电动机定子接线盒
电源
L1 L2 L3 3~
星
形
U1
V1 W1
W2
U2 V 2
(Y) 联 接
U1 V1 W1 W2 U2 V2
L1 3L~2 L3
三相异步电动机的正反转控制
U ---L3 V ---L2 W---L1
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
L1 L2 L3
合上电源 开关QS
KM1
FU2 FR
SB3
KM2
KM1
KM2
SB1
SB2
FR
UV W
M 3~
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
KM2联锁动断触
UV W
点闭合,解除对
M
KM1联锁
3~
SB3
KM2
SB1
KM1
KM2 SB2
KM2
KM1
KM1
KM2
二、接触器联锁正反转控制线路
反转停止
QS FU1
FU2
L1
L2
FR
L3
松开SB3、电 KM1 机停转
SB3 KM2
SB1 KM1 SB2 KM2
FR
UV W M 3~
KM2
KM1
KM1
三相异步电动机的 正反转控制线路
若改变电动机转动方向,将接至交流电动机 的三相交流电源进线中任意两相对调,电动机就 可以反转。
一、 倒顺开关正反转控制线路
倒顺开关,又叫可 逆转换开关,利用 改变电源相序来实 现电动机手动正反 转控制。
一、倒顺开关正反转控制线路
L1 L2 L3
熔断器 倒顺开关
电动机
正转起动
QS FU1
FU2
L1
L2
FR
L3
合上电源开关 KM1 QS
SB3 KM2
SB1 KM1 SB2 KM2
三相异步电动机正反转控制电路图原理及plc接线与编程
三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。
按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。
使KM1的线圈通电,电机开始正转运行。
按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。
在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。
除此之外,为了方便操作和保证Y0和Y1不会同时为O N,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。
设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。
在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。
由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。
可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。
如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。
为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。
时间继电器控制三相异步电动机延时正反转
时间继电器控制三相异步电动机延时正反转一、实训目的1、了解时间继电器控制三相异步电动机延时正反转电路的基本原理。
2、熟悉时间继电器控制三相异步电动机延时正反转电路的控制过程。
3、掌握时间继电器控制三相异步电动机延时正反转电路的接线技能。
5、熟悉各控制元器件的工作原理及构造。
二、实验内容1、时间继电器控制三相异步电动机延时正反转主回路参考原理图如图所示。
2、时间继电器控制三相异步电动机延时正反转控制回路参考原理图如图所示。
(a)主回路原理图(b)控制回路原理图图时间继电器控制三相异步电动机延时正反转电路参考原理图三、实训器材三相鼠笼式异步电动机1台,交流接触器2个,热继电器1个,按钮开关3个,指示灯3个,熔断器3个,时间继电器2个,小型三相断路器1个,小型两相断路器1个,连接导线及相关工具若干。
四、工作原理在三相鼠笼式异步电动机延时正反转控制线路中,通过时间继电器延时时间的设定来控制电动机正反转工作的时间,实现正反转自动切换,图中HL1为电动机正转指示灯,HL2为电动机反转指示灯,HL3为停止指示灯。
通过交流接触器的交替动作而控制电动机的供电相序从而实现控制正反转。
本训练项目采用时间继电器互锁延时正反转控制线路,具有如下特点:按时间原则控制电路的特点是各个动作之间有一定的时间间隔,使用的元件主要是时间继电器。
时间继电器是一种延时动作的继电器,它从接受信号(如线圈带电)到执行动作(如触点动作)具有一定的时间间隔,此时间间隔可按需要预先整定,以协调和控制生产机械的各种动作。
