高二数学立体几何练习题

合集下载

2024-2025学年上学期高二数学章末(空间向量与立体几何)测试卷

2024-2025学年上学期高二数学章末(空间向量与立体几何)测试卷

2024-2025学年上学期高二数学章末测试卷选择性必修第一册空间向量与立体几何姓名:___________班级:___________一、单选题1.已知空间向量()6,2,1a =,()2,,3b x =- ,若()2a b a -⊥ ,则x =()A .4B .6C .234D .2142.平面α的一个法向量是1(2n = ,1-,1)3,平面β的一个法向量是(3m =- ,6,2)-,则平面α与平面β的关系是()A .平行B .重合C .平行或重合D .垂直3.如图,四棱锥P OABC -的底面是矩形,设OA a = ,OC b = ,OP c =,E 是棱PC 上一点,且2PE EC =,则BE =()A .111333a b c--+ B .1133a b c--+C .1133a b c-++ D .1133a b c--- 4.如图,在空间直角坐标系O xyz -中,正方形ABCD 与矩形ACEF 所在平面互相垂直(C 与原点O 重合),2,1,AB AF M ==在EF 上,且//AM 平面BDE ,则M 点的坐标为()A .(1,1,1)B .22,,133⎛⎫⎪ ⎪⎝⎭C .22,,122⎛⎫ ⎪ ⎪⎝⎭D .22,,144⎛⎫⎪ ⎪⎝⎭5.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为A .241B .41C .17D .2176.已知平行六面体1111ABCD A B C D -的各棱长均为1,1160A AB A AD ∠=∠=︒,90DAB ∠=︒,则1AC =()A .3B .5C .2D .21+7.鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F 是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 4C .118D .48.在下图所示直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,π1,3AB DAB =∠=,12AA =,动点P 在体对角线1BD 上,则顶点B 到平面APC 距离的最大值为()A .12B C D 二、多选题9.(多选)下面关于空间直角坐标系的叙述正确的是()A .点(1,1,0)P -与点(1,1,0)Q 关于z 轴对称B .点(3,1,4)A --与点(3,1,4)B --关于y 轴对称C .点(3,1,4)A --与点(3,1,4)B --关于平面xOz 对称D .空间直角坐标系中的三条坐标轴组成的平面把空间分为八个部分10.已知空间中三点()2,1,1A -,()1,0,2B ,()0,3,1C -,则()A .AB =B .AB AC⊥C .cos 19ABC ∠=D .A ,B ,C 三点共线11.在正方体1111ABCD A B C D -中,1M AD ∈,N BD ∈,且满足113AM AD =,23BN BD =,则下列说法正确的是()A .1AD MN⊥B .1MN A C∥C .MN ∥平面11DCC D D .MN 为1AD 与BD 的公垂线三、填空题12.在Rt ABC △中,90BAC ∠=︒,(2,1,1)A ,(1,1,2)B ,(,0,1)C x ,则x =.13.已知向量()()2,4,5,4,,a b x y ==,分别是直线12l l 、的方向向量,若12//l l ,则x y +=.14.如图所示,若P 为平行四边形ABCD 所在平面外一点,H 为棱PC 上的点,且12PH HC =,点G 在AH 上,且AGm AH=,若G ,B ,P ,D 四点共面,则实数m 的值是.四、解答题15.如图,在棱长为2的正方体中,,E F 分别是1,DD DB 的中点,G 在棱CD 上,且13CG CD =,H 是1C G 的中点.建立适当的空间直角坐标系,解决下列问题:(1)求证:1EF B C ⊥;(2)求异面直线EF 与1C G 所成角的余弦值.16.如图,在直三棱柱111ABC A B C -中,D ,E ,F 分别为AB ,BC ,1B B 的中点.(1)证明:11//AC 平面1B DE ;(2)若1AB =,AB AC ⊥,11B D A F ⊥,求点E 到平面11A FC 的距离.17.在平行六面体1111ABCD A B C D -中,设AB a =,AD b =,1AA c = ,E ,F 分别是1AD ,BD 的中点.(1)用向量a ,b ,c表示1D B ,EF ;(2)若1D F xa yb zc =++,求1D F 在基{},,a b c 下的坐标.18.如图,在平面四边形ABCD 中,//AB DC ,ABD △是边长为2的正三角形,3,DC O =为AB 的中点,将AOD △沿OD 折到POD 的位置,PC =.(1)求证:PO BD ⊥;(2)若E 为PC 的中点,求直线BE 与平面PDC 所成角的正弦值.19.如图,将等腰直角△ABC 沿斜边AC 旋转,使得B 到达B ′的位置,且BB ′=A B .(1)证明:平面AB ′C ⊥平面ABC ;(2)求二面角B -AB ′-C 的余弦值;(3)若在棱CB ′上存在点M ,使得14,,55CM CB μμ⎡⎤'=∈⎢⎥⎣⎦,在棱BB ′上存在点N ,使得BN BB λ'= ,且BM ⊥AN ,求λ的取值范围.参考答案题号12345678910答案C CBCDBBABDAB题号11答案ABD1.【详解】因为()()()26,2,122,,32,22,7a b x x -=--=- ,因为()2a b a -⊥ ,所以124470x +-+=,解得234x =.故选:C.2.【详解】 平面α的一个法向量是1(2n = ,1-,1)3,平面β的一个法向量是(3m =- ,6,2)-,∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .3.【详解】由已知2()()3BE OE OB OP PE OA OC OP PC OA OC =-=+-+=+-+2()()3OP OC OP OA OC =+--+ 11113333OP OC OA a b c =--=--+.故选:B .4.【详解】设AC ,BD 交于点O ',连接O E ',因为正方形ABCD 与矩形ACEF 所在的平面互相垂直,点M 在EF 上,且//AM 平面BDE ,又平面BDE ⋂平面ACEF EO =',AM ⊂平面ACEF ,所以//AM O E ',又//AO EM ',所以O AME '是平行四边形,故1122FM O A AC EF '===,所以M 是EF 的中点,因为2,1AB AF ==,所以(0,0,1),(2,2,1)E F ,所以22,,122M ⎛⎫⎪ ⎪⎝⎭.故选:C 5.【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos 6024CA DB CA DB ︒⋅=⋅=故由AB AC CD DB =++ 得22||||AB AC CD DB =++ 2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅= 2222+22AC CD DB AC CD CD DB CA DB+++⋅⋅-⋅= 36166448=++-68=||AB ∴= D.6.【详解】取{}1,,AB AD AA 为空间向量的基底,因为11AB AD AA === ,90DAB ∠=︒,1160A AB A AD ∠=∠=︒,所以0AB AD ⋅=uuu r uuu r,1112AB AA AD AA ⋅=⋅= .因为11AC AB AD AA =++,所以()2211AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅1110115=+++++=,所以1AC =故选:B7.【详解】因为AB BC =,且ABC V 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC,BA的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎝⎭ .故点F 到直线AC的距离d =故点F 到直线AC故选:B8.【详解】连接AC 交BD 于点O ,由题意,得AC BD ⊥,1122OB OD AB ===,OA OC ====,如图,以O 为原点建立如图所示的空间直角坐标系,则1110,,,0,0,0,,,0,22222A B C D ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()()11,,1,0,22AC AB BD ⎛⎫===- ⎪ ⎪⎝⎭,设()101BP BD λλ=≤≤ ,所以()1111,0,2222AP AB BP AB BD λλλλ⎛⎫⎛⎫=+=+=+-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,设平面APC 的一个法向量为(),,n x y z = ,则n ACn AP⎧⊥⎪⎨⊥⎪⎩,所以001120222y n AC x n AP x z z λλλλ=⎧⎧⋅==⎪⎪⎪⎛⎫⇒-⎨⎨⎛⎫ ⎪⋅=-+++=⎝⎭⎪⎪ ⎪=⎝⎭⎩⎪⎩ ,取4x λ=,则()4,0,21n λλ=-,设顶点B 到平面APC 距离为d ,则AB n d n ⋅== 当0λ=时0d =,当01λ<≤时,d ===所以当12λ=即12λ=时点B 到平面APC 12=.故选:A.9.【详解】点(1,1,0)P -与点(1,1,0)Q 关于x 轴对称,故A 错误;点(3,1,4)A --与(3,1,4)B --关于y 轴对称,故B 正确;点(3,1,4)A --与(3,1,4)B --不关于平面xOz 对称,故C 错误;空间直角坐标系中的三条坐标轴组成的平面把空间分为八个部分,故D 正确.故选:BD .10.【详解】易得()1,1,3AB =-- ,()2,2,0AC =- ,()1,3,3CB =-,AB ∴= A 正确;因为0AB AC ⋅=,所以AB AC ⊥,B 正确,D 错误;而cos AB CB ABC AB CB⋅∠==⋅,C 错误.故选:AB.11.【详解】设正方体1111ABCD A B C D -的棱长为1,分别以1,,DA DC DD 为,,x y z 轴,建立空间直角坐标系.则()()11,0,0,0,0,1A D ,()1,1,0B ,()0,1,0C ,()11,0,1A 由113AM AD = ,则21,0,33M ⎛⎫⎪⎝⎭由23BN BD = ,则11,,033N ⎛⎫ ⎪⎝⎭所以111,,333MN ⎛⎫=-- ⎪⎝⎭,()11,0,1AD =-,则()11111010333MN AD ⎛⎫⋅=-⨯-+⨯+-⨯= ⎪⎝⎭,所以1AD MN ⊥,选项A 正确.又()11,1,1AC =-- ,则13AC MN = ,所以1//AC MN又1,MN A C 不在同一直线上,所以1//MN A C ,故选项B 正确.平面11DCC D 的一个法向量为()1,0,0n =r ,而1103MN n ⋅=-⨯≠ 所以MN 与平面11DCC D 不平行,故选项C 不正确.由()1,1,0DB = ,有1111100333MN BD ⎛⎫⋅=-⨯+⨯+-⨯= ⎪⎝⎭,所以NM DB ⊥,又1AD MN ⊥,且NM 与1,DB A D 均相交,所以MN 为1AD 与BD 的公垂线,故选项D 正确.故选:ABD12.【详解】||AC ==||BC ==,AB ==90BAC ∠=︒ ,222||||||BC AB AC ∴=+,22(1)22(2)1x x ∴-+=+-+,解得2x =.故答案为:2.13.【详解】12//l l ,//a b ∴,所以存在实数λ,使得b a λ= ,则4245x y λλλ=⎧⎪=⎨⎪=⎩,解得2λ=,8x =,10y =.18x y ∴+=.故答案为:18.14.【详解】连接BD ,BG 因为AB PB PA =- ,AB DC =,所以DC PB PA =- .因为PC PD DC =+,所以PC PD PB PA PA PB PD =+-=-++ .因为12PH HC =,所以13PH PC = ,所以111333PH PA PB PD =-++.又因为AH PH PA =- ,所以411333AH PA PB PD =-++.因为AG m AH=,所以4333m m m AG m AH PA PB PD ==-++ .又因为41333m m m PG PA AG PA PB PD ⎛⎫=+=-++ ⎪⎝⎭,且G ,B ,P ,D 四点共面,所以4103m -=,解得34m =.故答案为:3415.【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、1DD 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -,则()0,0,0D ,0,0,1,()1,1,0F ,()0,2,0C ,()10,2,2C ,()12,2,2B ,40,,03G ⎛⎫⎪⎝⎭,所以()1,1,1EF =-,()12,0,2B C =-- ,所以()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=,所以1EF B C ⊥,故1EF B C ⊥.(2)因为120,,23C G ⎛⎫=-- ⎪⎝⎭,所以1C G =因为EF = ()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+= ⎪⎝⎭ ,所以111443cos ,315EF C GEF C G EF C G⋅==⋅.16.【详解】(1)因为111ABC A B C -为直三棱柱,所以11//A C AC ,又D ,E ,分别为AB ,BC 的中点,所以//DE AC ,所以11//DE A C ,又11A C ⊄平面1B DE ,DE ⊂平面1B DE ,所以11//AC 平面1B DE .(2)因为111ABC A B C -为直三棱柱,且AB AC ⊥,以A 为坐标原点,分别以1,,AB AC AA 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系,设()10AA a a =>,且1AB =,则()()1111,0,,,0,0,0,0,,1,0,22a B a D A a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则11,0,2B D a ⎛⎫=-- ⎪⎝⎭,11,0,2a A F ⎛⎫=- ⎪⎝⎭,由11B D A F ⊥可得110B D A F ⋅= ,即21022a -+=,且0a >,解得1a =,设()0AC b b =>,则()10,,1C b ,即()11111,0,,0,,02A F A C b ⎛⎫=-= ⎪⎝⎭,设平面11A FC 的法向量为(),,n x y z =,则1111020n A F x z n AC by ⎧⋅=-=⎪⎨⎪⋅==⎩ ,解得20z x y =⎧⎨=⎩,取1x =,则2z =,所以平面11A FC 的一个法向量为()1,0,2n =,又1,,022b E ⎛⎫ ⎪⎝⎭,即11,,122b A E ⎛⎫=- ⎪⎝⎭,所以点E 到平面11A FC的距离1A E n d n ⋅==17.【详解】(1)在平行六面体1111ABCD A B C D -中,连接AC ,EF ,1D F ,1BD ,如图,11D B D D DB =+ 1AA AB AD =-+- a b c =-- ,11122EF EA AF D A AC =+=+ 1)11()(22AA AD AB AD =-+++ 111112222AB AA a c =-=- .(2)111)1(2D F D D D B =+ 11)1(2AA D B =-+ 1()2c a b c =-+-- 1122a b c =-- xa yb zc =++ ,因此12x =,12y =-,1z =-,所以1D F 在基{},,a b c r r r 下的坐标为11(1)22--,,.18.【详解】(1)依题意ABD △是边长为2的正三角形,O 为AB 的中点,所以OD AB ⊥,所以OD PO ⊥,OD BO ⊥,2PD =,3CD =,PC =则222PD CD PC +=,所以PD CD ⊥,又//AB DC ,即//OB DC ,所以OB PD ⊥,又OD PD D ⋂=,,OD PD ⊂平面POD ,所以OB ⊥平面POD ,因为OP ⊂平面POD ,所以OB OP ⊥,又OB OD O = ,,OB OD ⊂平面BODC ,所以OP ⊥平面BODC ,又BD ⊂平面BODC ,所以PO BD ⊥;(2)如图建立空间直角坐标系,则1,0,0,0,0,1,()D,()C,3122E ⎛⎫ ⎪ ⎪⎝⎭,所以11,222BE ⎛⎫= ⎪ ⎪⎝⎭ ,()3,0,0DC =,()0,DP = ,设平面PDC 的法向量为(),,n x y z =,则300n DC x n DP z ⎧⋅==⎪⎨⋅=+=⎪⎩,令(n = ,设直线BE 与平面PDC 所成角为θ,则sin 5BE n BE nθ⋅===⋅ ,所以直线BE 与平面PDC19.【详解】(1)证明:设AC 的中点为O ,连接OB ,OB ',由题意可得,BB '=AB =AB '=BC =B 'C ,在△AB 'C 中,因为O 为AC 的中点,则OB '⊥AC ,即∠B 'OC =90°,则△OBB '≌△OCB ',所以∠B 'OB =∠B 'OC =90°,即OB '⊥OB ,因为AC ∩OB =O ,AC ,OB ⊂平面ABC ,故OB '⊥平面ABC ,又OB '⊂平面AB 'C ,所以平面AB ′C ⊥平面ABC ;(2)以点O 为坐标原点,建立空间直角坐标系如图所示,不妨设OA =1,则O (0,0,0),A (-1,0,0),B (0,1,0),B '(0,0,1),C (1,0,0),所以(1,1,0),(1,0,1)AB AB '== ,设平面ABB '的法向量为(),,n x y z = ,则00n AB n AB ⎧⋅=⎨⋅=⎩' ,即00x y x z +=⎧⎨+=⎩,令x =1,则y =z =-1,故(1,1,1)n =-- ,因为OB ⊥平面AB 'C ,所以平面AB 'C 的一个法向量为(0,1,0)OB = ,则|||cos ,|||||n OB n OB n OB ⋅〈〉=== 又二面角B -AB ′-C 为锐二面角,所以二面角B -AB ′-C的余弦值为3;(3)结合(2)可得,(1,1,0),(1,0,1),(0,1,1)BC CB BB ''=-=-=- 则(1,1,0)(0,1,1)(1,1,)AN AB BN AB BB λλλλ'=+=+=+-=- ,(1,1,0)(0,1,1)(1,1,)AN AB BN AB BB λλλλ'=+=+=+-=- ,因为BM ⊥AN,则0BM AN ⋅= ,即(1)(1)0μλμλ---+=,所以111λμ=-+,故λ是关于μ的单调递增函数,当14,55μ⎡⎤∈⎢⎣⎦时,14,69λ⎡⎤∈⎢⎥⎣⎦,故λ的取值范围为14,69⎡⎤⎢⎥⎣⎦.。