时间继电器的种类通常有电磁式、电动式、空气式和电子式等。
其基本功能可分为两类,即通电延时式和断电延时式,有的还带有瞬时动作式的触头。
时间继电器根据型号的不同,其可设定延时时间也不同,实训装置所提供的时间继电器的延时时间可在1s~999s范围内调节。
为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)、KT2(KT1)动断触头,他们保证了线路工作时KM1、KM2不会同时得电,以达到互锁的目的。
plc三相异步电动机正反转控制电路
plc三相异步电动机正反转控制电路PLC(可编程逻辑控制器)是一种常用于工业自动化领域的控制设备,而三相异步电动机则是工业中常用的电动机类型之一。
在工业生产中,正反转控制电路是对三相异步电动机进行控制的基本需求之一。
本文将详细介绍PLC三相异步电动机正反转控制电路的原理和实现方法。
一、PLC三相异步电动机正反转控制电路的原理三相异步电动机是一种常见的工业电动机,其正反转控制是工业生产过程中最基本的控制需求之一。
PLC作为一种灵活可编程的控制器,可以实现对三相异步电动机的正反转控制。
PLC三相异步电动机正反转控制电路的原理如下:1. 通过PLC控制输出信号,将其连接到三相异步电动机的控制回路中。
2. 通过PLC程序编写,对输出信号进行逻辑控制,实现正反转控制。
3. 根据控制信号的不同,调整电动机的相序和频率,使其实现正转或反转。
二、PLC三相异步电动机正反转控制电路的实现方法PLC三相异步电动机正反转控制电路的实现方法主要包括以下几个步骤:1. 硬件连接:将PLC的输出端口与三相异步电动机的控制回路连接起来,确保信号可以正常传输。
具体连接方式根据PLC设备和电动机的接口类型而定,一般包括连接线路和插头等。
2. PLC程序设计:通过PLC的编程软件,编写控制程序实现正反转功能。
PLC的编程软件一般采用图形化编程语言,如梯形图(Ladder Diagram)、功能块图(Function Block Diagram)等。
在程序中,需要根据输入信号的状态判断电动机的运行状态,并根据需要输出控制信号实现正转或反转。
3. 电动机控制逻辑设计:根据具体的控制需求,设计电动机的控制逻辑。
一般而言,通过判断电动机的启动信号、停止信号和反转信号的状态,来实现对电动机的正反转控制。
例如,当启动信号为1时,输出正转信号;当停止信号为1时,输出停止信号;当反转信号为1时,输出反转信号。
通过逻辑组合和判断,实现电动机的正反转控制。
三相异步电动机正反转控制电路设计(继电器、PLC)
摘要生产机械往往要求运动部件可以实现正反两个方向的起动,这就要求拖动电动机能作正、反向旋转。
由电机原理可知,改变电动机三相电源的相序,就能改变电动机的转向。
本文设计系统的控制是采用PLC的编程语言——梯形图,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能,使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路,可编程控制器是一种数字运算操作的电子系统,它是专为在恶劣工业环境下应用而设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算,顺序控制,定时,计数和算术等操作的指令,并采用数字式,模拟式的输入和输出,控制各种的机械或生产过程。
关键词:三相异步电动机;PLC;可编程控制;梯形图目录摘要 (I)引言 (1)1PLC基础的知识 (2)1.1关于PLC的定义 (2)1.2PLC的工作原理 (2)1.3PLC的应用领域 (3)1.4PLC的发展趋势 (4)2三相异步电动机的PLC控制 (5)2.1三相异步电动机正反转控制电路的特点 (5)2.1.1三相异步电动机正反转控制电路的主控制电路 (5)2.1.2按钮接触器联锁的正反转控制电路特点及应用分析 (5)2.2交流接触器的正反转自动控制线路工作过程 (6)2.3PLC的选择 (7)2.4三相异步电动机使用PLC控制优点 (7)2.5输入输出定义 (7)2.6输入输出接线图 (8)参考文献 (10)引言电动机的正反转控制大量应用于工业生产当中,而快速准确安全的控制更能够保证生产的安全可靠和产品的品质。
PLC控制三相异步电动机实现正反转,其运行性能更好,且在满足上述需要的前提下还可节省各种材料。
生产中许多机械设备往往要求运动部件能向正反两个方向运动。
如机床工作台的前进与后退起重机的上升与下降等,这些生产机械要求电动机能实现正反转控制。
改变通入电动机定子绕组的三相电源相序,即把接入电动机的三相电源进线中的任意两根对调,电动机即可反转。