高二数学立体几何的体积和表面积(经典含答案)

高二数学立体几何的体积和表面积(经典含答案)
A. B. C. D.
12.如图,棱长为1的正方体 中,点 为线段 上的动点,点 分别为线段 的中点,则下列说法错误的是()
A. B.三棱锥 的体积为定值
C. D. 的最小值为
二、填空题
13.已知圆锥展开图的侧面积为 ,且为半圆,则底面半径为_______________.
14.如图,已知正方体 ,截去三个角 , , 后形成的几何体的体积与原正方体的体积之比为______.
15.如图,在棱长为4的正方体 中, , 分别为棱 , 的中点,过 , , 三点作正方体的截面,则以 点为顶点,以该截面为底面的棱锥的体积为______.
三、解答题
16.如图,多面体 中, , , , , 平面 , , 分别为 , 的中点.
(1)证明: 平面 ;
(2)证明: 平面 ;
(3)求平面 将多面体 分成上、下两部分的体积比.
【分析】
将三棱锥放入一个长方体中,求出长方体的体对角线,则得到长方体外接球的直径,利用球的表面积公式求解即可.
【详解】
解:因为三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,
不妨将三棱锥放入一个长方体中,则长方体的外接球即为三棱锥的外接球,
因为长方体的体对角线即为其外接球的直径,因为PA=AB=2, ,
所以 ,且 平面 ,所以 平面 .
又 平面 ,平面 ,
所以 ,又 平面 ,
所以 平面 .
(2)解:依题意, ,所以 ,
因为 , ,
体积和表面积
一、单选题
1.下列说法中正确的是()
A.棱锥的侧面不一定是三角形
B.棱锥的各侧棱长一定相等
C.棱台的各侧棱的延长线交于一点
D.用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图,在腰长为2的等腰直角三角形ABC内任取一点P,则点P到直角顶点A的距离小于的概率为【答案】【解析】点P到直角顶点A的距离小于,则点P在以点A为圆心为半径的扇形区域内,则其概率为2.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角3.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于.【答案】.【解析】因为正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,所以正四棱台的斜高,则该四棱台的侧面积为.【考点】正四棱台.4.已知空间中两点A(1,2,3),B(4,2,a),且,则a=()A.1或2B.1或4C.0或2D.2或4【答案】D【解析】或【考点】空间两点间距离5.三棱锥A—BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于.【答案】【解析】易知,棱AD的中点即为球心O.由已知条件可得AD=.所以球半径为,则其表面积等于.【考点】多面体与其外接球问题.6.在正方体中,下列几种说法正确的是()A.与成角B.与成角C.D.【答案】A【解析】直线与是异面直线,而∥,所以即为与所成的角.显然三角形是等边三角型,所以.故选A.同时可分别证明答案B、C、D是错误的.【考点】异面直线所成的角及其是否垂直的问题.7.如图是一个几何体的三视图,其中正视图与左视图都是全等的腰为的等腰三角形,俯视图是边长为2的正方形,(1)画出该几何体;(2)求此几何体的表面积与体积.【答案】;【解析】根据题意可得该几何体是正四棱锥,底面为2的的正方形,因为侧面斜高为,所以可得高为2,即可求得表面积与体积试题解析:(1)此几何体是正四棱锥,它的底为边长为2的正方形,侧面斜高为表面积为体积为【考点】1.三视图;2.几何体的体积、表面积公式8.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9B.10C.11D.12【答案】D【解析】根据题中所给的几何体的三视图,可以断定该几何体是下边是一个圆柱,上边是一个球体,且球的半径和圆柱的底面圆的半径是相等的,可知其表面积是圆柱的表面积加上球的表面积,即为,故选D.【考点】根据几何体的三视图,求其表面积.9.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;【答案】(1)(2)【解析】(1)取中点,,连接,则为所求二面角的平面角,找出二面角的平面角再根据题目所给条件即可计算出二面角的大小。

高二数学立体几何试题

高二数学立体几何试题

高二数学立体几何试题1.几何体的三视图如图,则几何体的体积为()A.B.C.D.【答案】D【解析】此几何体的下面是半径为1,高为1的圆柱,上面是半径为1,高为1的圆锥,所以体积是。