三相异步电机自动循环正反转控制案例
4.子程序调用程序
项目七: PLC功能指令应用
程序解析:调用三个子程序 M1常开触点闭合时,调用子程序P1 M2常开触点或M8常开触点闭合时,调用子程序P2 M5常开触点闭合时,调用子程序P3
5.子程序P1
项目七: PLC功能指令应用
程序解析
P1子程序的作用是是输出继电器Y000得电, 输出继电器Y001失电;即使交流接触器KM1的 线圈得电,KM2的线圈失电,即使电机M1正转;
6.子程序P2
项目七: PLC功能指令应用
程序解析
P2子程序的作用是使输出继电器Y000,Y001 全部失电,交流接触器KM1和KM2的线圈都失 电,电机停止转动;
7.子程序P3
项目七: PLC功能指令应用
程序解析
P3子程序的作用是是输出继电器Y001得电, 输出继电器Y000失电;即使交流接触器KM2的 线圈得电,KM1的线圈失电,即使电机M1反转;
项目七: PLC功能指令应用
二、三相异步电机自动循环正反转控制案例的电气原理图 1.主配表
项目七: PLC功能指令应用
输入
输入设备
输入继电器
启动按钮SB1
X0
停止按钮SB2
X1
输出
输出设备
输出继电器
正转线圈KM1
Y0
反转线圈KM2
Y1
项目七: PLC功能指令应用
XXXXX XXXXX
项目七: PLC功能指令应用
三相异步电机自动循环正反转控制案例
XXXXX XXXXX
项目七: PLC功能指令应用
一、三相异步电机自动循环正反转控制案例描述
三相异步电动机M1的启动按钮为SB1,停止按钮为SB2。 按下SB1启动按钮后,电机M1开始正转,正转10S后, 电机自动停止,停止10S后电机自动启动并开始反转, 反转10S后电机自动停止,停止10S后又自动开始正传, M1按照这种运行规律以此往复,循环运行。任意时刻 按下停止按钮SB2,电机彻底停止。
电机延时正反转实习报告
1. 理解和掌握电机延时正反转控制电路的工作原理。
2. 通过实际操作,学会设计并搭建电机延时正反转控制电路。
3. 提高动手能力和分析问题、解决问题的能力。
二、实习内容1. 实验原理电机延时正反转控制电路是利用定时器来实现电机正转和反转的延时切换。
在电路中,通过控制接触器线圈,使电机正转或反转,同时利用定时器实现延时功能。
2. 实验步骤(1)准备实验器材:三相异步电动机、电源、控制开关、接触器、定时器、导线等。
(2)根据电路原理图,搭建电机延时正反转控制电路。
(3)检查电路连接是否正确,确保安全。
(4)启动电源,观察电机正反转是否正常,同时检查延时是否准确。
(5)分析实验结果,记录数据。
3. 实验结果与分析(1)电机正反转控制电路搭建成功,电机能够实现正转和反转。
(2)通过调整定时器参数,可以实现电机正反转的延时切换。
(3)实验结果表明,电机延时正反转控制电路在实际应用中具有较好的可靠性和稳定性。
4. 实验总结(1)通过本次实习,掌握了电机延时正反转控制电路的工作原理。
(2)学会了设计并搭建电机延时正反转控制电路,提高了动手能力。
(3)在实验过程中,学会了分析问题、解决问题的方法,提高了自己的综合素质。
1. 通过本次实习,我深刻认识到理论知识与实际操作相结合的重要性。
在实验过程中,只有将所学知识应用到实际操作中,才能真正掌握技能。
2. 实验过程中,我学会了如何分析问题、解决问题。
在遇到问题时,首先要冷静思考,分析问题的原因,然后采取相应的措施解决。
3. 在团队合作中,我学会了与人沟通、协作。
在实验过程中,大家相互帮助、共同进步,取得了良好的实验效果。
四、改进建议1. 在实验过程中,可以增加一些拓展实验,如调整延时时间、改变电机转速等,使实验内容更加丰富。
2. 在实验过程中,可以引入更多新型控制元件,如PLC、变频器等,提高实验的实用性和趣味性。
3. 加强对实验设备的维护和保养,确保实验顺利进行。
总之,本次电机延时正反转实习让我受益匪浅。
三相异步电动机的正反转控制
三相异步电动机的正反转控制
三相异步电动机是一种常用的电动机,可以实现正反转控制,用于将电能转换成机械能,它具有较高的效率、低功耗和结构简单的优点。
然而,在实际操作过程中,为了满足
不同的使用要求,三相异步电动机必须能够实现正反转控制。
控制三相异步电动机正反转主要通过改变电机内部电源三相线之间的相位来实现,即
通过控制电机线组的相序来改变电机的旋转方向。
如果要使电机正转,只需要按照电机线
组的原相序接通开关,电机即可正转;如果要使电机反转,只需将开关重新接通,即可使
电机反转。
电源控制相位的接法有不同的模式,常用的有对称型和非对称型两种,其中,对称型
电机需要经过特殊的连接控制,才能达到正反转控制的效果,而非对称型电机则可以通过
简单的手工方式来控制电机的正反转。