【考点】1.三视图;2.几何体的体积.2.若一个球的表面积为,现用两个平行平面去截这个球面,两个截面圆的半径为.则两截面间的距离为.【答案】1或7【解析】由球的表面积为知,球的半径为.有两种可能情况,一是两截面在球心同侧,二是两截面在球心两侧. 所以由球的截面性质定理得,两截面间的距离为或,答案为1或7.【考点】球的截面性质定理.3.在一座高的观测台顶测得对面水塔塔顶的仰角为,塔底俯角为,则这座水塔的高度是__________.【答案】【解析】如图所示,AB为观测台,CD为水塔,AM为水平线,依题意得:,,,∴,,,∴cm.【考点】解斜三角形.【思路点睛】由已知条件得到,,在直角三角形中,用勾股定理求出CM的边长,再求出CD的值即可.4.如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;【答案】(Ⅰ);(Ⅱ)见解析【解析】(Ⅰ)根据已知可得平面,三棱锥的体积可表示为其中高为,即可求得;(Ⅱ)连接,,连接,通过证得四边形为平行四边形,可得平面试题解析:(Ⅰ)三棱锥的体积为 --6分(Ⅱ)证明:连接,,连接为中点,且为矩形,所以四边形为平行四边形,..【考点】1.求体积;2.证明线面平行5.在空间直角坐标系中,点关于轴对称的点的坐标为()A.B.C.D.【答案】B【解析】空间点关于轴对称的点横坐标相同,纵坐标竖坐标互为相反数,因此点关于轴对称的点的坐标为【考点】空间点的坐标6.(本小题满分12分)如图,在正四棱台中,=1,=2,=,分别是的中点.(1)求证:平面∥平面;(2)求证:平面平面;(3)(文科不做)求直线与平面所成的角.【答案】(1)详见解析;(2)详见解析;(3)60°【解析】(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于,平行且等于,∥平面,进而得到结论;(2)连接,由正棱台知,,⊥,所以⊥面,由面面垂直的判定定理即可证明结论;(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,即可求出结果;法二:=="2,"=="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角,即可求出结果.试题解析:(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于.所以平行且等于,所以∥平面,平面∥平面(2)连接,由正棱台知,,⊥,所以⊥面,所以平面⊥平面(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,所以所求角为60°法二:=="2," =="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角为60°.……12分.【考点】1.面面平行的判定定理;2.面面垂直定理的判定定理.7.下列命题中真命题是()A.若,则;B.若,则;C.若是异面直线,那么与相交;D.若,则且【答案】A【解析】如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直,所以选项A正确.一个平面内的两条相交直线分别平行于另一平面,则这两个平面平行.显然选项B错误;若是异面直线,那么与相交或平行,所以选项C错误;若,则且或n在某一平面内,故选项D错误;故选A.【考点】判断命题的真假性.8.长、宽、高分别为的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为.【答案】【解析】根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即.【考点】几何体的体积.9.如图所示,为正方体,给出以下五个结论:①平面;②平面;③与底面所成角的正切值是;④二面角的正切值是;⑤过点且与异面直线和均成角的直线有2条.其中,所有正确结论的序号为_______.【答案】①②④【解析】对于①,因为,且面,面,,所以,正确;对于②,由三垂线定理得,同理可得,又于,所以平面,②正确;对于③,连接,是与底面所成角,在中,,③不对;对于④,连接交于点,,连接,所以为二面角的平面角,解三角形,④正确;对于⑤,把直线平移到跟共面,平移后有一个公共点,根据对称性过点且与异面直线和均成角的直线有4条,⑤错误.【考点】命题真假的判断【思路点睛】在判断线面平行时一般采用构造平行四边形法、中位线法、构造平性平面法,所以要根据题设中所给的条件选择合适的方法;在判断线面垂直时,会选择证明一条直线垂直一个面内的相交直线或者用面面垂直证明线面垂直,根据条件选择合适的方法;求线面角的三角函数值,关键在于作出其平面角,然后通过解三角形,求出其所求三角函数值.10.(2012•沈河区校级模拟)在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(Ⅰ)求证:AB∥平面DEG;(Ⅱ)求证:BD⊥EG.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)由AD∥EF,EF∥BC,知AD∥BC.由BC=2AD,G是BC的中点,知ADBG,故四边形ADGB是平行四边形,由此能够证明AB∥平面DEG.(Ⅱ)由EF⊥平面AEB,AE⊂平面AEB,知EF⊥AE,由AE⊥EB,知AE⊥平面BCFE.过D 作DH∥AE交EF于H,则DH⊥平面BCFE.由此能够证明BD⊥EG.解:(Ⅰ)证明:∵AD∥EF,EF∥BC,∴AD∥BC.又∵BC=2AD,G是BC的中点,∴AD BG,∴四边形ADGB是平行四边形,∴AB∥DG.∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG.(Ⅱ)证明:∵EF⊥平面AEB,AE⊂平面AEB,∴EF⊥AE,又AE⊥EB,EB∩EF=E,EB,EF⊂平面BCFE,∴AE⊥平面BCFE.过D作DH∥AE交EF于H,则DH⊥平面BCFE.∵EG⊂平面BCFE,∴DH⊥EG.∵AD∥EF,DH∥AE,∴四边形AEHD是平行四边形,∴EH=AD=2,∴EH=BG=2,又EH∥BG,EH⊥BE,∴四边形BGHE为正方形,∴BH⊥EG,又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD.∵BD⊂平面BHD,∴BD⊥EG.【考点】直线与平面垂直的性质;直线与平面平行的判定.11.如图,在四棱锥中,平面,底面是菱形,AB=2,.(Ⅰ)求证:平面PAC;(Ⅱ)若,求与所成角的余弦值;【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)根据菱形的条件,对角线,又根据平面,也能推出,这样就能证明直线垂直于平面内的两条相交直线,则线面垂直,即平面;(Ⅱ)取中点,设,连结,,根据中位线平行,就将异面直线所成角转化成相交直线所成角,即即为所求角,根据平面几何的几何关系,求三边,然后根据余弦定理求角.试题解析:(Ⅰ)证明:因为平面,所以.在菱形中,,且,所以平面.(Ⅱ)解:取中点,设,连结,.在菱形中,是中点,所以.则即为与所成角。

高二数学《立体几何》测试题(A)

高二数学《立体几何》测试题(A)

高二数学《立体几何》测试题(A )一、选择题1. 两条直线不平行是两条直线异面的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分又不必要条件2. 设有四个命题:甲:底面是平行四边形的四棱柱是平行六面体. 乙:底面是矩形的平行六面体是长方体 丙:直四棱柱是直平行六面体. 丁:正四棱柱是长方体 以上正确命题的个数是( )A. 0个B. 1个C. 2个D. 3个 3. 在棱长为1的正方体ABCD —1111D C B A 中,M 和N 分别为11B A 和1BB 中点,那么直线AM 和CN 所成角的余弦值是( ) A. 23 B. 1010 C. 53 D. 52 4. 将边长为a 的正方形ABCD 沿对角线AC 折起,使得a BD =,则三棱锥D —ABC 的体积为( ) A. 63a B. 123a C. 3123a D. 3122a 5. a 、b 为异面直线,二面角M —l —N ,M a ⊥,N b ⊥,如果二面角M —l —N 的平面角为θ,则a ,b 所成的角为( )A. θB. θ-πC. θ或θ-πD. θ+π6. 下列命题正确的是( )A. 过平面外的一条直线只能作一平面与此平面垂直B. 平面α⊥平面β于l ,α∈A ,l PA ⊥,则β⊥PAC. 一直线与平面α的一条斜线垂直,则必与斜线的射影垂直D. a 、b 、c 是两两互相垂直的异面直线,d 为b 、c 的公垂线,则a ∥d7. 在空间,如果x 、y 、z 表示直线与平面,“若y x ⊥,z x ⊥,则y ∥z ”成立,那么x ,y ,z 所分别表示的元素正确的是( )A. x ,y ,z 都是直线B. x ,y ,z 都是平面C. x ,y 为平面,z 为直线D. x 为直线,y ,z 为平面8. 在正三棱柱ABC —111C B A 中,若12BB AB =,则1AB 与B C 1所成的角大小为( )A. 105°B. 60°C. 90°D. 75°9. 侧棱长为10,高为6的正三棱锥的底面积是( )A. 30B. 24C. 60D. 48310. 棱锥被平行于底面的平面所截,其截面面积和底面面积之比为1∶m ,则此棱锥的高被分成两段(从顶点到截面和从截面到底面)之比是( )A. 1∶mB. 1∶2mC. 1∶()1+mD. 1∶()1-m 11. 正三棱锥的侧面积是底面积的332倍,则底面与侧面所成的二面 角为( ) A. 15° B. 30° C. 45° D. 60°12. 正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱的侧对角线D E 1与1BC 所成的角是( )A. 90°B.60°C. 45°D. 30二、填空题13. 一个棱锥三个侧面两互相垂直,它们的面积分别为12cm 2,8cm 2,6cm 2,那么这个三棱锥的体积 .14. 在棱长为1的正方体ABCD —1111D C B A 中,则A 到面A 1BD 的距离为 .15. 等腰直角ABC ∆的斜边AB 在平面α内,点C 到平面α的距离等于AB 边上高的一半,C 点在α内的射影为O ,则AB 与平面CAO 所成的余弦值为 .16. 长方体的对角线长为2,则长方体全面积的最大值为 .三、解答题17. (12分)已知ABCD 为矩形,PA 垂直面ABCD ,M 、N 分别是AB 、PC 的中点,(1)求证:AB MN ⊥;(2)若AD PA =,求证:⊥MN 平面PDC .18. (12分)如图α⊂AC ,l AC ⊥,l C ∈,β⊂BD ,l BD ⊥,l D ∈,3=AC ,4=BD ,17=AB ,2=CD .(1)求锐二面角α—l —β的大小;(2)求AB 与面β所成角的正弦值.19. (12分)已知ABCD 为边长为4的正方形,E 、F分别是AB 、AD 的中点,GC 垂直ABCD 所在的平面,且GC =2,求点B 到平面EFG 的距离。

高二数学空间向量与立体几何测试题

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。

高二数学立体几何练习题

高二数学立体几何练习题

高二数学立体几何练习题
1. 三棱锥ABCDA1是一个底面为正三角形ABC的三棱锥。

已知
AD=3,BC=4,AB∥CD且AB=2CD。

求证:AB=√21。

解析:
首先,可以得到AB=2CD,即AB=2,CD=1.根据正三角形的性质,我们可以得到∠BAD=60°。

由于锥心角ABD=60°,且CD通过顶点D且平行于底面,所以可得CD与底面ABC的交点与锥顶点D和底面三个顶点构成的四个点在同
一个平面上。

我们可以称这个平面为α平面。

在平面α上,连接CD与顶点A1,作直线A1B∥AB,交线段AB
于点E。

△ABE与△ABC是相似三角形,因为∠EAB=∠ABC(对应角),
而∠ABE=∠ACB(平行线所成的内错角相等)。

由相似三角形的性质,可得AB/AE=AB/AC,即AE=AC=3√3(三棱锥ABCDA1的高度)。

又因为A1B∥AB,所以A1E=AE=3√3。

由△ADE可以得到∠DAE=60°。

根据勾股定理,在△ABE中,有AE^2=AB^2+BE^2,即(3√3)
^2=2^2+BE^2,解得BE=3。

根据勾股定理,在△ADE中,有AD^2+AE^2=DE^2,即3^2+
(3√3)^2=DE^2,解得DE=6。

所以,AB=AE+BE+ED=3√3+3+6=√21。

综上所述,满足题目要求,即证明了AB=√21。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.(本题满分10分)把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?【答案】16000【解析】设长方体高为xcm,则底面边长为(60-2x)cm.(0<x<30)…1分长方体容积(单位:),…3分…5分令解得x=10,x=30(不合题意合去)于是…7分在x=10时,V取得最大值为…10分2.已知三棱锥满足,则点在平面上的射影是三角形的心.【答案】外【解析】,设点在平面上的射影是.则,所以是外心.【考点】射影定理3.(本题满分16分,第(1)小题7分,第(2)小题9分)如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到mm).【答案】(1);(2)【解析】(1)观察铆钉的面积,钉身为圆柱形的侧面积,加半球的底面积加半球面的面积;(2)将钉身圆柱捶打成钢板厚的圆柱加一个半球形的帽,所以利用等体积建立方程,求的钉身的长度.试题解析:解:设钉身的高为,钉身的底面半径为,钉帽的底面半径为,由题意可知:圆柱的高圆柱的侧面积半球的表面积所以铆钉的表面积()(2)设钉身长度为,则由于,所以,解得答:钉身的表面积为,钉身的长度约为.【考点】1.组合体的表面积;2.组合体的体积;3.等体积.4.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】【解析】由三视图可知原几何体如图所示:故几何体的体积,答案选B.【考点】空间几何体的三视图与体积5.直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.【答案】(1)见解析(2)【解析】(1)以为原点,以,,为,,轴建立空间直角坐标系.设,计算与的数量积即可得到(2)同理可计算,利用向量的夹角的余弦公式可得向量与的余弦值,亦即异面直线与所成角的余弦值试题解析:由题知平面,,以为原点,以,,为,,轴建立空间直角坐标系.设,,,,,,,,,,,所以;(2),设异面直线与所成角为,则有【考点】向量法解决空间几何中的直线与直线垂直和异面直线所成的角.6.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面和平面有不同在一条直线上的三个交点【答案】C【解析】A如果三点在一条直线上,则不能确定一个平面;B四边形可以为空间中的三棱锥;C梯形两平行边确定一个平面;D平面和平面相交所有的点都在交线上,所以三个点一点在同一条直线上,故选择C【考点】空间点、线、面7.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为,故选D.【考点】空间几何体的三视图.8.在长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,,则与所成角的余弦值为【考点】空间向量求异面直线所成角9.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为,则三棱锥O-AB1D1的体积为_____________.【答案】【解析】【考点】棱锥体积10.设为不同的平面,为不同的直线,则的一个充分条件为().A.,,B.,,C.,,D.,,【答案】D【解析】一条直线垂直于两个互相垂直的平面的交线,则这条直线与这两个平面中的某一平面可能垂直也可能不垂直,所以选项A错误;同理,可说明B、C不正确;若,,,则∥,,所以。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.一个球的Л体积为,则此球的表面积为.【答案】【解析】因为球的体积公式:,所以=所以R=1,由表面积公式S=4=2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.C.D.2【答案】C【解析】略3.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角4.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD 的体积为_____________.【答案】【解析】矩形外接圆的直径为对角线长。

棱锥的体积为【考点】棱锥外接球问题5.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可得其还原图是半个圆锥,由题可得其底面圆半径为1,母线长为3,所以其体积为。

故选A。

【考点】由三视图求面积、体积。

6.(本小题满分12分)已知如图,四边形是直角梯形,,,平面,,点、、分别是、、的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)先证明平面∥平面,由面面平行可得线面平行;(Ⅱ)建立直角坐标系,由空间微量公式计算即可.试题解析:(Ⅰ)证明:∵点、、分别是、、的中点,∴∥,∥.∵平面,平面,平面,平面,∴∥平面,∥平面.∵,∴平面∥平面∵平面,∴∥平面.(Ⅱ)解:根据条件,直线,,两两垂直,分别以直线,,为建立如图所示的空间直角坐标系.设,∵,∴∴.设分别是平面和平面的一个法向量,∴,∴,即,.不妨取,得.∴.∵二面角是锐角,∴二面角的余弦值是.【考点】1.线面平行、面面平行的判定与性质;2.空间向量的应用.7.一个几何体的三视图如图所示,已知这个几何体的体积为,则()A.B.C.D.【答案】B【解析】根据题中所给的三视图,可知该几何体为底面为边长为和的长方形,顶点在底面上的摄影是左前方的顶点,所以有,解得,故选B.【考点】根据所给的几何体的三视图,还原几何体,求其体积及其他量.8.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;9.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值为()A.B.C.D.【答案】B【解析】设该棱柱各棱长为a,底面中心为O,则A1O平面ABC.在三角形A1AO中,可得.设AB中点为D,可证,AD A1D.在直角三角形ADA1中,AA1=a,AD=,解得,.故与底面所成角的正弦值为.故选B.10.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.【答案】【解析】【考点】圆锥体积11.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF= .则下列结论中正确的个数为①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④的面积与的面积相等,A.4B.3C.2D.1【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确【考点】1.正方体的结构特点;2.空间线面垂直平行的判定与性质12.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:①若,则;[②若,则;③若则;④若与相交且不垂直,则与一定不垂直.其中,所有真命题的序号是.【答案】①③【解析】②中两平面平行或垂直;④中两直线可能相交,平行或异面,可能出现异面直线垂直的情况;①③由线面垂直平行的判定与性质可知结论正确【考点】空间线面垂直平行的判定与性质13.一个的长方体能装卸8个半径为1的小球和一个半径为2的大球,则的最小值为()A.B.C.D.8【答案】B【解析】在的面上放4个小球,在在上面放一个大球,4个小球每个都与相邻两个相切,大球与四个小球都相切,记4个小球的球心依次为,大球球心为,则为正四棱锥,底面边长为2,侧棱长为3,其高为,对应上面再放4个小球,因此的最小值为,故选B.【考点】长方体与球.14.如图,在四面体中,,,点分别是的中点(1)求证:平面平面;(2)当,且时,求三棱锥的体积【答案】(1)见解析;(2).【解析】(1)证明面面垂直应证线面垂直,首先根据图形分析需要证明面即可说明平面平面;(2)解决本题关键是找出底面上的高,由(1)很容易可以得到高为,由此可以计算三棱锥的体积.试题解析:(1)证明:∵中,分别是的中点,.,.中,,是的中点,.,面,平面平面;(2)解:,是的中点,,,,∴平面,,,,,,.【考点】空间几何体的垂直、平行、体积问题.15.如图,已知四棱锥的底面为菱形,,,.(1)求证:;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)用几何法证明线线垂直的主要思路是证明线面垂直,则线线垂直,所以首先根据所给的条件能够确定是等腰直角三角形,是等边三角形,然后取的中点,连接,最后证明平面;(2)根据上一问的结论,根据勾股定理,证明,从而可以以为原点建立空间直角坐标系,分别求两个平面的法向量,利用公式求解.试题解析:(1)证明:取的中点,连接.∵,∴又四边形是菱形,且,∴是等边三角形,∴又,∴,又,∴(2)由,,易求得,,∴,以为坐标原点,以,,分别为轴,轴,轴建立空间直坐标系,则,,,,∴,,设平面的一个法向量为,则,,∴,∴,,∴设平面的一个法向量为,则,,∴,∴,,∴∴【考点】1.线与线的位置关系;2.二面角.16.如图,在正三棱锥中,.分别为棱.的中点,并且,若侧棱长,则正三棱锥的外接球的体积为__________.【答案】【解析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.∵M,N分别为棱SC,BC的中点,∴MN∥SB,∵三棱锥S-ABC为正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC ∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.【考点】球的体积与表面积【方法点睛】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.17.如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.(1)求异面直线和所成的角的大小;(2)求证:直线平面.【答案】(1);(2)见解析.【解析】(1)通过构造中位线,得到,即为异面直线和所成的角,由已知数据求之即可;(2)要证平面,可在平面中构造一条直线与平行即可,连接交于点,连接,证明即可.试题解析:(1)∵,分别是,的中点,∴,∴为异面直线和所成的角.在△中,可求,,,故,即异面直线和所成的角是.(2)连接交于点,连接,∵为的中点,为的中点,∴为△的重心,∴.∵为的中点,为的中点,∴,∴,∴,∵面,面,∴面.【考点】1.异面直线所成的角;2.线线、线面平行的判定与性质.18.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段上,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于()A.B.C.D.【答案】B【解析】由俯视图可知为的中点,与重合,与点重合.所以此时三棱锥的正视图为三角形,其面积为.故B正确.【考点】三视图.【思路点晴】本题主要考查的是三视图,属于中档题.应先根据三棱锥的俯视图确定四点的位置,还原出三棱锥的立体图,根据其立体图可得其正视图,从而可求得正视图的面积.19.如图,在四棱锥中,底面是正方形,侧棱底面,,是的中点.则与底面所成的角的正切值为________.【答案】【解析】设底面边长为1,取中点,连接,,所以底面,那么为与底面所成的角,,,所以.【考点】线面角【思路点睛】主要考察了线面角的求法,属于基础题型,根据线面角的定义,线与射影所成角,所以此题的关键是求在平面内的射影,所以根据底面,取中点,得底面,再连接,为与底面所成的角,根据正切公式求解.20.在四棱锥中,底面,,,,,是的中点.(1)证明:;(2)证明:平面;(3)(限理科生做,文科生不做)求二面角的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明异面直线垂直,一般的思路是证明线面垂直,线在面内,所以线线垂直的思路,所以根据条件转化为先证明平面,而要证明平面,得先证明,条件所给,易证;(2)证明线面垂直的思路是证明线与平面内的两条相交直线垂直,则线面垂直,根据上一问已证明,所以只需再证明,根据条件需证明,问题会迎刃而解;(3)由题可知两两垂直,建立空间直角坐标系,设,那就可以写出各点的坐标,并分别求两个平面的法向量与,利用公式,并观察是钝二面角.试题解析:(1)证明:底面,.又面,面,.(2)证明:,是等边三角形,,又是的中点,,又由(1)可知,面(3)解:由题可知两两垂直,如图建立空间直角坐标系,设,则.设面的一个法向量为,即取则,即设面的一个法向量为,即取则即,由图可知二面角的余弦值为.【考点】1.线线垂直,线面垂直的证明;2.二面角;3.向量法.21.如图,已知圆柱的高为,是圆柱的三条母线,是底面圆的直径,.(1)求证://平面;(2)求二面角的正切值.【答案】(1)证明见解析;(2).【解析】(1)先利用垂直关系建立空间直角坐标系,写出相关点的坐标,通过证明的方向向量和平面的法向量垂直进行证明;(2)先求出两个平面的法向量,利用空间向量求出其二面角的余弦值,再利用同角三角函数基本关系式求解.试题解析:由是直径,可知,故由可得:,以点为坐标原点建立空间直角坐标系(如图)则(1)由可得平面的一个法向量又又平面平面(2)由可得平面的一个法向量,由可得平面的一个法向量设二面角为,则所以二面角的正切值为.【考点】1.线面平行的判定;2.二面角;3.空间向量在立体中的应用.22.(2015秋•黄冈校级期末)如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A. B. C. D.【答案】A【解析】在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.【考点】轨迹方程.23.(2015秋•内江期末)若一个几何体的正视图是一个三角形,则该几何体不可能是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】B【解析】圆柱的正视图可能是矩形,可能是圆,不可能是三角形.解:圆锥的正视图有可能是三角形,圆柱的正视图可能是矩形,可能是圆,不可能是三角形,棱锥的正视图有可能是三角形,三棱柱放倒时正视图是三角形,∴在圆锥、圆柱、棱锥、棱柱中,正视图是三角形,则这个几何体一定不是圆柱.故选:B.【考点】简单空间图形的三视图.24.已知两条不重合的直线和两个不重合的平面、,有下列命题:①若,,则;②若,,,则;③若是两条异面直线,,,,则;④若,,,,则.其中正确命题的个数是()A.B.C.D.【答案】B【解析】①不正确,还可能;②正确,,,又,;③不正确,还可能相交;④由面面垂直的性质定理可知④正确.综上可得②④正确.故B正确.【考点】1线面位置关系;2面面位置关系.25.如图,在三棱锥P﹣ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(Ⅰ)证明:AB⊥PC;(Ⅱ)证明:平面PAB∥平面FGH.【答案】见解析【解析】(Ⅰ)根据线面垂直的性质定理证明AB⊥面PEC,即可证明:AB⊥PC;(Ⅱ)根据面面平行的判定定理即可证明平面PAB∥平面FGH.解:(Ⅰ)证明:连接EC,则EC⊥AB又∵PA=PB,∴AB⊥PE,∴AB⊥面PEC,∵BC⊂面PEC,∴AB⊥PC(Ⅱ)连结FH,交于EC于O,连接GO,则FH∥AB在△PEC中,GO∥PE,∵PE∩AB=E,GO∩FH=O∴平面PAB∥平面FGH【考点】平面与平面平行的判定;空间中直线与直线之间的位置关系.26.以正方体的顶点D为坐标原点,如图建立空间直角坐标系,则与共线的向量的坐标可以是()A.B.C.D.【答案】D【解析】不妨令正方体的边长为1,则由图可知.,与共线的向量的坐标为.故D正确.【考点】空间向量共线问题.27.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=" 2AD" ="2CD" =2.E是PB的中点.(I)求证;平面EAC⊥平面PBC;(II)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.【答案】(I)证明见解析;(II).【解析】对于问题(I),可以先证明平面,再证明,然后即可证明所需结论;对于问题(II),首先建立以为坐标原点的空间坐标系,然后再求出相应点的坐标,再由题设条件求出的长以及平面的法向量,最后利用向量的夹角公式,就可以得到直线与平面所成角的正弦值.试题解析:(I),,,,,错误!未指定书签。