除了改变电源接法外,还可以通过调节电源频率来实现三相异步电动机正反转控制。
例如,可以通过调节电源的频率来改变电机转速,从而改变旋转方向。
正反转控制也可以通过控制器来实现,例如,可以通过控制器来控制电机的运行方向,使电机绕制的相位角从一个方向变为另一个方向,进而改变电机的旋转方向。
而控制三相
异步电动机正反转的优势在于它能够实现精确的控制,大大提高了可靠性,增加了系统的
灵活性。
因此,正反转控制是为了满足三相异步电动机应用要求而所采取的有效措施。
三种方式——通过改变电源接法、调节电源频率和控制器来控制三相异步电动机的正反转,都能
使三相异步电动机在实际操作中更好地满足使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间继电器控制三相异步电动机延时正反转
一、实训目的
1、了解时间继电器控制三相异步电动机延时正反转电路的基本原理。
2、熟悉时间继电器控制三相异步电动机延时正反转电路的控制过程。
3、掌握时间继电器控制三相异步电动机延时正反转电路的接线技能。
5、熟悉各控制元器件的工作原理及构造。
二、实验内容
1、时间继电器控制三相异步电动机延时正反转主回路参考原理图如图 1.4.1 ( a) 所示。
2、时间继电器控制三相异步电动机延时正反转控制回路参考原理图如图 1.4.1 ( b)所示。
(a)主回路原理图(b )控制回路原理图
图 1.4.1 时间继电器控制三相异步电动机延时正反转电路参考原理图
三、实训器材
三相鼠笼式异步电动机 1 台,交流接触器2个,热继电器 1 个,按钮开关3个,指示灯3个,熔断器3个,时间继电器2个,小型三相断路器1个,小型两相断路器 1 个,连接导线及相关工具若干。
四、工作原理
在三相鼠笼式异步电动机延时正反转控制线路中,通过时间继电器延时时间的设定来控制电动机正反转工作的时间,实现正反转自动切换,图中HL1为电动机正转指示灯,HL2为电动机反转指示灯,HL3为停止指示灯。
通过交流接触器的交替动作而控制电动机的供电相序从而实现控制正反转。
本训练项目采用时间继电器互锁延时
正反转控制线路,具有如下特点:
按时间原则控制电路的特点是各个动作之间有一定的时间间隔,使用的元件主要是时间继电器。
时间继电器是一种延时动作的继电器,它从接受信号(如线圈带电)到执行动作(如触点动作)具有一定的时间间隔,此时间间隔可按需要预先整定,以协调和控制生产机械的各种动作。
时间继电器的种类通常有电磁式、电动式、空气式和电子式等。
其基本功能可分为两类,即通电延时式和断电延时式,有的还带有瞬时动作式的触头。
时间继电器根据型号的不同,其可设定延时时间也不同,实训装置所提供的时间继电器的延时时间可在1s- 999s 范围内调节。
为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2线圈支路中串接
有KM1(KM2、KT2 ( KT1)动断触头,他们保证了线路工作时KM1 KM2不会同时得电,以达到互锁的目的。
五、注意事项
1 、接线时合理安排布线,保持走线美观,接线要求牢靠,整齐、清楚、安全可靠。
2、操作时要胆大、心细、谨慎,不许用手触及各电器元件的导电部分及电动机的转动部分,以免触电及意外损伤。
3、只有在断电的情况下,方可用万用电表档来检查线路的接线正确与否。
4、要观察电器动作情况时,必须在断电的情况下小心地打开柜门面板,然后再接通电源进行操作和观察。
5、在主线路接线时一定要注意各相之间的连线不能弄混淆,不然会导致相间短路。
六、实训步骤认识各电器的结构、图形符号、接线方法;抄录电动机及各电器铭牌数据;并用万用电表欧姆档检查各电器线圈、触头是否完好。
三相鼠笼式异步电动机接成Y接法;动力主回路电源接三路小型断路器输出端L1、L2、L3,供电线电压为
380V,二次控制回路电源接二路小型断路器L、N供电电压为220V。
( 1)合上实训台内的电源总开关,按下实训台面板上的电源启动按钮。
(2)合上小型断路器QS1 QS2启动主回路和控制回路的电源。
( 3)设置时间继电器的延时时间,通常为10S-50S,
(4)按正向起动按钮SB1,观察并记录电动机的转向变化和接触器、时间继电器、指示灯的运行状况。
(5)按停止按钮SB3,观察并记录电动机的转向和接触器、时间继电器、指示灯的运行情况。
(6)按反向起动按钮SB2,观察并记录电动机和接触器、时间继电器、指示灯的运行情况。
(7)按停止按钮SB3,观察并记录电动机的转向变化和接触器、时间继电器、指示灯的运行情况。
( 8)实验完毕,按实训台体电源停止按钮,切断实验线路三相交流电源。
七、思考题
在延时正反转控制电路中设置一对时间继电器互锁触头其作用是什么,若取消将有何影响。