高二数学立体几何(1)

高二数学立体几何(1)

平面的基本性质,两直线的位置关系一、选择题(本题每小题5分,共50分)1.若直线上有两个点在平面外,则 ( )A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内 2.在空间中,下列命题正确的是 ( ) A .对边相等的四边形一定是平面图形B .四边相等的四边形一定是平面图形C .有一组对边平行且相等的四边形是平面图形D .有一组对角相等的四边形是平面图形 3.在空间四点中,无三点共线是四点共面的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.用一个平面去截正方体,则截面形状不可能是( )A .正三角形B .正方形C .正五边形D .正六边形 5.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45°C .60°D .30°6.一条直线与两条平行线中的一条是异面直线,那么它与另一条直线的位置关系是( )A .相交B .异面C .平行D .相交或异面7.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )A .[30°,90°]B .[60°,90°]C .[30°,60°]D .[60°,120°]8.右图是正方体的平面展开图,在这个正方体中,① BM 与ED 平行; ② CN 与BE 是异面直线;③ CN 与BM 成60角; ④ DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④9.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位 置关系只能是 ( ) A .平行 B .平行或异面 C .平行或相交 D .异面或相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EB =AF :FDN D C ME A B F=1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) A .BD//平面EFGH 且EFGH 是矩形 B .EF//平面BCD 且EFGH 是梯形C .HG//平面ABD 且EFGH 是菱形 D .HE//平面ADC 且EFGH 是平行四边形二.填空题(本题每小题6分,共24分)11.若直线a, b 与直线c 相交成等角,则a, b 的位置关系是 .12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.把边长为a 的正方形ABCD 沿对角线BD 折起,使A 、C 的距离等于a ,如图所示,则异面直线AC 和BD 的距离为 . 三、解答题(共76分)15.(12分)已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线 .16.(12分)在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足PDCPQD AQ NB CN MB AM ====k .求证:M 、N 、P 、Q 共面.17.(12分)已知:平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线18.(12分)如图,已知空间四边形ABCD 中,AB =CD =3,E 、F 分别是BC 、AD 上的点,并且BE ∶EC =AF ∶FD =1∶2,EF =7,求AB 和CD 所成角的大小.19.(14分)四面体A-BCD 的棱长均为a ,E 、F 分别为楞AD 、BC 的 中点,求异面直线AF 与CE 所成的角的余弦值.20.(14分)在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(2)求直线A′C与DE所成的角;直线和平面的位置关系一、选择题(本题每小题5分,共50分)1.下列命题:① 一条直线在平面内 的射影是一条直线;② 在平面内射影是直线的图形一 定是直线;③ 在同一平面内的射影长相等,则斜线长相等;④ 两斜线与平面所成的角 相等,则这两斜线互相平行.其中真命题的个数是 ( )A .0个B .1个C .2个D .3个2.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直3.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是 ( )A .30°B .45°C .60°D .90°4.已知A 、B 两点在平面α的同侧,AC ⊥α于C ,BD ⊥α于D ,并且AD ∩BC =E ,EF ⊥α于F ,AC =a ,BD=b ,那么EF 的长等于 ( )A .b a ab +B .ab b a +C .b a 2+D .2ba +5.P A 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面P AB 所成角的余弦值是( )A .21B .22C .36 D .33 6.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC =2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( )A .25 B .211 C .27 D .419 7.如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A .PB ⊥BC B .PD ⊥CD C .PD ⊥BD D .PA ⊥BD8.如果α∥β,AB 和AC 是夹在平面α与β之间的 两条线段,AB ⊥AC ,且AB =2,直线AB 与平面α所成的角为30°,那么线段AC 的长的取值范围是( )A. B .[1,)+∞ C. D.)+∞9.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥αC .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ二、填空题(本题每小题6分,共24分)11.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .12.已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形 三个顶点的距离都是14,则点P 到平面ABC 的距离是 13.如图所示,矩形ABEF 与矩形EFDC 相交于EF , 且BE ⊥CE ,AB =CD =4,BE =3,CE =2, ∠EAC =α,∠ACD =β,则cos α∶cos β= .14.AB ∥CD ,它们都在平面α内,且相距28.EF ∥α,且相距15. EF ∥AB ,且相距17.则EF 和CD 间的距离为 . 三、解答题(共76分) 15.(12分)如图,在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.16.(12分)A 是△BCD 所在平面外的点,∠BAC=∠CAD=∠DAB=60°,AB=3,AC=AD=2. (1)求证:AB ⊥CD ;(2)求AB 与平面BCD 所成角的余弦值.17.(12分)如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.18.(12分)在ABC ∆中,︒=∠75BAC ,线段VA ⊥平面ABC ,点A 在平面VBC 上的射影为H.求证:H 不可能是VBC ∆的垂心.19.(14分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1, P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45 (1)证明:BC ⊥平面PAC ; (2)求点A 到平面PBC 的距离.20.(14分)如图所示,在斜边为AB的Rt△ABC中,过A作P A⊥平面ABC,AM⊥PB于M,AN⊥PC于N.(2)求证:PB⊥面AMN.(3)若P A=A B=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?平面和平面的位置关系一、选择题:本大题共12个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中正确的是 ( ) A .垂直于同一平面的两平面平行 B .垂直于同一直线的两平面平行 C .与一直线成等角的两平面平行 D .Rt ∠ABC 在平面α的射影仍是一个直角,则∠ABC 所在平面与平面α平行 2.ABCD 是一个四面体,在四个面中最多有几个是直角三角形 ( ) A .1 B .2 C .3 D .4 3.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m ⊂α、n ∥β,则m ∥n ; ②若m ∥α、n ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α,m ∥β;④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( ) A .0 B .1 C .2 D .3 4.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tan θ等于 ( )A .34B .35CD5.下列命题:① 若直线a //平面α,平面α⊥平面β,则α⊥β; ② 平面α⊥平面β,平 面β⊥平面γ,则α⊥γ;③ 直线a ⊥平面α,平面α⊥平面β,则a //β; ④ 平面α// 平面β,直线a ⊂平面α,则a //β.其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 6.二面角α-AB -β的平面角为锐角,C 是α内的一点 (它不在棱AB 上),点D 是C 在平面β内的射影,点E 是AB 上满足∠CEB 为锐角的任意一点,那么( ) A .∠CEB>∠DEB B .∠CEB<∠DEB C .∠CEB=∠DEB D .无法确定7.如果直线l 、m 与平面α、β、γ满足:l βγ=⋂,//l α,,m m αγ⊂⊥,那么必有( ) A .,l m αγ⊥⊥ B .,//m αγβ⊥ C .//,m l m β⊥ D .//,αβαβ⊥ 8.已知:矩形ADEF ⊥矩形BCEF ,记∠DBE =α, ∠DCE =β,∠BDC =θ,则 ( ) A .sin α=sin βsin θ B .sin β=sin αcos θ C .cos α=cos βcos θ D .cos β=cos αcos θ9.若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为 ( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的平面垂直于βC .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的直线在α内10.空间三条射线PA ,PB ,PC 满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C的度数 ( )A .等于90°B .是小于120°的钝角C .是大于等于120°小于等于135°的钝角D .是大于135°小于等于150°的钝角二、填空题:本大题满分24分,每小题6分,各题只要求直接写出结果. 11.如图所示,E 、F 、G 是正方体ABCD -A 1B 1C 1D 1相应棱的中点,则(1)面EFG 与面ABCD 所成的角为 ;(2)面EFG 与面ADD 1A 1所成的角为 . 12.斜线PA 、PB 于平面α分别成40°和60°,则∠APB 的取值范围为13.在直角△ABC 中,两直角边AC =b ,BC =a ,CD ⊥AB 于D , 把这个Rt △ABC 沿CD 折成直二面角A -CD -B 后, cos ∠ACB = .14.如图,两个矩形ABCD 和ABEF 中,AD =AF =1, DC =EF =,则AB 与CF 所成角θ的大小范 围是 .三、解答题:本大题满分76分. 15.(本小题满分12分).//,,//,,,:αββαb b a a b a 且且是异面直线已知⊂⊂ 求证:βα//.16.(本小题满分12分)正方体ABCD-A ′B ′C ′D ′棱长为1.(1)证明:面A ′BD ∥面B ′CD ′; (2)求点B ′到面A ′BD 的距离.(14分)17.(本小题满分12分)如图,平面α∥平面β,点A 、C ∈α,B 、D ∈β,点E 、F 分别在线段AB 、CD 上,且FDCFEB AE =,求证:EF ∥β.18.(本小题满分12分)如图,四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离不小于3,求二面角A —BC —D 的平面角的取值范围; (3)求四面体ABCD 的体积的最大值.19.(本小题满分14分)在长方体1111D C B A ABCD -中,11==AD AA ,底边AB 上有且 只有一点M 使得平面⊥DM D 1平面MC D 1. (1)求异面直线C C 1与M D 1的距离; (2)求二面角D C D M --1的大小.20.(本小题满分14分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (1)证明AD ⊥D 1F; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;(4)111112ED A F V ED A F AA --=的体积,求三棱锥设.空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是 ( )A .一个平面B .一条直线C .两条直线D .空集2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a 与平面β所成的角 ( ) A .与θ相等 B .与θ互余 C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为 ( )A .3π B .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG 中必有 ( ) A .SG ⊥△EFG 所在平面 B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了 ( ) A .1002米B .502米C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos 33B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( )A .45︒B .60︒C .90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为 ( )A .43a B .43 a C .23 a D .46a 9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是 ( )A .0<α<6π B .6π<α<4π C .4π<α<3π D .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA 〉的大小为( )A .6πB .65πC .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________. 13.在三棱锥P-ABC中,90=∠ABC ,30=∠BAC ,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D .(1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小. 16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 17.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.1AB=a,(如图一)将△ADC 18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2沿AC折起,使D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.二 面 角二面角问题因其需要充分运用立体几何第一章的线线、线面、面面关系,具有综合性强,灵活性大的特点,因此,一直成为高考、会考的热点。

高二数学立体几何综合试题答案及解析

高二数学立体几何综合试题答案及解析

高二数学立体几何综合试题答案及解析1.以正方体的任意4个顶点为顶点的几何形体有①空间四边形;②每个面都是等边三角形的四面体;③最多三个面是直角三角形的四面体;④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.【答案】①②④【解析】①只要不在同一平面上的四个点连结而成的四边形都是空间四边形. ②从一个顶点出发与它的三个对角面的顶点连结所成的四棱锥符合条件.最多有四个直角四面体.由一个顶点和又该点出发的两条棱的端点及一个对角面的定点四点即可.所以③不成立. ④显然成立.故选①②④.【考点】1.空间图形的判断.2.空间中线面间的关系.2.下列关于用斜二测画法画直观图的说法中,错误的是()A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆【答案】B【解析】选项.用斜二测画法画出的直观图是在平行投影下画出的空间图形,正确;选项.斜二测画法的规则中,已知图形中平行于轴的线段,在直观图中保持原长度不变;平行于轴的线段,长度为原来的一半.平行于轴的线段的平行性和长度都不变.故几何体的直观图的长、宽、高与其几何体的长、宽、高的比例不相同;选项.水平放置的矩形的直观图是平行四边形,正确;选项.水平放置的圆的直观图是椭圆,正确.故选【考点】斜二测画法画直观图.3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.【答案】(1)证明见解析;(2)1.【解析】(1)设线段的中点为,易得四边形为平行四边形,得,又,,,所以平面平面;(2)因为平面,所以是三棱柱的高,所以三棱柱的体积,通过计算即可得出三棱柱的体积.试题解析:(1) 设线段的中点为.和是棱柱的对应棱同理,和是棱柱的对应棱且且四边形为平行四边形,,平面平面(2)平面是三棱柱的高在正方形中,.在中,,三棱柱的体积.所以,三棱柱的体积.【考点】1.面面平行的判定定理;2.棱柱的体积.4.如图所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.(1)求证:B1C∥平面AC1M;(2)求证:平面AC1M⊥平面AA1B1B.【答案】 (1)由三视图可知三棱柱A1B1C1—ABC为直三棱柱,底面是等腰直角三角形,且∠ACB=90°.连结A1C,设A1C∩AC1=O,连结MO,由题意可知,得到MO∥B1C,进一步得到B1C∥平面AC1M.(2)利用已知得到C1M⊥A1B1,根据平面A1B1C1⊥平面AA1B1B,得到C1M⊥平面AA1B1B,达到证明目的:平面AC1M⊥平面AA1B1B.【解析】思路分析:首先,由三视图可知三棱柱A1B1C1—ABC为直三棱柱,底面是等腰直角三角形。

50道高二数学立体几何好题

50道高二数学立体几何好题

1.如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是()A.4+4根号3 B. 12 C. 4根号3 D. 82.如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,若E、F分别为PC、BD的中点,求证:(1)EF∥侧面PAD;(2)平面PAD⊥平面PDC。

3.如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面AC的距离为2,则该多面体的体积为…()A. B.5 C.6 D.4.已知棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。

(1)求证:AC//平面B1DE;(2)求三棱锥A-BDE的体积。

5.已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;6.如图,在五面体EF-ABCD中,点O是矩形ABCD的对角线的交点,△CDE是等边三角形,棱。

(1)证明FO//平面CDE;(2)设,证明EO⊥平面CDF.7.如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点. 证明EF//平面A1CD。

8.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为______.9.已知正四面体A-BCD中+P为棱AD的中点+则过点P与侧面ABC和底面BCD所在平面都成60的平面有几个?10.在长方体ABCD—A1B1C1D1中,过长方体的顶点A与长方体12条棱所成的角都相等的平面有( )A.1个B.2个C.3个D.4个11.在四面体ABCD中,已知DA=DB=DC=1,且DA、DB、DC两两互相垂直,在该四面体表面上与点A距离为的点形成一条曲线,则这条曲线的长度是()A. B. C. D.12.[2012·重庆卷] 设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围为( )A.(0,) B.(0,) C.(1,) D.(1,)13.如图,在直三棱柱A1B1C1-ABC中,∠BAC=π/2,AB=AC=A1A=1,已知G与E 分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是([1/5, 2))14.一个正方体截去两个角后所得几何体的正视图(又称主视图)、侧视图(又称左视图)如图所示,则其俯视图为()A、B、C、D、15.己知一个正三棱锥的正视图为等腰直角三角形,其尺寸如图所示,则其侧视图的周长为16.三棱锥s-abc的所有顶点都在球O的球面上,三角形abc为边长为一的正三角形,sc为球o 的直径sc=2,求三棱锥V.17.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6.BC=2,则棱锥O-ABCD的体积为.18.如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且==,求证:三条直线EF、GH、AC交于一点。

高二数学立体几何试题

高二数学立体几何试题

高二数学立体几何试题1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.B.C.D.【答案】B【解析】略2.长方体的底面是边长为的正方形,若在侧棱上至少存在一点,使得,则侧棱的长的最小值为()A.B.C.D.【答案】B【解析】以D为原点,分别为轴建立坐标系,设侧棱长为b,则,所以侧棱长的最小值为【考点】1.向量法求解立体几何问题;2.二次方程根的判定3.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;4.如图,四棱锥中,四边形是正方形,若分别是线段的中点.(1)求证:||底面;(2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。

【答案】(1)见解析;(2)平行【解析】(1)证明GF平行于平面ABC内的一条直线AC即可;(2)首先判断平面∥平面,然后结合有关几何体的性质与所给条件证明面面平行即可.试题解析:(1)证明:连接,由是线段的中点得为的中点,∴为的中位线,又平面,平面∴平面(2)平面∥平面,证明如下:∵分别为,的中点,∴为的中位线,∴∥又∵,∴∥,又平面,∴平面∥平面【考点】线面平行的判定与性质;面面平行的判定与性质5.多面体的底面矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.6【答案】C【解析】用割补法可把几何体分割成三部分,如图:棱锥的高为2,底面边长为4,2的矩形,棱柱的高为2.可得【考点】由三视图求面积、体积6.点A(2,3,5)关于坐标平面的对称点B的坐标是A.(2,3,-5)B.(2,-3,5)C.(-2,3,5)D.(-2,-3,5)【答案】A【解析】空间点关于平面的对称点的坐标不变,坐标互为相反数,因此B的坐标是,故选A【考点】空间点的坐标7.如图所示,在棱长为2的正四面体中,是棱的中点,若是棱上一动点,则的最小值为A.B.C.D.【答案】B【解析】将翻折到同一平面内,的最小值为为的长,在中,由余弦定理可得【考点】1.翻折问题;2.空间距离8.如图在直三棱柱中已知AB=BC=1,,,D是上的点,且(1)求AD与C1B1所成的角的大小;(2)求二面角的余弦值.【答案】(1);(2)二面角的余弦值为.【解析】(1)异面直线所成的角常常通过作平行线将其转化为平面角,然后再三角形内求解.本题过D作DE平行BC交于点E,连接DE,AD,从而将所求转化为DE与AD所成的角,即,最后求解即可.(2)求二面角的大小常常是利用三垂线定理或其逆定理作出其平面角,然后在三角形内求解即可.当然作平面角的方法很多应根据题目条件选择适当的方法.试题解析:如上图所示过D作DE平行BC交于点E,连接DE,AD易知四边形为平行四边形,即DE平行且等于所以有AD与C1B1所成的角就为DE与AD所成的角,即,又为直三棱柱.知道=在Rt由勾股定理知=同理可得AD= ;又=1;在三角形ADE中由余弦定理解得;所以=(2)由题易知BC垂直平面从而直线垂直平面,作垂直于AD交AD的延长线于F,连接,由三垂线定理的逆定理知,从而为二面角的平面角,在中应用余弦定理得=,于是,故所求二面角的余弦值为【考点】•异面直线所成的角;‚求二面角.【方法点睛】求二面角的平面角的方法:一、定义法,即在二面角的棱上任取一点,并过该点在两个半平面内作棱的垂线,则这两条垂线的夹角即为二面角的平面角,然后在三角形内求解即可.二、利用三垂线定理或其逆定理作出二面角的平面角,然后求解,该法的应用是最多的(本题即为该解法).三、垂面法,即找到一个与二面角的棱垂直的平面,该平面与两个半平面的交线所围成的角即为二面角的平面角,然后求解.9.已知两条相交直线,平面,则与平面的位置关系是()A.平面B.平面C.平面D.与平面相交,或平面【答案】D【解析】直线显然不可能在平面内,平行与相交都有可能,故选D.【考点】直线与平面的位置关系.10.已知是两条不同直线,是两个不同平面,则下列命题正确的是()A.若垂直与同一平面,则平行B.若平行于同一平面,则平行C.若不平行,则内不存在与平行的直线D.若不平行,则不可能垂直与同一平面【答案】D【解析】若垂直与同一平面,则可能平行也可能相交,A错;若平行于同一平面,则平行、相交、异面都有可能,B错;若相交时,则内与交线平行的直线与平行,C错;则垂直与同一平面,则与平行,D正确,故选D.【考点】面面、线面、线线间的位置关系.11.设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,如图:则其外接球的半径为球的表面积为;故选B.【考点】球内接多面体.【方法点晴】本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的求心就是上下底面中心连线的中点.12.一只蚂蚁从棱长为1cm的正方体的表面上某一点出发,走遍正方体的每个面的中心的最短距离,那么的最大值是__________.【答案】【解析】欲求d的最大值,先将起始点定在正方体的一个顶点A点,再将正方体展开,找到6个面的中心点,经观察可知蚂蚁爬行最短程为6个正方体的棱长+展开图形中半个正方形对角线的长.欲求d的最大值,先将起始点定在正方体的一个顶点A点,正方体展开图形为:则蚂蚁爬行最短程的最大值【考点】平面展开-最短路径问题【方法点睛】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。

高二数学立体几何试题

高二数学立体几何试题

高二数学立体几何试题1.如图所示,正方形和矩形所在平面相互垂直,是的中点.(I)求证:;(Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.【答案】(I)证明:在矩形中,∵平面平面,且平面平面∴∴(Ⅱ)由(I)知:∴是直线与平面所成的角,即设取,连接∵是的中点∴∴是异面直线与所成角或其补角连接交于点∵,的中点∴∴∴异面直线与所成角的余弦值为【解析】略2.二面角α-l-β为60°,A、B是棱l上的两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为()A.2a B.C.a D.【答案】A【解析】此题考查二面角的知识;如下图所示:过点作平面垂线,垂足为,连接,且,所以,在中,可以求出,;四边形是直角梯形,可求出斜腰,所以在中,,选A3.(本题12分)如图,长方体中,,,点为的中点。

(1)求证:直线∥平面;(2)求证:平面平面;(3)求证:直线平面。

【答案】略【解析】(1)设AC和BD交于点O,连PO,由P,O分别是,BD的中点,故PO//,所以直线∥平面--(4分)(2)长方体中,,底面ABCD是正方形,则AC BD又面ABCD,则AC,所以AC面,则平面平面 -----------------------(9分)(3)PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形。

PC,同理PA,所以直线平面。

---------------------(12分)4.是平面外一点,平面,垂足为,若两辆互相垂直,则是的()A.垂心B.内心C.重心D.外心【答案】A【解析】,,;又,,,;同理,可证,即是的垂心.【考点】1.空间中垂直关系的互化;2.三角形的四心.5.长方体的表面积为11,十二条棱长度之和为24,则这个长方体的一条对角线长为()A.B.C.5D.6【答案】C【解析】由题可知,设长方体的长、宽、高分别为a,b,c,由题可得,4(a+b+c)=24…①,2ab+2bc+2ac=11…②,由①的平方减去②可得a2+b2+c2=25,这个长方体的一条对角线长为;【考点】棱柱的结构特征6.棱长均为的三棱锥,若空间一点满足则的最小值为( )A.B.C.D.【答案】A【解析】∵空间一点P满足,∴点P在平面ABC内.因此当SP⊥平面ABC,P为垂足时,取得最小值.∵三棱锥S-ABC的棱长均为3,∴点P为底面ABC的中心.如图:∴在Rt△APS中,;故选A.【考点】1.向量在几何中的应用;2.平面向量的基本定理及其意义.7.如图,二面角的大小是45°,线段.,与所成的角为30°.则与平面所成的角的正弦值是.【答案】【解析】过点A做AO垂直平面于点O,作AC垂直直线于点C,连接CO、BO.,则,,即为与平面所成的角.设 AO=a,则,所以.【考点】二面角、直线与平面所成的角.8.已知一个几何体的三视图如图所示(单位:cm),那么这个几何体的侧面积是()A.B.C.D.【答案】C【解析】由三视图知,该几何体是:底面为上底长为1,下底为是2,高为1的直角梯形且高为1的直棱柱.所以该几何体的侧面积为.故选C.【考点】由三视图求其直观图的侧面积.9.已知是两条不同的直线,为三个不同的平面,则下列命题中错误的是()A.若则B.若,则C.若则D.若,则【答案】C【解析】对于选项,由线面垂直的判定定理及其性质定理可得,选项是正确的;对于选项,直接由线面垂直的性质定理可得,垂直于同一平面的两直线平行,即选项是正确的;对于选项,若则或与相交,即选项是错误的;对于选项,由直线与平面平行的性质定理和面面平行的判定定理可得选项是正确的.故应选.【考点】1、线面平行的判定定理和性质定理;2、线面垂直的判定定理和性质定理.10.已知是两条不同直线,、β、γ是三个不同平面.下列命题中正确的是.(1).若⊥γ,β⊥γ,则//β(2).若⊥,⊥,则//(3).若//,//,则//(4).若//,//β,则//β【答案】(2)【解析】(1)中可能平行,可能相交;(2)中由线面垂直的性质可知垂直于同一平面的两直线平行;(3)中两直线可能平行,相交或异面;(4)中可能平行,可能相交【考点】空间线面平行垂直的位置关系11.如图:已知四棱柱的底面是菱形,该菱形的边长为1,,.(1)设棱形的对角线的交点为,求证://平面;(2)若四棱柱的体积,求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)连接交于点G,连接GC,得到,利用线面平行的判定定理即可得证;(2)通过体积公式求出高的值,由得到,利用面面垂直的性质定理作出与平面所成角的平面角,再结合已有数据求出最终结果。

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.设均为直线,其中在平面的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】略2.如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】A中由三垂线定理可知是正确的;B中AB,CD平行,所以可得到线面平行;C中设AC,BD相交与O,所以SA与平面SBD所成的角等于SC与平面SBD所成的角分别为所以两角相等,D中由异面直线所成角的求法可知两角不等【考点】1.线面平行垂直的判定;2.线面角,异面直线所成角3.(12分)如图,在三棱锥中,平面平面,,,过作,垂足为,点分别是棱的中点.求证:(1)平面平面; (2).【答案】(1)详见解析(2)详见解析【解析】(1)由,得F分别是SB的中点,点分别是棱的中点,借助于中位线证明直线平行,进而得到两面平行;(2)由平面平面得AF⊥平面SBC∴AF⊥BC∴BC⊥平面SAB∴BC⊥SA试题解析:(1)∵,∴F分别是SB的中点∵E.F分别是SA.SB的中点∴EF∥AB又∵EF平面ABC, AB平面ABC∴EF∥平面ABC同理:FG∥平面ABC又∵EF FG=F, EF.FG平面ABC∴平面平面(2)∵平面平面,平面平面=sBAF平面SAB, AF⊥SB∴AF⊥平面SBC又∵BC平面SBC∴AF⊥BC又∵, AB AF=A, AB.AF平面SAB∴BC⊥平面SAB又∵SA平面SAB∴BC⊥SA【考点】1.线面平行的判定与性质;2.线面垂直的判定与性质4.几何体的三视图如图,则几何体的体积为()A.B.C.D.【答案】D【解析】此几何体的下面是半径为1,高为1的圆柱,上面是半径为1,高为1的圆锥,所以体积是。

【考点】1.三视图;2.几何体的体积.5.在直三棱柱中,平面,其垂足落在直线上.(Ⅰ)求证:;(Ⅱ)若,,为的中点,求三棱锥的体积.【答案】(Ⅰ)证明略;(Ⅱ).【解析】(Ⅰ)可通过证线面垂直,证明线线垂直,易证和,可得证平面,继而得;(Ⅱ)由题设可知,在中,计算得,在中,,因为为的中点,,由.试题解析:(Ⅰ)证明:三棱柱为直三棱柱,平面,又平面,平面,且平面,.又平面,平面,,平面,又平面,(Ⅱ)在直三棱柱中,.平面,其垂足落在直线上,.在中,,,,在中,由(1)知平面,平面,从而为的中点,【考点】1.线线垂直;2.空间几何体的体积.6.已知一个几何体的三视图如图所示(单位:cm), 那么这个几何体的侧面积是()A.B.C.D.【答案】C【解析】由三视图知,该几何体是:底面为上底长为1,下底为是2,高为1的直角梯形且高为1的直棱柱.所以该几何体的侧面积为.故选C.【考点】由三视图求其直观图的侧面积.7.如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.B.C.D.【答案】B【解析】由三视图可知该几何体是三棱柱,底面是边长为2的正三角形,高为4,因此底面积为,侧面积为,因此全面积为【考点】三视图8.(12分)如图,在正方体ABCD-A1B1C1D1中.(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.【答案】(1)当E为棱DD1上的中点;(2)证明见解析.【解析】(1)在中,不难看出若则所以(2)连接不难看出而所以试题解析:(Ⅰ)当E为棱DD1上的中点时,平面A1C1E∥B1D;如图,连接A1C1,与D1B1相交于O,E为DD1上的中点,连接OE,得到OE∥B1D,OE⊂平面A1C1E, B1D⊄平面 A1C1E,∴B1D∥平面A1C1E;(Ⅱ)连接A1D,BD,因为几何体为正方体,如图,所以A1D∥B1C,A1B∥D1C,所以平面A1BD∥平面D1B1C.DM⊂∥平面DA1BD.所以DM∥平面D1B1C.【考点】1、线面平行的判定定理;2、面面平行的判定定理.【方法点晴】本题主要考查的是直线与平面平行,平面与平面平行的判定定理的应用,属于中档题.解题时一定要找准确线线平行,否则很容易出错.证明线线平行的方法有三角形的中位线,平行四边形,面面平行的性质定理,线面平行的性质定理,公理四,线面垂直的性质定理.9.在半径为1的球面上有不共面的四个点A,B,C,D且,,,则等于()A.2B.4C.8D.16【答案】C【解析】如图,构造长方体,设长方体的长、宽、高分别为则,根据题意,则,选C【考点】长方体的性质10.一个三棱锥的顶点在空间直角坐标系中的坐标分别是(0,0,1),(1,0,0),(2,2,0),(2,0,0),画该三棱锥三视图的俯视图时,从轴的正方向向负方向看为正视方向,从轴的正方向向负方向看为俯视方向,以平面为投影面,则得到俯视图可以为()【答案】D【解析】A为正视图,B为侧视图,C中的中间实线应为虚线.故D正确.【考点】三视图.11.在中,,M为AB的中点,将沿CM折起,使间的距离为,则M到平面ABC的距离为A.B.C.1D.【答案】A【解析】由已知得,,,由为等边三角形,取中点,则,交于,则,,.折起后,由,知,又,∴,于是,∴.∵,∴平面,即是三棱锥的高,,设点到面的距离为,则因为,所以由,可得,所以,故选A.【考点】翻折问题,利用等级法求点面距离.【思路点睛】该题属于求点到面的距离问题,属于中等题目,一般情况下,在文科的题目中,出现求点到平面的距离问题时,大多数情况下,利用等级法转换三棱锥的顶点和底面,从而确定出所求的距离所满足的等量关系式,在做题的过程中,可以做一个模型,可以提高学生的空间想象能力,提升做题的速度.12.如图①,在边长为1的等边中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图②所示的三棱锥,其中.(1)证明://平面;(2)证明:平面;(3)当时,求三棱锥的体积.【答案】(1)、(2)证明过程详见解析;(3).【解析】(1)分析折叠前后量的变化情况,可得DE//BC,然后由直线与平面平行的判定方法知结论成立;(2)通过已知条件得,由易知,所以由直线与平面垂直的判定方法知结论成立;(3)结合(2)可得平面,所以计算三棱锥的体积以DFG为底面,GE为高易求解.试题解析:(1)在等边中,,所以,在折叠后的三棱锥A—BCF成立,所以DE//BC因为平面BCF,BC面BCF,所以DE//平面BCF;(2)在等边中,是的中点,所以①,.因为在三棱锥中,,所以②因为,所以平面ABF(3)由(1)可知,结合(2)可得平面..【考点】本题以折叠问题为背景,考查线面平行与垂直的证明及空间几何体体积的求法.13.如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若,求二面角的余弦值.【答案】(1)证明详见解析;(2)二面角的余弦值为.【解析】(1)首先可得为正三角形.根据为的中点,得到.进一步有.由平面,证得.平面.即得.(2)思路一:利用几何方法.遵循“一作,二证,三计算”,过作于,有平面,过作于,连接,即得为二面角的平面角,在中,.思路二:利用“向量法”:由(1)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,确定平面的一法向量及为平面的一法向量.计算.试题解析:(1)证明:由四边形为菱形,,可得为正三角形.因为为的中点,所以.又,因此.因为平面,平面,所以.而平面,平面且,所以平面.又平面,所以.(2)解法一:因为平面,平面,所以平面平面.过作于,则平面,过作于,连接,则为二面角的平面角,在中,,,又是的中点,在中,,又,在中,,即所求二面角的余弦值为.解法二:由(1)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以,,所以.设平面的一法向量为,则因此取,则,因为,,,所以平面,故为平面的一法向量.又,所以.因为二面角为锐角,所以所求二面角的余弦值为.【考点】1.垂直关系;2.空间的角;3.空间向量方法.14.在平面几何中有如下结论:正三角形的内切圆面积为,外接圆面积为,则,推广到空间中可以得到类似结论:已知正四面体的内切球体积为,外接球体积为,则=()A.B.C.D.【答案】D【解析】正三角形的外心与内心重合于正三角形的中心,由重心定理,得,即,由此类比,正四面体的内切球的球心与外接球的球心重合,且在正四面体的高上(如图所示),且,则,则;故选D.【考点】1.类比推理;2.球的体积公式.【方法点睛】本题考查类比推理,属于基础题;类比推理的应用一般分为类比定义、类比性质和类比方法三种情况,在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理性问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;有一些处理问题的方法具有类比性,可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.15.如图,在三棱柱中,侧棱垂直于底面,,,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.【答案】(1)证明见解析(2)证明见解析(3)【解析】(1)证明面面垂直只需证明线面垂直,然后通过面面垂直的判断定理即可得证,本题中只需证明平面即可,所以只需证明垂直平面内相交的两条直线即可;(2)要证明线面平行,只需证明直线和平面内的一条直线平行即可,通常采用构造平行四边形法、中位线法或者构造平行平面法,本题中我们可以采用构造平行四边形法证明四边形为平行四边形,即可得证;(3)要求三棱锥的体积,只需求出点到平面的距离即可,然后求出的面积代入椎体的体积公式即可得到所求答案.试题解析:(1)证明:在三棱柱中,底面,所以.又因为,所以平面,所以平面平面.(2)证明:取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以.又因为平面,平面,所以平面.(3)因为,,,所以,所以三棱锥的体积.【考点】(1)面面垂直判断定理(2)线面平行的判定(3)三棱锥的体积16.已知矩形.将沿矩形的对角线所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线与直线垂直B.存在某个位置,使得直线与直线垂直C.存在某个位置,使得直线与直线垂直D.对任意位置,三对直线“与”,“与”,“与”均不垂直【答案】B【解析】如图,AE⊥BD,EF⊥BD,依题意,,A选项,若存在某个位置,使得直线与直线垂直,则由于AE⊥BD,所以BD⊥平面AEC,从而BD⊥EC,这与已知相矛盾,所以A错误;B选项中,若存在某个位置,使得直线与直线垂直,则CD⊥平面ABC,平面BCD⊥平面ABC,取BC得中点M,连接ME,则ME⊥BD,所以就是二面角A-BD-C的平面角,此角显然存在,即当A在底面是的射影位于BC的中点时,AB⊥ CD,故B正确;C选项中,若存在某个位置,使得直线与直线垂直,则BC⊥平面ACD,从而平面ACD⊥平面B CD,即点A在底面BCD上的射影应在线段CD 上,这是不可能的,故排除C;根据上述亦可排除D,故选B.【考点】空间中直线与直线、直线与平面及平面与平面的垂直关系.【方法点晴】这是一道折叠问题,应当注意折叠前后的变量与不变量,计算几何体中的相关边长,再分别对四个选项进行分析排除,这就需要用到反证法,先假设某个条件成立,从该条件出发,结合原图形中的不变关系,看能否推出矛盾,这是探索性问题常用的解题思路,本题中还要用到线线垂直、线面垂直及面面垂直之间的相互转化,这就需要考生对空间中的垂直关系非常熟悉,方能顺利解答.17.如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.(1)求证:;(2)求二面角的平面角的正弦值.【答案】(1)证明见解析;(2).【解析】第(1)小题设计为证明,只需证明平面;第(2)小题求二面角的大小,解决方法多样,既可以用综合法,也可以用向量法求解.试题解析:(1)证明:∵是的中点,且,∴.∵△与△均是以为直角顶点的等腰直角三角形,∴,.∵,平面,平面,∴平面.∵平面,∴.∵四边形是正方形∴.∵,平面,平面,∴平面.∵平面,∴.∵,平面,平面,∴平面.∵平面,∴.(2)解法1:作于,连接,∵⊥平面,平面∴.∵,平面,平面,∴⊥平面.∵平面,∴.∴∠为二面角的平面角.设正方形的边长为,则,,在Rt△中,在Rt△中,,,在Rt△中,.所以二面角的平面角的正弦值为.解法2:以为坐标原点,分别以所在直线为轴,轴,轴,建立空间直角坐标系,设,则,,,.∴,.设平面的法向量为,由得令,得,∴为平面的一个法向量.∵平面,平面,∴平面平面.连接,则.∵平面平面,平面,∴平面.∴平面的一个法向量为.设二面角的平面角为,则.∴.∴二面角的平面角的正弦值为.【考点】线面间平行与垂直,二面角.18.如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点, D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF,正确的是()A.(1)和(3)B.(2)和(5)C.(1)和(4)D.(2)和(4)【答案】C【解析】(1)由已知可得,即,又,面.所以(1)正确;(2)由(1)知面,而过平面外一点有且只有一条直线与已知平面垂直,所以(2)不正确;(3),为锐角,即与不垂直,所以不可能垂直平面.所以(3)不对;(4)由平面图形易得,即,,,面.所以(4)正确;(5)设正方形边长为2,则,可知,所以,即与不垂直.所以(5)不正确.综上可得正确的为(1)和(4),故C正确.【考点】线面垂直.【方法点晴】本题主要考查的是线面垂直,属于中档题.证明线面垂直常用其判定定理证明,关键是证明线线垂直,证明线线垂直常用的方法有:由线面垂直得线线垂直、勾股定理证直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.19.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.20.在四面体中,,则该四面体的外接球的表面积为______.【答案】【解析】由题意,以为过同一顶点的三条棱作正方体,则正方体的外接球同时也是该四面体的外接球;因为正方体的对角线的长为,球的半径为,所以该四面体的外接球的表面积为.【考点】球的表面积.21.正方形的边长为a,沿对角线AC将△ADC折起,若,则二面角的大小为________.【答案】【解析】取中点,连接和,那么,因为,所以是等边三角形,,在三角形内,,所以,根据平面关系知,即为二面角的平面角,所以二面角的大小是.【考点】二面角22.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.23.如图:在平行六面体中,为与的交点。

高二数学立体几何试题及答案

高二数学立体几何试题及答案

【模拟试题】一。

选择题(每小题5分,共60分) 1. 给出四个命题:①各侧面都是正方形的棱柱一定是正棱柱;②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱.其中正确命题的个数是( ) A. 0 B 。

1 C. 2 D 。

32. 下列四个命题:①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形. 正确的命题有________个 A 。

1 B. 2 C. 3 D 。

43。

长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为( ) A. 12B 。

24C. 214D. 4144。

湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm 的空穴,则该球的半径是( ) A 。

8cmB. 12cmC 。

13cmD. 82cm5。

一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是( )A 。

122+ππB 。

144+ππC.12+ππD 。

142+ππ6. 已知直线l m ⊥⊂平面,直线平面αβ,有下面四个命题: ①αβ//⇒⊥l m ;②αβ⊥⇒l m //;③l m //⇒⊥αβ;④l m ⊥⇒αβ//.其中正确的两个命题是( ) A 。

①② B 。

③④ C. ②④ D. ①③ 7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cmB. 6cmC 。

2182D. 31238。

设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A.63πcmB 。

3233πcmC 。

833πcmD 。

433πcm9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P 高二数学立体几何练习(二)
1.设n m ,是两条不同直线,,αβ是两个不重合的平面,在下列条件,:①,m n 是α内一个三角形的两条边,且//,//m n ββ;②α内有不共线的三点到β的距离都相等;③,αβ都垂直于同一条直线a ;④n m ,是两条异面直线,,m n αβ⊂⊂,且//,//m n βα.其中不能判定平面//αβ的条件是 .
2.设b a ,是两条不同直线,,αβ是两个不同平面,给出下列四个命题:①若,,a b a α⊥⊥ b α⊄,则//b α;②若//,a ααβ⊥,则a β⊥;③若,a βαβ⊥⊥,则//a α或a α⊂;④若,,a b a b αβ⊥⊥⊥则αβ⊥.其中正确的命题是____ _.
3.空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系___
4.在四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足___________时,平面MBD ⊥平面PCD .
5.已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆的面积为____ _.
6.三个平面两两垂直,它们的交线交于一点O ,P 到三个面的距离分别为3、4、5,则OP 的长为 .
7.正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是___________ .
8.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则A 1到平面MBD 的距离为______.
9.下列四个命题其中错误..
的命题的是 ① 垂直于同一条直线的两条直线相互平行;② 垂直于同一个平面的两条直线相互平行; ③ 垂直于同一条直线的两个平面相互平行;④ 垂直于同一个平面的两个平面相互垂直.
10.若l 为一条直线,α,β,γ为三个互不重合的平面,给出下面三个命题:
①α⊥γ,β⊥γ,则α⊥β;②α⊥γ,β∥γ,则α⊥β;③l ∥α,l ⊥β,则α⊥β. 其中正确的命题的是
11.如图,四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面
ABCD ,E 是PC 的中点.
求证:(Ⅰ)PA ∥平面BDE ;
(Ⅱ)平面PAC ⊥平面BDE .
12.如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点.
(I) 求证:平面PDC ⊥平面PAD ;
(II) 求证:BE//平面PAD .
A B C D E
P
13。

如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M ,N 分别为A 1B ,B 1C 1的中点.
(1)求证BC ∥平面MNB 1;(2)求证平面A 1CB ⊥平面ACC 1A 1.
14.如图在四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E
是PC 的中点。

(1)求证:CD ⊥AE ;
(2)求证PD ⊥平面ABE 。

15.如图所示,在直三棱柱111C B A ABC -中,⊥=11,AC BB AB 平面D BD A ,1为AC 的中点。

(Ⅰ)求证://1C B 平面BD A 1;(Ⅱ)求证:⊥11C B 平面11A ABB ;
(Ⅲ)设E 是1CC 上一点,试确定E 的位置使平面⊥BD A 1平面BDE ,并说明理由。

A B C M N A 1 B 1 C 1 (第13题)
高二数学立体几何练习(二)答案
1.设n m ,是两条不同直线,,αβ是两个不重合的平面,在下列条件,:①,m n 是α内一个三角形的两条边,且//,//m n ββ;②α内有不共线的三点到β的距离都相等;③,αβ都垂直于同一条直线a ;④n m ,是两条异面直线,,m n αβ⊂⊂,且//,//m n βα.其中不能判定平面//αβ的条件是 ② .
2.设b a ,是两条不同直线,,αβ是两个不同平面,给出下列四个命题:①若,,a b a α⊥⊥ b α⊄,则//b α;②若//,a ααβ⊥,则a β⊥;③若,a βαβ⊥⊥,则//a α或a α⊂;④若,,a b a b αβ⊥⊥⊥则αβ⊥.其中正确的命题是_①③④_.
3.空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系___相交__.
4.在四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足BM PC ⊥时,平面MBD ⊥平面PCD .
5.已知正ABC ∆的边长为a ,那么ABC ∆的平面直观图A B C '''∆
2. 6.长方体中ABCD -A 1B 1C 1D 1中,AB =8,BC =6,在线段BD ,A 1C 1上各有一点P 、Q ,在PQ 上有一点M ,且PM=MQ ,则M 点的轨迹图形的面积为 24 .
7.三个平面两两垂直,它们的交线交于一点O ,P 到三个面的距离分别为3、4、5,则OP 的长为(5 2 ).
8.正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是(线段B 1C ).
9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则A 1到平面MBD 的距离为( 6 6
a ). 12.2、3
11.证明:(Ⅰ)连结OE .
∵O 是AC 的中点,E 是PC 的中点,
∴OE ∥AP ,
又∵OE ⊂平面BDE ,PA ⊄平面BDE ,
∴PA ∥平面BDE .……………………………6分
(Ⅱ)∵PO ⊥底面ABCD ,
∴PO ⊥BD ,
又∵AC ⊥BD ,且AC PO =O ,
∴BD ⊥平面PAC .
而BD ⊂平面BDE ,
∴平面PAC ⊥平面BDE .………………12分
13.证明:(1)由PA ⊥平面ABCD ⇒⎪⎭⎪⎬⎫=⋂⊥⊥A AD PA CD
PA )AD (CD 已知 ⇒⎭⎬⎫⊂⊥PAD CD PAD CD 面面 ⇒平面PDC ⊥平面PAD ; (2)取PD 中点为F ,连结EF 、AF ,由E 为PC 中点, A B C D
E P F
得EF 为△PDC 的中位线,则EF//CD ,CD=2EF .
又CD=2AB ,则EF=AB .由AB//CD ,则EF ∥AB . 所以四边形ABEF 为平行四边形,则EF//AF . 由AF ⊂面PAD ,则EF//面PAD .
14.(Ⅰ)证明:如图,连接1AB 与B A 1相交于M 。

则M 为B A 1的中点连结MD ,又D 为AC 的中点 MD C B //1∴又⊄C B 1平面BD A 1
//1C B ∴平面BD A 1……4分
(Ⅱ)B B AB 1= ∴四边形11A ABB 为正方形 11AB B A ⊥∴又⊥1AC 面
BD A 1B A AC 11⊥∴⊥∴B A 1面11C AB ……6分
111C B B A ⊥∴又在直棱柱111C B A ABC -中111C B BB ⊥ ⊥∴11C B 平面A ABB 1。

……8分
(Ⅲ)当点E 为C C 1的中点时,平面⊥BD A 1平面BDE ……9分
D 、
E 分别为AC 、C C 1的中点1//AC DE ∴1AC 平面BD A 1⊥∴DE 平面BD A 1又⊂DE 平面BDE ∴平面⊥BD A 1平面BDE ……12分。

相关文档
最新文档